COMPUTATION TOOLS 2025 : The Sixteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

O - A New Approach For A Very Simple Language For Distributed Computation

Thomas Pucklitzsch, Mathias Sporer
Department of Computer Science
Duale Hochschule Sachsen
Glauchau, Germany
e-mail: thomas.pucklitzsch@ba-sachsen.de

Abstract—This paper describes the work on a new program-
ming language. This language is called O and has a very simple
structure. So it can be used to explain students in an easy way
how a compiler works. The goal is to provide a language, that
makes it as easy as possible to distribute code over the network
for parallel execution and also to use different architectures to
solve special problems faster.

Keywords-compiler; distributed computing; cisc

I. INTRODUCTION

There are many projects supporting the development of
distributed software. The Hydro-project [1] has been working
on a toolkit that can optimize the code for the needs of
distributed systems. It can transform single-node software into
a variety of distributed designs. The LVars project [2] uses a
similar approach. LVars is a model allowing a deterministic-
by-construction parallel programming. Another concept of dis-
tributed programming is the project Lasp [3]. This model was
developed for large-scale applications and contains convergent
data-structures as well as dataflow execution model. It provides
distributed programming in large-scale applications for clients
that are somtimes offline. The intention of the development
of the new programming language O was to write software
for a simulator called Octopus-machine.The Octopus-machine
can run an individual microprogram. It comes with different
ISA-Layers and different assembler languages. The simula-
tor provides an interface for connecting to other instances
and execute code on these instances. The new programming
language should be configurable an include buildin functions
for executing code on other nodes. These node could run
a different ISA-Layer. This paper presents the first ideas to
adress these needs.

II. THE OCTOPUS MACHINE

The Octopus-machine is a simple architecture and its imple-
mentation in Python (Figure 1). Originally it was implemented
for educational purpose. The architecture of the Octopus-
machine based on the MIC-1 architecture which is described
by Andrew Tanenbaum [4]. In difference to the Mic-1 the
architecture allows to modify the microprogram easily by us-
ing the graphical user interface of the simulator software. You
can adjust the ISA-Layer and add new instructins for special
purposes (Figure 2). For example if you need a hardware
instruction to compute the CRC-checksum you can add some
microcommands and get a hw-instruction for this task. For a
better usability, the simulator of the Octopus-machine includes
a generator for an assembler. Following the implementation of

208340148
210340084

050340147
20360488

28084500

11

ABus

S20adi0)
52000
E i
Saahnaon)
578300100

560340107
050360404

& T
T i
:

R Sxticio:
seaiones Soaioias bl
060332147 Sataiond Satisht)
¢ S o 382205 Soansannn sossizon
il Sl
b

980344008
548748000
1e23i8002
050340257 11ac

11200072 Siorigo00
Vindi00z

[~ Server Frequency: 1Hz

s |

=

Figure 1. Oktopus software

¥

B-Bus C-Bus CPU Next Microaddress

~ MDR [MAR ~ AND ~ not [JMPC 148

PG MDR ~ OR re read [JAMN [swtich

~MBR [PC NEG o write [JAMZ Current Address

— MBRU [SP ~ ADD ~ fetch 14?

« SP LV T ENA [~ switch current address |

(B [T CPP v ENB Mnemonic

~CPP [TOS [INV lovalcp

— TOS [OPC [INC Description

~OPC [H « Mo Shift [Jump if the result of last
~ SLL8 Params

Insert Command | i~ SRA1 o

Figure 2. configuration of microcommands

your microprogram, you can generate a python script which
can be used to compile the assembler program which contains
the new hw-instructions. There exists also an implementation
of the Octopus-machine in C for faster execution. It is possible
to transfer the state of the machine and the microprogram over
the network to an instance of this implementation and continue
the software. So the idea was born to distribute parts of the
software to different instances of the oktopus-machine. The

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-264-7

https://orcid.org/0000-0002-1175-2668

COMPUTATION TOOLS 2025 : The Sixteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

next step is to develop a new programming language. The
programming language is referred to as O due to the name
Octopus-machine.

