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Abstract—Image tracing describes the task of converting a
raster image into a vector format. This paper investigates differ-
ent processing pipelines that can extract an abstract representa-
tion of an image by means of high-pass filtering, autoencoding,
and vectorization. Results indicate that reconstructing an image
using Autoencoders, then filtering it with high-pass filters, and
finally vectorizing it, can represent the image more abstractly
while improving the efficiency of the vectorization process.

Index Terms—image quality, vector graphics, neural networks,
autoencoders, high-pass filters, vectorization, complexity theory,
information technology.

I. INTRODUCTION

Graphical information can be represented digitally in two
ways: raster-oriented or vector-oriented. The visual informa-
tion in raster images is encoded as a 2D pixel array (or a
bitmap). This is the case in the well-known Portable Network
Graphics (PNG) or JPEG File Interchange Format (JFIF,
commonly known just as JPEG). However, vector graphics
represent data in a set of mathematical primitives such as
lines and circles. A widely used format for vector graphics
is Scalable Vector Graphics (SVG).

There are many use-cases for conversion between the two
ways of representation. Vector images have to be rasterized
in order to display on a raster-oriented monitor, and raster
images have to be vectorized, if one wants to obtain a scale-
free representation of the image. However, vectorization is not
as accurate as rasterization. The main obstacle of converting
a raster image into a vector graphic is the identification of
mathematical primitives in a way that is appropriately fitting.
On the one hand, a literal representation produces too much
noise and fails to capture the relationships between image
areas. On the other hand, the mapped image should not vary
much from its original version.

This paper investigates different processing pipelines that
can extract an abstract representation of an image by means of
high-pass filtering, autoencoding, and vectorization. It extends
previous work by Fischer and Amesberger [1], investigating
the interplay between autoencoders and high-pass filters in the
vectorization process. The cat dataset by Zhang et al. [2] is
used to demonstrate the applicability of our approach.

The remainder of this paper is structured as follows: In
Section II a brief introduction is given on image tracing,

Figure 1. Potrace vectorization

autoencoders and high-pass filters. Section IV introduces the
methodology of this paper. This includes the evaluation meth-
ods used and the reason why they have been chosen. Section V
presents the experiments and their results. This is the part
that attempts to eliminate inefficient processing algorithms, so
that only a few pipelines that score closely are put forwared
to further evaluation. Section VI includes the evaluation of
the different processing pipelines built, and closes with a
summarizing interpretation. Section III discusses related work.
Finally, Section VII concludes the paper and discusses future
work.

II. BACKGROUND

In this section, the three main techniques for image pro-
cessing used in this paper are discussed. Image tracing is used
to produce vector graphics from a raster image. Autoencoders
and high-pass filters are used as pre-processing steps to reduce
the complexity in the image with the goal of achieving an
abstract representation of the image in its vector format.

A. Image Tracing

Image tracing is the process of vectorization raster images.
It works by using edge detection mechanisms to identify areas
in a raster image to be represented as mathematical objects
such as polygons. The vectorization program used in this
work is Potrace by Peter Selinger [3]. It traces the images by
first converting them into black-and-white and then extracting
Bézier-bounded polygons (cf. Figure 1).

B. Autoencoder

Autoencoders are artificial neural networks that can be
trained to reconstruct the input by passing it through an
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Figure 2. Example structure of an autoencoding network

Figure 3. Applying Sobel derivatives on a random image

information bottleneck. The network learns how to preserve
the input by an efficient reconstruction. This preservation of
information can reduce the input complexity.

A basic autoencoder architecture is shown in Figure 2. The
input layer is the layer that is the farthest on the left. The
number of neurons becomes smaller the closer the layer is to
the center, and this builds the information bottleneck. When
the information reaches the center layer, it is at its highest
density. By mirroring the architecture to the right, the encoded
data from the center layer gets decoded again to its original
size. The training process encourages the output layer to match
the information that was passed to the input layer.

C. High-pass Filters

A high-pass filter can be used to make an image appear
sharper. These filters (e.g., Sobel [4] and Canny [5]) emphasize
fine details in the image. High-pass filtering works with the
change in intensity. If one pixel is brighter than its immediate
neighbors, it gets boosted. Figure 3 shows the result of
applying a high-pass filter (Sobel) on a random image.

III. RELATED WORK

In a paper done in MIT, Solomon and Bessmeltsev [6]
explored the use of frame fields. The general idea of their
method is to find a smooth frame field on the image plane,
where at least one direction is aligned with nearby contours
of the drawing. Around X- or T-shaped junctions, the two
directions of the field will be aligned with the two intersecting
contours. Then, the topology of the drawing is extracted

by tracing the frame field and grouping traced curves into
strokes. Finally, they created with the extracted topology a
vectorization aligned with the frame field.

