
Efficient Formal Verification with Confidence Intervals

Naif Alasmari
Department of Computer Science

University of York
York, U.K.

email: nnma500@york.ac.uk

Radu Calinescu
Department of Computer Science

University of York
York, U.K.

email: radu.calinescu@york.ac.uk

Abstract—Formal verification with confidence intervals is a
model checking technique that computes confidence intervals for
parametric Markov model properties when observations of the
unknown transition probabilities of these models are available.
However, the high computational costs of the technique limit
its scalability severely. To address this limitation, we introduce
efficient formal verification with confidence intervals (eFACT),
a model checking tool that enables the efficient analysis of
parametric discrete-time Markov chains. eFACT supports the
verification of reliability, performance, and other non-functional
requirements for larger systems than currently possible. To that
end, eFACT integrates recent advances in parametric model
checking into a previous tool for formal verification with confi-
dence intervals, and employs an efficient binary search technique
to further speed up the determination of the highest confidence
level at which a non-functional requirement can be deemed
violated or satisfied.

Keywords—confidence intervals; formal verification; non-
functional software requirements; probabilistic model checking.

I. INTRODUCTION

Over the years, quantitative verification has been a powerful
means for analysing the performance, reliability, and other
non-functional properties of systems. However, the analysed
system should be modelled carefully and accurately as a
Markov model in order to obtain a precise verification result.
Building a Markov model for the system is a time-consuming
task because it requires determining the system’s states and
the transitions between them, as well as their probabilities.
Establishing the precise probabilities of transitions is chal-
lenging [1] since the probabilities can only be estimated,
with error margins, from run-time observations of the system,
system logs, or based on input obtained from domain experts.
Therefore, the error values of probabilities estimation could
be accumulated by quantitative verification and can produce
inaccurate outcomes due to the non-linearity of Markovian
models. The formal verification with confidence intervals
(FACT) [1] resolves this limitation by providing an interval
for the verification result rather than a single value [2].

FACT is a probabilistic model checker that calculates confi-
dence intervals for properties of parametric Markov chains that
have observations for unknown transition probabilities. The
current FACT version invokes PRISM [3] to get the algebraic
expression for the targeted property of a parametric Discrete-
Time Markov Chain (pDTMC) model. However, when the
algebraic expression is too large to analyse (i.e., it exceeds
the memory or computational resources available), or the
behaviour of the parametric model is complex (e.g., has

continual change), the capability of FACT becomes limited.
Thus, FACT does not scale well to large pDTMCs.

To extend the capability of FACT, our paper introduces
efficient Formal verificAtion with Confidence inT ervals
(eFACT), a new model checker that is able to calculate such
confidence intervals for larger pDTMC models. eFACT ex-
ploits efficient parametric model checking (ePMC), which uses
domain-specific modelling patterns [4] in order to produce sets
of closed-form subexpressions of the analysed properties, and
uses these subexpressions as terms in the main formula for the
analysis of the whole pDTMC model. The ePMC derives an
abstraction model from the original pDTMC. The abstraction
model consists of fragments, and each fragment represents a
single state in the abstraction model and a subset of states
in the original model. The main formula is the abstraction
model’s algebraic expression, and the component formula is a
formula related to the fragment. In this way, eFACT computes
the confidence intervals for each closed-form expression, and
then uses the obtained results to calculate the confidence
interval for the main formula. Furthermore, eFACT exploits
a binary search technique to enable engineers to obtain the
highest confidence level at which a non-functional requirement
of a system can be confirmed as violated or satisfied—an
important feature unavailable in the FACT tool. Furthermore,
since we are concerned about the safety and business-critical
systems, it is vital to consider a high confidence level before
deploying the system.

The paper is organised as follows. Section II explains how
eFACT computes the confidence intervals for the properties
of large pDTMC models. Next, Section III demonstrates the
use of binary search to efficiently find the required confidence
level. Section IV describes the case studies used to evaluate
eFACT. Next, Section V discusses the experimental results,
and Section VI compares our solution to related work. Finally,
Section VII briefly summarises this work, and highlights
directions for future work.

