
A Note on a Syntactical Measure of the
Complexity of Programs

Emanuele Covino
Dipartimento di Informatica
Universitá degli Studi di Bari

Bari, Italy
emanuele.covino@uniba.it

Abstract—We introduce a programming language operating
on stacks and a syntactical measure σ, such that a natural num-
ber σ(P) is assigned to each program P. The measure considers
how the presence of loops defined over size-increasing (and
non-size-increasing) subprograms influences the complexity of
the program itself. Functions computed by a program of σ-
measure n are exactly those computable by a Turing machine
with running time in En+2 (the n+2-th Grzegorczyk class). Pro-
grams of σ-measure 0 compute the polynomial-time computable
functions. Thus, we have a syntactical characterization of the
functions belonging to the Grzegorczyk hierarchy; this result
represents an improvement with respect to previous similar
results.

Index Terms—polynomial-time complexity, Grzegorczyk hi-
erarchy, imperative programming languages, stack programs

I. INTRODUCTION

The definition of a class of functions with a given com-
putational complexity is usually given by introducing an
explicit bound on time and/or space resources used by a
Turing Machine during the computation of the functions.
Other approaches capture complexity classes by means of
some form of limited recursion; the first characterization of
this type has been given by Cobham [3], who has shown that
the polynomial-time computable functions are exactly those
that are definable by bounded recursion on notation, starting
from a set of simple basic functions.

In the recent years, a number of characterizations of
complexity classes has been given, showing that they can
be captured by means of various forms of ramified recursion,
without any explicitly bounded scheme of recursion. Initiated
by Simmons [23], Bellantoni and Cook [1] and Leivant [13]
- [15], one can find functional characterization of linear-
space/time computable functions LINSPACE and LOGSPACE
[9], polynomial time [16], polynomial space [18] [21], the
elementary functions [21] [4], non-size-increasing computa-
tions [6], among the others.

A different approach can be found in [7] [8] [10] [11];
more recently, in [12] [17]. The properties of imperative
programs (such as complexity, resource utilization, termina-
tion) are now investigated by analyzing their syntax only.
In particular, the properties of a programming language

operating on stacks are studied in [10]; the language supports
loops over stacks, conditionals and concatenation, besides
the usual pop and push operations (see Section II for the
detailed semantics). The natural concept of µ-measure is then
introduced; it is a syntactical method by which one is able
to assign to each program P a number µ(P). It is proved the
following bounding theorem: functions computed by stack
programs of µ measure n have a length bound b ∈ En+2

(the n+2-th Grzegorczyk class), that is |f(w⃗)| ≤ b(|w⃗|); as
a consequence, stack programs of measure 0 have polynomial
running time, and programs of measure n compute functions
whose time complexity is in the n + 2-th finite level of the
Grzegorczyk hierarchy. This result provides a measure of
the impact of nesting loops on computational complexity;
if a stack Z is updated into a loop controlled by a stack Y
and, afterwards, Y is updated into a loop controlled by Z,
we have a so called top circle in the program; when this
circular reference occurs into an external loop, a blow up in
the complexity of the program is produced. The µ-measure
is a syntactical way to detect top circles; each time one of
them occurs in the body of a loop, the µ measure is increased
by 1 (see below, Section III and definition 3.1).

There are various ways of improving the measure µ
(for instance, see [11]), since it is an undecidable problem
whether or not a function computed by a given stack program
lies in a given complexity class. In this paper, we provide a
refinement of µ, starting from the following consideration: a
program whose structure leads the µ-measure to be equal
to n contains n nested top circles, and this implies, by
the bounding theorem, that the program has a length bound
b ∈ En+2. Suppose now that some of the sequences of pop
and push (or, in general, some of the subprograms) iterated
into the main program leave unchanged the overall space
used; since not increasing programs can be iterated without
leading to any growth in space, the effective space bound
is lower than the bound obtained via the µ-measure, and
it can be evaluated by an alternative measure σ. While µ
grows each time a top circle appears in the body of a loop,
σ grows only for increasing top circles. In other words,
the new measure doesn’t consider those situations in which
some (potentially harmful) operations are performed, but

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

their overall balance is negative. We prove a new bounding
theorem using the σ-measure, providing a more appropriate
bound to the complexity of stacks programs.