Lacroix [7] analyzed some problems of R2V conversion,
and a strategy has been proposed involving a preprocessing
stage generating a mask, from which edges are removed
and lines are kept. A clustering is then performed while
considering only the pixels of the mask. A new algorithm, the
medianshift, has been proposed in this context. Then comes
the labeling process which should also take the pixel type into
account. The last step involves a regularization procedure. The
importance of the pre-processing ignoring edge pixels while
keeping lines has been shown on some examples. Tests also
showed the superiority of the median-shift over the mean-
shift, and over the clustering method used by Vector-Magic.
This paper also showed that a better line vectorization can be
obtained from enabling the extraction of dark lines, which can
support the use of high-pass filters as a preprocessing stage to
put further emphasis on those dark lines.

Xie et al. [8] designed a novel approach, which achieves
a performance comparable to traditional linear sparse coding
algorithm on the simple task of denoising additive white
Gaussian noise. They use autoencoders to reduce image noise
in the area of repairing damaged images.

Gong et al. [9] presented an algorithm that successfully
completes the automatic extraction and vectorization of the
road network. The main obstacles in road extraction in re-
mote sensing images are: first, different scales and strong
connectivity; second, complex backgrounds and occlusions;
and third, high resolution and a small proportion of roads in
the image. The process of road vectorization in this paper is
mainly divided into road network extraction and vectorization
preservation. This work also shows the advantages of using
dense dilation convolution, which points to the possibility of
using autoencoding models for vectorization preservation.

Fischer and Amesberger [1] showed that preprocessing the
raster image with an autoencoder neural network, can reduce
complexity by over 70% while keeping reasonable image
quality. They proved that autoencoders perform significantly
better compared to PCA in this task. We base our our work
on this previous work, having a closer look at the effect of
high-pass filters on autoencoding in an image vectorization
pipeline.

IV. METHODOLOGY

This section describes the methodology of this paper. The
programming implementation is first introduced along with
the autoencoder structure. Then, the common grounds of pro-
cessing pipelines are demonstrated. In addition, the evaluation
methods are presented with the rationale behind their selection.

A. Autoencoder Structure & Software Implementation

The test/evaluation framework was implemented in Python.
The autoencoder was implemented with TensorFlow [10] and
Keras [11]. The convolutional neural network was built with
convolution and pooling layers in three steps to a 32×32
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Figure 4. General processing approach

bottleneck. The decoder mirrors this structure with three steps
of transposed convolutional layers and batch normalization
layers. The autoencoder input is set to a 255x255 image (gray-
scaled). The high-pass filters used in this paper are the standard
implementations in OpenCV [12].

B. General Approach of Processing

Regardless of the path an image takes in any pipeline that
will be built, the first processing stage is always going to be
converting the image into gray-scale. The focus of this work
is around single-channel images; however, it can be extended
in the future for multi-channel (RGB) processing. Therefore,
when a pipeline is demonstrated visually, the initial version
of the image displayed is going to be gray-scale, but this is
implying that the raw RGB images were all grayscaled, which
will be a common branch for all the pipelines built in this
work.

After an image is grayscaled, it will be put through a
certain cascade of processing stages. In this paper, the con-
cerned stages are: High-pass Filtering, Autoencoding, and
Vectorization. The experiments of this work are going to
tune the different parameters that these stages can take. More
importantly, the outputs of all pipelines possible are going to
be in a vector format; due to the fact that we are attempting to
enhance the vectorization process, while aiming for an abstract
representation of the image. Therefore, a rasterization stage
is going to always be placed at the end of every pipeline.
Converting images back into their raster format is mandatory
to perform a comparison between the grayscaled image that
was initially fed to a pipeline, and its resulting vector format.
Hence, we rasterize the vector output to be able to evaluate
the efficiency of the pipeline. A general processing approach
for the different pipelines is shown in Figure 4.

C. Evaluation Methods

The case at hand deals with both vector and raster images.
Therefore, for a comparison to take place, a comparison
method for each format needs to be selected.

• Vector: Various methods can be used to measure the
level of the complexity in a vector image. One can be
the size of the file, which can be used to infer the
length of the entire path entries in the file. Furthermore,
investigating the reduction of complexity can be done
through analyzing the longest path tags. The number of
path tags can be taken as a characteristic value of the
complexity. In this paper, it is assumed that the number
of SVG path entries is directly related to the complexity.

• Raster: There are mainly two common ways of com-
paring raster images. The first one is comparing images
based on the Mean Squared Error (MSE) [13]. The MSE
value denotes the average difference of the pixels all
over the image. A higher MSE value designates a greater
difference between the original image and processed
image. Nonetheless, it is indispensable to be extremely
careful with the edges. A major problem with the MSE
is that large differences between the pixel values do
not necessarily mean large differences in content in the
images. The Structural Similarity Index (SSIM) [14] is
used to account for changes in the structure of the image
rather than just the perceived change in pixel values
across the entire image. The implementation of the SSIM
used is contained in the Python library Scikit-image [15].
The SSIM method is significantly more complex and
computationally intensive than the MSE method, but
essentially the SSIM tries to model the perceived change
in the structural information of the image, while the MSE
actually estimates the perceived errors.