II. CONFIDENCE INTERVALS FOR LARGE PDTMCS

For a given pDTMC model and a property of this model en-
coded in Probabilistic Computation Tree Logic (PCTL), FACT
obtains an algebraic expression from PRISM to compute con-
fidence intervals. However, FACT cannot produce confidence
intervals when the model is large (as explained in the previous
section). eFACT aims to analyse large pDTMC models with
at least one unknown transition probability, provided that

1Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

observations of the unknown transition exist. To achieve this
purpose, we exploit a recent advance in probabilistic model
checking and the model checker ePMC [4][5] that produces
closed-form expressions (i.e., component formula) for the
property being analysed, and then combines them into one
main formula. eFACT analyses each expression separately to
produce its confidence intervals for the provided confidence
levels. The confidence intervals of the expression then sub-
stitute into the main formula. Therefore, the outcomes of all
expressions contribute to calculating the confidence intervals
for the analysed property of a given large pDTMC.

Keys:
CI: Confidence Intervals
c_expr: Component Formula

1

2

5

7

4

3

6

8

Figure 1. eFACT structure.

At a given confidence level α, computing confidence in-
tervals for a large pDTMC model consists of three main
steps: confidence interval quantitative verification, ePMC, and
substitution. The confidence interval quantitative verification is
used to receive the inputs and compute the confidence intervals
for closed-form expression. ePMC is employed to produce the
closed-form expressions and the main formula of the property.
The substitution component is used to substitute the outcome
of all closed-form expressions in the main formula of the
property. The substitution component handles two equations
representing the main formula: one to substitute all lower
intervals of each expression into the main formula and the
other is used to substitute the upper level of expressions in
the main formula.

Figure 1 illustrates the steps followed to compute the
confidence intervals for a large pDTMC in detail. First, the
confidence interval quantitative verification will receive the
pDTMC model, property, and a range of confidence intervals
as inputs. The model and property are then sent to ePMC to
obtain all possible closed-form expressions formulae (Steps
2 and 3 in Figure 1). There are two kinds of produced
formulae: the component formula (closed-form expression)
and the model formula used to analyse the system model. The
component formula could be a part of the model formula in the
latter formula. In general, the formula represents an algebraic
expression related to the analysed property of the model. The
component formulae (denoted as c expr1,c expr2,...,c exprn

in the figure) are then sent for confidence interval quantitative
verification to compute their confidence intervals sequentially
(Step 4). The results of analysing the component formulae are
sent to the substitution component to substitute their results
into the model formula (as shown in Steps 5 and 6). Finally, the
model formula is sent to the confidence interval quantitative
verification unit to calculate the final confidence intervals that
will appear to the end-user.

III. FINDING THE HIGHEST CONFIDENCE LEVEL

When engineers use eFACT to compute confidence inter-
vals for a PCTL-encoded pDTMC property, they are often
interested in comparing these intervals with a bound that the
property must satisfy per the analysed system’s non-functional
requirement. Furthermore, they are particularly interested in
finding the highest confidence level αMAX at which the
requirement can be shown as violated or satisfied, given
the available set of observations of the unknown pDTMC
transitions. For confidence levels α > αMAX , the observations
available are insufficient for deciding whether the requirement
is satisfied. Finding the value of αMAX (or a close approxi-
mation of it) enables important decision-making. For instance,
if a requirement can be shown to be satisfied at the highest
confidence level αMAX = 0.99, the system can be confidently
deployed (based on the requirement being met). In contrast, if
a requirement can only be shown as satisfied at the highest
confidence level αMAX = 0.75, the decision of whether
to deploy the system cannot be made. Further observations
should be obtained, for example, by testing the relevant system
components.

eFACT can compute a potentially very large number of
confidence intervals at different confidence levels α to find
a close approximation of αMAX . eFACT is highly inefficient
in achieving this, given the overheads of formal verification
with confidence intervals. Therefore, we developed an effi-
cient method (implemented in eFACT) for computing this
close approximation. This method employs a binary search to
efficiently approximate the highest confidence level αMAX .
Therefore, instead of slowly performing verification for each
confidence level to determine where the requirement is sat-
isfied or violated, the binary search technique will speed up
the process of achieving this. When the user inserts the model
(non-functional requirement and range of confidence levels),
eFACT starts its work by verifying the first inserted confidence
level and computing its confidence intervals. Following this,
it moves to the last inserted confidence level to calculate its
confidence intervals. Now, there are two confidence levels
with their intervals, enabling eFACT to check whether the
analysed property requirement is located inside those intervals.
If the requirement is located inside all intervals, the process
will terminate with a message stating that the requirement is
undecidable for the given range of confidence levels. Other-
wise, eFACT moves to the middle confidence level (e.g., if
the range of confidence levels is between 89 and 99, then
the middle level is 94) and computes the confidence intervals.
eFACT then checks the requirement’s position over the current

2Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Figure 2. An example of using binary search in eFACT.

confidence intervals and compares it with the obtained ones
over the confidence intervals from the first and last levels.