In Section II, we recall concepts and definitions of stack
programs and of the Grzegorczyk hierarchy. In Section III,
we recall the definition of µ-measure. In Section IV, we
introduce the definition of the new σ-measure and the new
bounding theorem. Conclusions and future work can be found
in Section V.

II. PRELIMINARIES ON THE GRZEGORCZYK HIERARCHY
AND ON STACK PROGRAMS

In this section, we recall the definition of the Grzegorczyk
hierarchy, and fundamentals on stack programs and their
computations; the reader is referred to [22] [5] [2] [10] for
complete definitions and properties.

Definition 2.1: Given a unary function f , the k-th iterate of
f (denoted with fk) is f0(x) = x and fk+1(x) = f(fk(x)).

Definition 2.2: The principal functions E1, E2, E3, . . . are
E1(x) = x2 + 2 and En+2(x) = Ex

n+1(2) (the x-th iterate
of En+1).

Definition 2.3: A function f is defined by bounded re-
cursion from functions g, h, and b if for all x⃗, y one has
f(x⃗, 0) = g(x⃗), f(x⃗, y) = h(x⃗, y, f(x⃗)) and f(x⃗, y) ≤
g(x⃗, y).

Definition 2.4: The n-th Grzegorczyk class En is the
least class of functions containing the initial functions zero,
successor, projections, maximum and En−1, and closed under
composition and bounded recursion.

Stack programs operate on variables serving as stacks; they
contain arbitrary words over a fixed alphabet Σ, and they are
manipulated by running a program built from imperatives
push(a,X), pop(X), and nil(X) combined by sequencing, con-
ditional, and loop statements (respectively, P;Q, if top(X)≡a
then [P], and foreach X [P]).

Definition 2.5: The operational semantics of stack pro-
grams are defined as follows:

1) push(a,X) pushes a letter a on the top of the stack X;
2) pop(X) removes the top of X, if any; it leaves X

unchanged, otherwise;
3) nil(X) empties the stack X;
4) if top(X)≡a [P] executes P if the top of the stack X is

equal to a;
5) P1;. . .;Pk are executed from left to right;
6) foreach X [P] executes P for |X| times
with the restriction that no imperatives over X may occur

in the body of a loop foreach X [P] (i.e., in P), and that the
loop is executed call-by-value; X is the control stack of the
loop. |X| stands for the length of the word stored in X.

The notation {A}P{B} means that if the condition ex-
pressed by the sentence A holds before the execution of P,
then the condition expressed by the sentence B holds after
the execution of P.

Definition 2.6: A stack program P computes a function
f : (Σ∗)n → Σ∗ if P has an output variable O and n input
variables X̄ = Xi1 , . . . ,Xin among stacks X1, . . . ,Xm such
that {X̄ = w⃗}P{O = f(w⃗)}, for all w⃗ = w1, . . . , wn ∈
(Σ∗)n.

For a fixed program P, two sets of variables are de-
fined: U(P) = {X|P contains an imperative push(a,X)} and
C(P) = {X|P contains a loop foreach X [Q], and U(Q) ̸=
∅}. Variables in U(P) can be altered by a push during a run
of P, while variables in C(P) control a loop occurring in P.
The two sets are not disjoint.

Definition 2.7: X controls Y in the program P (denoted
with X ≺P Y) if P contains a loop foreach X [Q], and Y ∈
U(Q); the transitive closure of ≺P is denoted by P→.

Consider the following program:

P1:= foreach X1[. . . foreach Xl [push (a,Y)]]

If words v1 . . . vl, w are stored in X1 . . . Xl, Y, respectively,
before P1 is executed, then Y holds the word wa|v1|...|vl|

after the execution of P1. The depth of loop-nesting is a
necessary condition for high computational complexity, but
it is not a sufficient condition. Now, consider the following
two programs:

P2:= nil(Y); push(a,Y); nil(Z); push(a,Z);
foreach X [nil(Z); foreach Y [push(a,Z); push(a,Z)];

nil(Y); foreach Z [push(a,Y)]]

P3:= nil(Y); push(a,Y); nil(Z);
foreach X [

foreach Y [push(a,Z); push(a,Z); push(a,Y)]]

Even if both P2 and P3 have nesting depth 2, if w is
initially stored in X, then Z holds the word a2|w|

after P2 is
executed, while a|w|(|w|+1) is stored in Z after the execution
of P3. Thus, we see that P3 runs in polynomial time, whereas
P2 has exponential running time. This happens because of
the (control) circle contained inside the outermost loop in
P2: inside the loop governed by X, first Y controls Z (in
that Z is updated via push(a,Z) inside a loop governed by
Y), and then Z controls Y in the same sense. In contrast,
there is no such circle in P3. Stack programs where each
body of a loop statement is circle-free compute exactly the
functions computable within polynomial time, and must be
separated from those programs with loops that cause a blow
up in running time.