III. HOMOICONICITY

Homoiconicity means code is data. All programming lan-
guages that support this attribute are able to generate code at
runtime and execute it immediately. To send code to a instance
of the Octopus-machine for execution, you can send the binary
instructions to this instance and execute the code remotely.
This will only work if the remote instance is running on the
same Microcode. It does not work if the remote instance of
the Octopus-machine is using a different microprogramm and
a different ISA-Layer. In this case the solution is to transfer
the source code to the remote instance. An embedded compiler
inside the octopus machine must compile the source code. This
means that the compiler must be very simple and the syntax
of o has to be short.

IV. BUILT-IN SUPPORT FOR DISTRIBUTED EXECUTION

The implementation of the Octopus-machine includes a
socket interface that allows to send data. The Idea is to use this
interface, to transfer code to other instances. To enable easy
distributed software development, O must provide a simple
notation to specify a remote instance. To define the remote
execution the symbol can be used. With id(expression) you
can define the id of a node that should execute the expression.
The tokens recognized by the parser are converted into a
syntax tree by the scanner. The leaves of the syntax tree
must then be replaced by sequences of machine code. Because
the microprogram is individually configurable, the inserted
machine code differs from machine to machine. Therefore
the execution of the binarycode on another machine is only
possible, if it is equipped with the same microprogram. Since
this is not necessarily the case, you can write id*(execution).
In this case, not the compilation but rather the relevant part of
the syntax tree will be transferred remotely using a binary data
format. This means that the last step of the compile process
can be carried out on the target node, which can then execute
the resulting machine code and return the result (Figure 3).

V. THE PARSER

O keeps the parser and the scanner as simple as possible.
To do this, it is defined that the length of a character string
must depend on the type of token. First, the parser reads
the characters from the source text and replaces all newlines
with spaces. The character string is then separated using the

space character and the individual tokens are examined. The
tokenizer checks each token for its length and can thus decide
whether the token is an operator, a keyword or a variable.
Operators consist of one character. Keywords consist of two
characters and start with O and all tokens longer than two
characters are recognized as variable names. The first part
of the variable name indicates what data type it is. This
limits the programmer and leads to keywords that are not
always intuitive, but it does make it possible for the variable

scanner Lol parser L .. Syntax anlayzer | .| code generator

generic part non generic part

Figure 3. genereic part of the compiler

types to always be recognized by their name. This ensures
that errors are identified more quickly. Based on the LISP
language, functions and operations are represented in the form
of Polish Notation. First the operator, then the operators or the
parameters of the function are specified. For example (+ 1 2)
returns 3.

VI. CONCLUSION

The programming language O described is still a work
in process. The goal is to make it as simple as possible.
A lightweight compiler is needed that runs on the Octopus-
machine. Due to its simplicity O is useful for educational
purposes. Because of the different ISA-Layers each type of
instance requires its own compiler. The compiler contains a
genral part(scanner, parser) and a configurable part. O is not
impemented yet. The exact definition of the language and the
implementation of the parser are in process.

REFERENCES

[1] J. Hellerstein, S. Laddad, M. Milano, C. Power, and M. Samuel,
Invited paper: Initial steps toward a compiler for distributed
programs, May 2023. DoIL: 10.48550/arXiv.2305.14614.

[2] L. Kuper and N. Ryan, Lvars: Lattice-based data structures for
deterministic parallelism, 2013.

[3] C. Meiklejohn and P. Van Roy, Lasp: A language for dis-
tributed,. coordination-free programming. 2015.

[4] A. Tanenbaum and T. Austin, Structured computer organisation,
2013.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-264-7

https://doi.org/10.48550/arXiv.2305.14614

	Introduction
	The Octopus Machine
	Homoiconicity
	Built-in Support for distributed execution
	The parser
	Conclusion