In the experiments conducted for this paper, the results of MSE
and SSIM drive to the same conclusion. Therefore, in order
to avoid redundancy, only the SSIM graphs are displayed in
this paper.

V. EXPERIMENTS

Experiments in this paper are essential to tune the different
parameters a pipeline can have. In this section, some of the
important experiments undergone are going to be presented.

Nevertheless, other unmentioned experiments also helped in
cutting down the number of possible pipelines for evaluation.
For instance, at the beginning of the work, three high-pass
filters were selected for their commonality: Gaussian, Sobel,
and Canny. However, the Gaussian filter introduced noise onto
the images, which was not negligible. An experiment was
done that attempted to reduce such noise by applying the
Grain-extract or the Difference filters, but the results were
not acceptable. Therefore, the Gaussian filter was removed
from the set of filters. Another experiment was conducted to
compare the scores of Sobel and Canny filtering. Both SSIM
and MSE indicated that the two filters were so close to each
other that there was not a decisive choice between them.

The two experiments mentioned below deal with the effect
of features’ color on the autoencoding and vectorization stages.
The need for experimentation concerning such effect has risen
when it was found that the conventional implementation of
filters in the programming libraries resulted in images having
a dark background with light features (lines and shapes), which
was perceived as counter-intuitive.

The filters that were succeeded with the word -direct are
the ones that follow the conventional implementation (dark
background with white lines). On the opposite side, filters with
-inverse as suffix refer to the ones that are constituted of white
background with black lines.
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Figure 5. Similarity of autoencoded images in relation to the color of their
features

A. Features’ Color Effect on Autoencoding

This experiment was done to obtain the difference between
training an autoencoder with images whose lines are drawn
in black on white background, and training it with the same
images but inverted. Therefore, four models of autoencoders
were trained with 5000 epochs. 50 images were reconstructed,
in order to make the measurement more generalized.

From the plotted results in Figure 5 we conclude that
autoencoders respond better when the training images have
darker features.

B. Features’ Color Effect on Vectorization

This experiment aims to display the effect of high-pass
filters on reconstructed-images vectorization. We took 50
random images, reconstructed them and filtered each image
with Canny and Sobel filters (direct and inverse: 4 versions
per image). Finally, all of the images were vectorized, and
then compared (after rasterization) with their versions pre-
vectorization.

From the box-plots in Figure 6, we conclude that the filters
brought more definition to the lines in the images, which
made the shapes appear clearer, and this has lead to a better
vectorization. Therefore, white images with black lines get
vectorized better when compared to the darker images.

C. Results of Experimentation

Concerning autoencoding, for the sobel-direct, the mean and
standard-deviation values were 0.202 and 0.044, respectively.
Whereas their inverse scored 0.699 and 0.124, respectively.
For the canny-direct, the mean and standard-deviation values
were 0.234 and 0.090, respectively. Whereas the inverse scored
0.741 and 0.150, respectively. These values further states a bet-
ter learning rate for the autoencoder when the most important
features of an image are darker than its other contained data.
Therefore, we can conclude that when training an autoencoder,
the semi-supervised neural network responds better when the
training images have darker lines in their important features.

Figure 6. Similarity of vectorized images in relation to the color of their
features

Following the same pattern, the box-plots show a better
fitness of white images with black lines when compared to
the darker images in vectorization.

VI. EVALUATION

Evaluation is concerned with how abstract the resulting
images are. As there are two pre-processing blocks (filter-
ing and autoencoding), four different pipelines can be built:
autoencoding, filtering, autoencoding-filtering, and filtering-
autoencoding. After one of these selections is fed the images,
a vectorization process is always cascaded at the end.

First, all of the resulting images are going to be evaluated
based on their path count (size) and similarity to the input im-
ages. Then, a summary of evaluation is going to be introduced
for each of the pipelines individually.

Before engaging in the evaluation, it is good to elaborate
on the column naming of the upcoming plots:

• default: the default image.
• sobel, canny: the filtered version of the image by the

respective filter.
• dec: the decoded version.
• vect: the vectorized version.
• A combination of two or more indicates the case of

cascaded stages. A default-dec-sobel label represents the
following: the default image is reconstructed with the
autoencoder then filtered with the sobel filter.