III. THE µ-MEASURE ON STACK PROGRAMS

Starting from the previous relation P→, a measure over the
set of stack programs is introduced in [10].

Definition 3.1: Let P be a stack program. The µ-measure
of P (denoted with µ(P)) is defined as follows, inductively:

1) µ(pop) = µ(push) = µ(nil) := 0;
2) µ(if top(X)≡a [Q]) := µ(Q);

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

3) µ(P;Q) := max(µ(P), µ(Q));
4) µ(foreach X [Q]) := µ(Q) + 1, if Q is a sequence

Q1; . . . ;Ql with a top circle (that is, if there exists Qi

such that µ(Qi) = µ(Q), some Y controls some Z in
Qi, and Z controls Y in Q1; . . . ;Qi−1;Qi+1; . . . ;Ql);
µ(foreach X [Q]) := µ(Q), otherwise.

To focus on the critical case where P is a loop foreach
X [Q], assume that µ(Q) is already determined. Suppose
that Q is a sequence Q1; . . .;Ql, in which case µ(Q) is
max(Q1, . . .,Ql). Then a blow up in running time can only
occur if Q has a top circle, that is, Q has a circle with respect
to a control variable Y of some component Qi of maximal µ-
measure µ(Q). In this case, µ(P) is defined as µ(Q)+1. In all
other cases, µ(P) is defined as µ(Q). Given that all primitive
instructions receive µ-measure 0, one easily verifies for the
examples above that µ(P1)=µ(P3)=0, whereas µ(P2)=1.

The core of [10] is the following bounding theorem.
Lemma 3.1: Every function f computed by a stack pro-

gram of µ-measure n has length bound b ∈ En+2 satisfying
|f(w⃗)| ≤ b(|w⃗|), for all w⃗. In particular, if P computes
a function f , and µ(P) = 0, then f has a polynomial
length bound, that is, there exists a polynomial p satisfying
|f(w⃗)| ≤ p(|w⃗|).

Let Ln
µ be the class of all functions which can be computed

by a stack program of µ-measure n ≥ 0, and let Gn be the
class of all functions which can be computed by a Turing
machine in time b(|w⃗|), for some b ∈ En. As a consequence
of the bounding lemma, the following result holds.

Theorem 3.1: For n ≥ 0: Ln
µ = Gn+2.

IV. THE σ-MEASURE AND A NEW BOUNDING THEOREM

In the rest of the paper, we denote with imp(Y) an imper-
ative pop(Y), push(a,Y), or nil(Y); we denote with mod(X̄)
a modifier, that is a sequence of imperatives operating on
the variables occurring in X̄ = X1, . . . ,Xn. We introduce a
modified definition of circle, which better matches our new
measure.

Definition 4.1: Let Q be a sequence in the form
Q1; . . . ;Ql. There is a circle in Q if there exists a sequence
of variables Z1,Z2,. . . ,Zl, and a permutation π of {1, . . . , l}
such that Z1

Qπ(1)→ Z2

Qπ(2)→ . . .Zl

Qπ(l)→ Z1. The subprograms
Q1, . . . ,Ql and the variables Z1, . . . ,Zl are involved in the
circle.

For sake of simplicity, we will consider π(i) = i, that is
the case Z1

Q1→ Z2
Q2→ . . .Zl

Ql→ Z1; proofs and definitions
holds in the general case too.

