
O - A New Approach For A Very Simple Language For Distributed Computation

Thomas Pucklitzsch, Mathias Sporer
Department of Computer Science

Duale Hochschule Sachsen

Glauchau, Germany

e-mail: thomas.pucklitzsch@ba-sachsen.de

Abstract—This paper describes the work on a new program-
ming language. This language is called O and has a very simple
structure. So it can be used to explain students in an easy way
how a compiler works. The goal is to provide a language, that
makes it as easy as possible to distribute code over the network
for parallel execution and also to use different architectures to
solve special problems faster.

Keywords-compiler; distributed computing; cisc

I. INTRODUCTION

There are many projects supporting the development of

distributed software. The Hydro-project [1] has been working

on a toolkit that can optimize the code for the needs of

distributed systems. It can transform single-node software into

a variety of distributed designs. The LVars project [2] uses a

similar approach. LVars is a model allowing a deterministic-

by-construction parallel programming. Another concept of dis-

tributed programming is the project Lasp [3]. This model was

developed for large-scale applications and contains convergent

data-structures as well as dataflow execution model. It provides

distributed programming in large-scale applications for clients

that are somtimes offline. The intention of the development

of the new programming language O was to write software

for a simulator called Octopus-machine.The Octopus-machine

can run an individual microprogram. It comes with different

ISA-Layers and different assembler languages. The simula-

tor provides an interface for connecting to other instances

and execute code on these instances. The new programming

language should be configurable an include buildin functions

for executing code on other nodes. These node could run

a different ISA-Layer. This paper presents the first ideas to

adress these needs.

II. THE OCTOPUS MACHINE

The Octopus-machine is a simple architecture and its imple-

mentation in Python (Figure 1). Originally it was implemented

for educational purpose. The architecture of the Octopus-

machine based on the MIC-1 architecture which is described

by Andrew Tanenbaum [4]. In difference to the Mic-1 the

architecture allows to modify the microprogram easily by us-

ing the graphical user interface of the simulator software. You

can adjust the ISA-Layer and add new instructins for special

purposes (Figure 2). For example if you need a hardware

instruction to compute the CRC-checksum you can add some

microcommands and get a hw-instruction for this task. For a

better usability, the simulator of the Octopus-machine includes

a generator for an assembler. Following the implementation of

Figure 1. Oktopus software

Figure 2. configuration of microcommands

your microprogram, you can generate a python script which

can be used to compile the assembler program which contains

the new hw-instructions. There exists also an implementation

of the Octopus-machine in C for faster execution. It is possible

to transfer the state of the machine and the microprogram over

the network to an instance of this implementation and continue

the software. So the idea was born to distribute parts of the

software to different instances of the oktopus-machine. The

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-264-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

COMPUTATION TOOLS 2025 : The Sixteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

https://orcid.org/0000-0002-1175-2668

next step is to develop a new programming language. The

programming language is referred to as O due to the name

Octopus-machine.

III. HOMOICONICITY

Homoiconicity means code is data. All programming lan-

guages that support this attribute are able to generate code at

runtime and execute it immediately. To send code to a instance

of the Octopus-machine for execution, you can send the binary

instructions to this instance and execute the code remotely.

This will only work if the remote instance is running on the

same Microcode. It does not work if the remote instance of

the Octopus-machine is using a different microprogramm and

a different ISA-Layer. In this case the solution is to transfer

the source code to the remote instance. An embedded compiler

inside the octopus machine must compile the source code. This

means that the compiler must be very simple and the syntax

of o has to be short.

IV. BUILT-IN SUPPORT FOR DISTRIBUTED EXECUTION

The implementation of the Octopus-machine includes a

socket interface that allows to send data. The Idea is to use this

interface, to transfer code to other instances. To enable easy

distributed software development, O must provide a simple

notation to specify a remote instance. To define the remote

execution the symbol can be used. With id(expression) you

can define the id of a node that should execute the expression.

The tokens recognized by the parser are converted into a

syntax tree by the scanner. The leaves of the syntax tree

must then be replaced by sequences of machine code. Because

the microprogram is individually configurable, the inserted

machine code differs from machine to machine. Therefore

the execution of the binarycode on another machine is only

possible, if it is equipped with the same microprogram. Since

this is not necessarily the case, you can write id*(execution).

In this case, not the compilation but rather the relevant part of

the syntax tree will be transferred remotely using a binary data

format. This means that the last step of the compile process

can be carried out on the target node, which can then execute

the resulting machine code and return the result (Figure 3).

V. THE PARSER

O keeps the parser and the scanner as simple as possible.

To do this, it is defined that the length of a character string

must depend on the type of token. First, the parser reads

the characters from the source text and replaces all newlines

with spaces. The character string is then separated using the

space character and the individual tokens are examined. The

tokenizer checks each token for its length and can thus decide

whether the token is an operator, a keyword or a variable.

Operators consist of one character. Keywords consist of two

characters and start with O and all tokens longer than two

characters are recognized as variable names. The first part

of the variable name indicates what data type it is. This

limits the programmer and leads to keywords that are not

always intuitive, but it does make it possible for the variable

syntax anlayzerscanner parser code generator

generic part non generic part

Figure 3. genereic part of the compiler

types to always be recognized by their name. This ensures

that errors are identified more quickly. Based on the LISP

language, functions and operations are represented in the form

of Polish Notation. First the operator, then the operators or the

parameters of the function are specified. For example (+ 1 2)

returns 3.

VI. CONCLUSION

The programming language O described is still a work

in process. The goal is to make it as simple as possible.

A lightweight compiler is needed that runs on the Octopus-

machine. Due to its simplicity O is useful for educational

purposes. Because of the different ISA-Layers each type of

instance requires its own compiler. The compiler contains a

genral part(scanner, parser) and a configurable part. O is not

impemented yet. The exact definition of the language and the

implementation of the parser are in process.

REFERENCES

[1] J. Hellerstein, S. Laddad, M. Milano, C. Power, and M. Samuel,
Invited paper: Initial steps toward a compiler for distributed
programs, May 2023. DOI: 10.48550/arXiv.2305.14614.

[2] L. Kuper and N. Ryan, Lvars: Lattice-based data structures for
deterministic parallelism, 2013.

[3] C. Meiklejohn and P. Van Roy, Lasp: A language for dis-
tributed,. coordination-free programming. 2015.

[4] A. Tanenbaum and T. Austin, Structured computer organisation,
2013.

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-264-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

COMPUTATION TOOLS 2025 : The Sixteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

https://doi.org/10.48550/arXiv.2305.14614

	Introduction
	The Octopus Machine
	Homoiconicity
	Built-in Support for distributed execution
	The parser
	Conclusion