A. Evaluating the size of the produced images

To evaluate the size of the image, we count the number
of path objects generated in the SVG file. From Figure 7
(note that the graph is in logarithmic scale) we see that the
autoencoder (*-dec-*) significantly reduced the size of images,
as it keeps only the most important features. The reconstructed
filtered images (canny-dec, sobel-dec) had a similar path
count. Although it was much smaller than the ones that did
not go through that step, it was still above the default images
that were reconstructed and vectorized without any filtering.
Finally, when filters were applied onto the default images that
were put through an autoencoding stage (default-dec-sobel,
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Figure 7. Path count of the resulted groups of vector images

Figure 8. Vectorization accuracy of different pipelines

default-dec-canny), these images scored in size calculations
very similarly to the filtered images when only reconstructed
(canny-dec, sobel-dec).

B. Evaluating the quality of the produced images

A more accurate way of examining the efficiency of the
vectorization process of each pipeline, is to compare the
images and their vector versions (Figure 8). The pipeline of
autoencoding-filtering-vectorization (two last groups on the
most-right) seems to experience the highest SSIM, which
indicates its fitness in vectorization. It made more sense for
the autoencoder to reconstruct the images and then for the
filters to come afterwards, putting emphasis on the important
features of each image.

Figure 9. Autoencoding-vectorization pipeline

Figure 10. Filtering-vectorization pipeline

C. Implemented Pipelines: an evaluation summary

This is a summary of results evaluation for each of the
pipelines individually.

• Autoencoding-Vectorization: This pipeline was based
on the work of Fischer and Amesberger [1]. However,
the implementation was different, and the evaluation was
about the abstractness of the results. The quality of
the vectorization is acceptable only in terms of general
similarity. However, an abstract representation of the
image is not achieved (Figure 9).

• Filtering-Vectorization: In this pipeline (Figure 10), the
vectorization algorithm finds a difficulty in vectorizing
the filtered images. This is due to the noises caused by the
applied filters. Although the experiments showed that the
quality of the vectorization increased when the images
where taken as a light background with dark features,
the noise involved created an obstacle for Potrace to
convert thoroughly the images into a vector format, which
resulted into losing data.

• Filtering-Autoencoding-Vectorization: This pipeline
was built as an attempt to enhance the Autoencoding-
Vectorization pipeline. Although the autoencoding stage
was efficient in reducing the size of the images, it did not
result in an abstract view of the image features. There-
fore, a filtering stage was placed prior the autoencoding
process. Unfortunately, this pipeline does not achieve the
result intended. The autoencoding stage was supposed
to reconstruct the filtered images in a lower complexity;
but the case at hand is that, the autoencoding model is
attempting to smooth the images, canceling the effect of
the high-pass filters. This has resulted in a significant
drop in the quality of the vector images, which is seen
in Figure 11.

• Autoencoding-Filtering-Vectorization: Due to the
results in the Filtering-Autoencoding-Vectorization
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Figure 11. Filtering-autoencoding-vectorization pipeline

Figure 12. Autoencoding-filtering-vectorization pipeline

pipeline, it was clear that the filtering stage would act
in a more proper way if it succeeded the autocoding
process, rather than preceding it. This was concluded
when the autoencoding model was seen to reduce
the complexity of the images while introducing a
smoothing effect. The filters were placed after the
reconstruction stage to preserve the important features
of the reduced-complexity image. This cascade shows
an acceptable vectorization quality while resulting in the
intended abstract representation of the images as shown
in Figure 12.
As for providing more visualizations of the results that

can be obtained with this pipeline, Figure 13 shows some
random images that were fed to the Autoenconding-
filtering-vectorization pipeline along with their respective
output images. As can be seen, the features of the cats
are extracted very clearly in all examples.

VII. CONCLUSION

This paper overall discussed the use of high-pass filters in
vectorization pipelines, along with the autoencoding stage. It
is concluded in this chapter that high-pass filters can enhance
the training of an autoencoder, which in return make the vec-

Figure 13. Some of the output images along with their input images of the
pipeline Autoenconding-filtering-vectorization

torization process more efficient by preserving the important
features of an image.

After evaluating the efficiency of the vectorization algorithm
in every pipeline, it was clear that the images that went through
the cascade of autoencoding-filtering, scored the highest in
similarity, and the lowest in error. This points to the fact
that the images that were reconstructed, preserved the most
important features, which were brought up even more by
the filtering part succeeding the reconstruction, which leads
to not only a better vectorization but also a more abstract
representation of the image.

This cascade of autoencoding-filtering gave decent results
that matched the initial expectations; however, further work
must be put into the structure of the models built, and their
training dataset.

Concerning this future work, experiments showed that dark
features on a light background in images can improve both the
training of autoencoder models and the process of vectoriza-
tion, which can be a good candidate for further investigation.
From another side, the work in this paper deals with single-
channel images (gray-scale); however, the vectorization of
multi-channel images can be put through future experimen-
tation.
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