Definition 4.2: Let P be a stack program and let Y be
a given variable. The σ-measure of P with respect to Y
(denoted with σY(P)) is defined as follows, inductively (with
sg(z) = 1 if z ≥ 1, sg(z) = 0 otherwise):

1) σY(mod(X̄)) := sg(
∑

σ̂Y(imp(Y))), for each imp(Y) ∈
mod(X̄), where
σ̂Y(push(a,Y)) := 1;

σ̂Y(pop(Y)) := −1;
σ̂Y(nil(Y)) := −∞;
σ̂Y(imp(X)) := 0, with Y̸=X;

2) σY(if top Z ≡a[P]) := σY(P);
3) σY(P1;P2) := max(σY(P1), σY(P2)), with P1;P2 not a

modifier;
4) σY(foreach X [Q]) := σY(Q)+1, if there exists a circle

in Q, and a subprogram Qi s.t.
(a) Y and Qi are involved in the circle;
(b) σY(Q) = σY(Qi);
(c) the circle is increasing;
σY(foreach X [Q]) := σY(Q), otherwise,

where a circle is not increasing if, denoted with
Q1,Q2,. . . ,Ql and with Z1,Z2,. . . ,Zl the sequences of sub-
programs and, respectively, of variables involved in the circle,
we have that σZi

(Qj) = 0, for each i := 1 . . . l and
j := 1 . . . l. If the previous condition doesn’t hold, we say
that the circle is increasing.

Note that the σY-measure of a modifier (see (1) in the
previous definition) is equal to 1 only when, in absence of
nil’s, the overall number of push’s over Y is greater than the
number of pop’s over the same variable, that is, only when a
growth in the length of Y is produced. Moreover, note that the
"otherwise" case in (4) can be split in three different cases.
First, there are no circles in which Y is involved. Second,
Y is involved, together with a subprogram Qi, in a circle
in Q, but it happens that σY(Qi) is lower than σY(Q) (this
means that there is a blow-up in the complexity of Y in
σY(Qi), but this growth is still bounded by the complexity
of Y in a different subprogram of Q). Third, Y is involved
in some circles in Q, but each of them is not increasing
(that is, according to the previous definition, each variable
Zi involved in each circle doesn’t produce a growth in the
complexity of the subprograms Qj involved in the same
circle). This implies that the space used during the execution
of the external loop foreach X [Q] is basically the same used
by Q (this is not a surprising fact: one can freely iterate a
not increasing program without leading an harmful growth).
In all three cases the σ-measure must remain unchanged:
it is increased only when an increasing top circle occurs
and when at least one of the variables involved in that
circle causes a growth in the space complexity of the related
subprogram, simultaneously (that is, if there exists a p such
that σZp(Qp) > 0).

In the following definition, we extend the measure to the
whole set of variables occurring in a stack program.

Definition 4.3: Let P be a stack program. The σ-measure
of P is σ(P) := σ̃(P)−̇1, where −̇ is the usual cut-off
subtraction, and

1) σ̃(mod(X̄)) := 0
2) σ̃(if top Z ≡a [Q]) := max(σY(if top Z ≡a [Q])), for

all Y occurring in P;
3) σ̃(P1;P2) := max(σY(P1;P2)), for all Y occurring in

P, with P1;P2 not a modifier;

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

4) σ̃(foreach X [Q]) := max(σY(foreach X [Q])), for all
Y occurring in P.

Note that σ(P) ≤ µ(P), for each stack program P. Note
also that we are using the previously defined σ̂Y to detect all
the increasing modifiers, for a given variable Y (this is done
setting σ̂Y equal to 1); but, once detected, we don’t have to
consider them in the evaluation of the σ-measure. This is the
reason of the "−̇1" part in the previous definition.

In the rest of the paper we introduce a reduction procedure
between stack programs, denoted with ⇝, and we prove a
new bounding theorem.

Definition 4.4: P and Q are space equivalent if {X̄ =
w⃗}P{|X̄| = m} implies that {X̄ = w⃗}Q{|X̄| = O(m)}. This
is denoted with P≈sQ.

Definition 4.5: Let A be a stack program such that µ(A) =
n+ 1, and σ(A) = m, with m < n+ 1; the program ⇝A is
obtained as follows:

1) if A is foreach X [R], with µ(R) = σ(R) = n, and
denoted with C1, . . . , Cl the top circles in R, and with
Ai1, . . . ,Aip the variables involved in Ci, for each i, we
have that ⇝A is the result of changing each imp(Aij)
into nop(Aij) (a no-operation imperative);

2) if A is foreach X [R], with µ(R) > σ(R), , we have
that ⇝A is equal to foreach X [⇝R];

3) if A is A1;A2 and max(µ(A1), µ(A2)) = µ(A1), we
have that ⇝A is equal to ⇝A1;A2;
simmetrically, if max(µ(A1), µ(A2)) = µ(A2), we
have that ⇝A is equal to A1;⇝A2;
if µ(A1) = µ(A2), we have that ⇝A is equal to
⇝A1;⇝A2;

4) if A is if top(X)≡a [R], we have that ⇝A is equal to
if top(X)≡a [⇝R].