The confidence levels that lie between the middle con-
fidence level and the other confidence level, in which the
requirement’s position matches its place in the middle level,
will be discarded. Again, eFACT moves to the middle of the
remaining confidence levels and repeats the same procedure
until it determines the highest confidence level αMAX .

Figure 2 shows the verification result, where eFACT is
looking for the confidence level at which the requirement is
violated or satisfied. The test was conducted between confi-
dence levels 0.85 and 0.99, where the increment step was 0.01.
Instead of completing 15 verification tests to determine the
required confidence level, we performed six verification tests
until the required result was found. The discarded area (red
area) has a list of confidence levels with intervals containing
the requirement; therefore, performing additional tests in this
area is useless. The solution area (green area) is where the
requirement’s position moves from outside the confidence
intervals to be inside the next intervals.

IV. CASE STUDIES

A. Service-based systems

Service-based systems (SBSs) are applications that pro-
vide services that are dependent on or connected to each
other [6]. SBSs comprise internal system components and
possible independent third-party components implemented as
services. There are different ways in which services can
conduct operations similar to those of SBSs but with different
probabilities in their execution time (t1,...,tn), costs (c1,...,cn)
and successes (p1,...,pn). The patterns are adopted from [4]:
sequential execution (SEQ), sequential execution with a retry
(SEQ-R), sequential execution with retry1 (SEQ-R1), proba-
bilistic execution (PROB), probabilistic execution with a retry
(PROB-R), probabilistic execution with retry1 (PROB-R1),
parallel execution (PAR), and parallel execution with a retry
(PAR-R). They are used to implement the SBS operations with
n services equivalent to those operations described below:

1) SEQ (p1, t1, c1, ..., pn, tn, cn): There are n services in-
voked in order, terminated after the last service or upon
a first successful request.

2) SEQ-R (p1, t1, c1, ..., pn, tn, cn, r): This is similar to
SEQ. However, if all service invocations fail, the opera-
tion is re-executed from the first service with probability
r or it fails with probability 1-r.

3) SEQ-R1 (p1, t1, c1, r1, ..., pn, tn, cn, rn): This is similar
to SEQ. However, service i will be re-invoked with
probability ri if the invocation of this service fails.

4) PAR(p1, t1, c1, ..., pn, tn, cn): There are n services in-
voked simultaneously. The operation will use the output
of the first successful invocation.

5) PAR-R (p1, t1, c1, ..., pn, tn, cn, r): This is similar to
PAR. However, if all service invocations fail, the op-
eration is re-executed with probability r or it fails with
probability 1-r.

6) PROB (x1, p1, t1, c1, ..., xn, pn, tn, cn): There is a single
service to request. The probability that indicates the
service i is xi, where Σn

i=1 xi =1.
7) PROB-R(x1, p1, t1, c1, ..., xn, pn, tn, cn, r): This is sim-

ilar to PROB. However, if the service invocations fail,
the operation is re-executed with probability r or it fails
with probability 1-r.

8) PROB-R1(x1, p1, t1, c1, r1, ..., xn, pn, tn, cn, rn): This
is similar to PROB. However, if the service invocations
fail, the service is re-invoked with the probability of r
or it fails with probability 1-r.

9) Combination: This is a combination of the above pat-
terns.

Figure 3. Foreign Exchange System Workflow, from [7].

To evaluate eFACT, a foreign exchange system (FX system)
from the SBS area that aims to assists the trader is adopted
from [7]. As shown in the Figure 3, the FX system offers the
trader two operational modes: expert or normal. The expert
mode executes the trade automatically when the transaction
meets the customer’s objectives. It begins with the market-
watch component to obtain the current price of the chosen
currency, then it uses the technical-analysis component to
assess the market and estimate the price movement. The
analysed outputs could be one of three options:

3Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

1) The transaction can be performed because the objectives
that the traders set up are satisfied;

2) The market watch component is re-invoked since the
objectives were not met; and

3) The objectives are incorrect, and the Alarm unit will be
triggered to warn the trader.