Lemma 4.1: Given a stack program P, with µ(P) = n+1
and σ(P) = n, there exists a stack program ⇝P such that
µ(⇝ P) = n, σ(⇝ P) = n, and P≈s⇝P.
Proof. (by induction on n). Base. Let µ(P) = 1 and σ(P) =
0. In the main case, P is in the form foreach X [Q], with
a not-incresing circle occurring in Q. Applying ⇝ to P, we
obtain a program P′ whose σ-measure is still 0, and whose
µ-measure is reduced to 0, because ⇝ has broken off the
circle in P that leads µ from 0 to 1 (i.e., in P′, there are no
more push’s on the variables involved in the circle). Note
that P can decrease the length of the stacks involved in the
circle, while P′ does not perform any operation in the same
circle. Thus, P′ can increase its variables only by a linear
factor; indeed, if {X̄ = w⃗}P{|X̄| = m} we have that {X̄ =
w⃗}P′{|X̄| = cm}, where c is a constant depending on the
structure of P: thus, P≈sP′.
Step. Let µ(P) = n+ 2 and σ(P) = n+ 1. Let P be in the
form foreach X [Q], and let C be a top circle occurring in
Q, with µ(Q) = n+1; we have two cases: (1) σ(Q) = n+1,
or (2) σ(Q) = n.
(1) In this case C is a not-increasing circle, because it has
been detected by µ, but not by σ. Applying ⇝ to P, we

obtain a program P′ such that σ(P′) = n+1, µ(P′) = n+1,
and P≈sP′.
(2) In this case C is an increasing circle, detected by µ and
σ. We have that (by the inductive hypothesis) there exists a
program Q′ such that µ(Q′) = n, σ(Q′) = n, and Q≈sQ

′.
Starting from P, we build a new program P′=foreach X [Q’]
. We have that µ(P′) = µ(Q′)+1 = n+1, σ(P′) = σ(Q′)+
1 = n+ 1, and P≈sP′ as expected.
The cases P1;P2;. . . ;Pk and if top(X)≡a [P] can be proved
in a similar way.

Theorem 4.1: Every function f computed by a stack
program P such that µ(P) = n and σ(P) = m, with n > m,
has a length bound b ∈ Em+2 satisfying |f(w⃗)| ≤ b(|w⃗|).
Proof. Let k be µ(P) − σ(P). Then by k applications of
Lemma 4.1, we obtain a sequence P =: P0,P1, . . . ,Pk of
stack programs such that, for all i < k,

µ(Pi+1) = µ(P)− i, σ(Pi) = σ(Pi+1), and Pi ≈s Pi+1.

By Kristiansen and Niggl’s bounding theorem, Pk has a
length bound in Eσ(P)+2, and so does P, by transitivity of
≈s.

Let Ln
σ be the class of all functions that can be computed

by a stack program of σ-measure n ≥ 0, and let Gn be the
class of all functions which can be computed by a Turing
machine in time b(|w⃗|), for some b ∈ En. As a consequence
of Theorem 4.1, and similarly to what has been recalled in
Section III, the following result holds.

Theorem 4.2: For n ≥ 0: Ln
σ = Gn+2.

V. CONCLUSIONS AND FUTURE WORK

We have defined a syntactical measure σ that considers
how the iteration of imperative stack programs affects the
complexity of the programs themselves. In particular, this
measure only counts those loops in which programs with a
size-increasing effect (w.r.t. the final length of the result) are
iterated. Each time such a loop is built over other loops,
the σ-measure is increased by 1. Other measures detect
potentially harmful loops, but are not able to distinguish
between size-increasing loops and the non-size-increasing
one’s. It is undecidable to know if a function computed
by a given stack program lies in a given complexity class,
but our measure represents an improvement when compared
to previously defined measures. We can assign a function
computed by a stack program of σ-measure n to the n+2−th
Grzegorczyk class, and this class is lower in the hierarchy,
when compared to the class obtained via the µ-measure.

REFERENCES

[1] S. Bellantoni and S. Cook, "A new recursion-theoretic characterization
of the poly-time functions," Computational Complexity, no. 2, pp. 97-
110, 1992.

[2] P. Clote, "Computation models and function algebra," in E. Grivor (Ed.),
Handbook of Computability Theory, Elsevier, Amsterdam, 1996.

[3] A. Cobham, "The intrinsic computational difficulty of functions," in Y.
Bar-Hillel (ed), Proceedings of the International Conference on Logic,
Methodology, and Philosophy of Science, pp. 24-30, North-Holland,
Amsterdam, 1962.

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

[4] E. Covino and G. Pani, "Diagonalization and the complexity of pro-
grams," The Ninth International Conference on Computational Logics,
Algebras, Programming, Tools, and Benchmarking, (COMPUTATION
TOOLS 2018), February 18-22, 2018, Barcelona, Spain. ISBN: 978-1-
61208-394-0. ISSN: 2308-4170

[5] A. Grzegorczyk, "Some classes of recursive functions," Rozprawy Mat.,
Vol. IV, Warszawa, 1953.

[6] M. Hofmann, "The strength of non-size-increasing computations," Prin-
ciples of Programming Languages, POPL’02, Portland, Oregon, January
16-18th, 2002.

[7] N. Jones, "Program analysis for implicit computational complexity,"
Third International Workshop on Implicit Computational Complexity
(ICC’01), Aarhus.

[8] N. Jones, "LOGSPACE and PTIME characterized by programming lan-
guages," Theoretical Computer Science, no. 228, pp. 151-174, 1999.

[9] L. Kristiansen, "New recursion-theoretic characterizations of well
known complexity classes," Fourth International Workshop on Implicit
Computational Complexity (ICC’02), Copenhagen.

[10] L. Kristiansen and K.-H. Niggl, "On the computational complexity of
imperative programming languages," Theoretical Computer Science, no.
318(1-2), pp. 139–161, 2004.

[11] L. Kristiansen and K.-H. Niggl, "The garland measure and computa-
tional complexity of imperative programs," Fifth International Workshop
on Implicit Computational Complexity, (ICC ’03), Ottawa.

[12] D. Leivant, "A generic imperative language for polynomial time,"
arXiv:1911.04026v2 [cs.LO], 2020.

[13] D. Leivant, "Subrecursion and lambda representation over free alge-
bras," in S. Buss, P. Scott (Eds.), Feasible Mathematics, Perspectives in
Computer Science, BirkhLauser, Boston, New York, 1990, pp. 281–291.

[14] D. Leivant, "A foundational delineation of computational feasibility,"
in Proc. Sixth IEEE Conf. on Logic in Computer Science (Amsterdam),
IEEE Computer Society Press, Washington, DC, 1991.

[15] D. Leivant, "Stratifed functional programs and computational complex-
ity," in Conf. Record of the 20th Annual ACM Symposium on Principles
of Programming Languages, New York, 1993, pp. 325–333.

[16] D. Leivant, "Ramifed recurrence and computational complexity I:
Word recurrence and poly-time," in P. Clote, J. Remmel (Eds.), Feasible
Mathematics II, Perspectives in Computer Science, BirkhLauser, Basel,
1994, pp. 320–343.

[17] D. Leivant and J.-Y. Marion, "Primitive recursion in the abstract,"
Mathematical Structures in Computer Science, Cambridge University
Press (CUP), 2020, 30 (1), pp. 33-43. 10.1017/S0960129519000112.
hal-02573188.

[18] D. Leivant and J.-Y. Marion, "Ramified recurrence and computational
complexity II: substitution and polyspace," in J. Tiuryn and L. Pocholsky
(eds), Computer Science Logic, LNCS no. 933, pp. 486-500, 1995.

[19] A. Meyer and D. Ritchie, "The complexity of loop programs," in
Proceedings of the 1967 22nd National Conference, pp. 465–469, New
York, NY, USA, 1967, ACM.

[20] K.-H. Niggl, "Control structures in programs and computational
complexity," Fourth Implicit Computational Complexity Workshop
(ICC’02), Copenhagen.

[21] I. Oitavem, "New recursive characterization of the elementary func-
tions and the functions computable in polynomial space," Revista
Matematica de la Universidad Complutense de Madrid, no. 10.1, pp.
109-125, 1997.

[22] H. E. Rose, Subrecursion: functions and hierarchies, Oxford University
Press, Oxford, 1984.

[23] H. Simmons, "The realm of primitive recursion," Arch. Math. Logic
27 (1988), pp. 177–188.

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