Conversely, the FX system utilises the fundamental-analysis
component in its normal mode to determine whether to con-
duct a transaction, retry the analysis or end the session.

eFACT aims to analyse the following properties of the
pDTMC model of the FX system with multiple services (from
1 to 6), and under different patterns:

1) P1: The possibility of completing a transaction success-
fully, written in the PCTL format as P =?[F (state =
WF SUCC)];

2) P2: The estimated time to execute the transaction, writ-
ten in the PCTL format as R{”time”} =?[F ((state =
WF SUCC)|(state = WF FAIL))]; and

3) P3: The estimated cost of running the transaction suc-
cessfully, written in the PCTL format as R{”cost”} =
?[F ((state = WF SUCC)|(state = WF FAIL))].

B. Three-tier software architectures
The three-tier server [8], as shown in Figure 4, provides

three services: web, database and application services. The
services are hosted on four different physical servers (A, B, C
and D) and operate on different virtual machines (VMs). The
system can be scaled-up to include more servers, VMs and
service instances. This case study presents the following three
patterns:

• Basic (B): Several tier instances are running on a server.
If the server crashes, the running tier instances are lost.

• Virtualised (V): There are a number of tier instances,
and each one is running on its own virtual machine on a
server.

• Virtulised-M (VM): This is similar to the virtualised
pattern. However, when the server crashes, a monitoring
component can detect a crash before it occurs. Therefore,
the virtual machine can be migrated to other running
servers. For example, consider a server with several
components, including processors, disks, and memory
chips, that are now working but are prone to crash over
time. If a substantial quantity of components crashes,
the detection monitoring component discovers the crashes
and begins migrating all the VMs in this server to another
server.

If the engineers intend to evaluate the probability of deploy-
ing options for the three-tier software on different servers, they
could evaluate the following properties:

1) P1: This measures the likelihood of the system failing
within a determined time due to all tier instances failing.
It can be written in PCTL as P =?[F done & fail];
and

2) P2: This assesses the possibility of a single failure point
during the analysis. The PCTL encoded for this property
is P =?[F done & spf].

Figure 4. Three-tier architecture deployed on a Cloud, from [8].

V. EVALUATION

We performed a set of experiments to compare eFACT
and FACT using two different case studies from different
areas. Those case studies are described in Section IV. All
experiments were conducted on an OSX 10.14.6 MacBook
Pro laptop with an 8 GB 1600 MHz DDR3 RAM and CPU
2.5 GHz Intel Core i5 processor.

A. Experimental environment

eFACT was developed using JAVA and required installing
the following tools and applications:

1) PRISM/Storm [9] are model checker tools used to
analyse properties and produce algebraic expressions.
eFACT tested using PRISM v4.4 and Storm v1.5.1.

2) MATLAB is used for computing confidence intervals,
and the used version is R2019a.

3) YALIMP [10][11] is a MATLAB-based modelling lan-
guage that was developed by Johan Lofberg and contains
several free and commercial solvers. It is used to model
and formulate both convex and non-convex optimisa-
tion problems. It is invoked in the background by
eFACT/FACT to solve the convex optimisation problem.
Our work was applied using version 20210331.

4) Gurobi [12] is an optimisation solver that YALIMP can
invoke to solve the optimisation problem.

5) ePMC repository defines the model’s patterns and con-
tains the expressions related to the properties of the
model.

B. Results

For the first case study that SBS explained in Section IV-A,
we carried out several experiments to analyse three properties
(P1, P2, P3), produce the confidence intervals from α=0.90
to α = 0.99, and record the execution time in seconds. The
analysis was carried out under different patterns and with
different services. Table I summarises the results and shows
the execution time (in seconds) taken to analyse each property
using eFACT and FACT. The table contains the following
symbols:

• (T) denotes the time out, which means that the execution
time exceeds the predefined time of 1800 seconds without
completing the analysis.

4Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

TABLE I. THE RESULTS OF FX SYSTEM, (THE EXECUTION TIME IS IN SECONDS).

Pattern Services eFACT FACT
P1 P2 P3 P1 P2 P3

SEQ

1 141.405 175.357 188.243 98.817 105.328 100.098
2 147.276 194.089 194.503 T T T
3 188.993 225.028 227.659 - - -
4 286.416 354.003 353.514 - - -

SEQ-R
2 197.213 284.967 282.978 T T T
3 253.189 348.103 355.679 - - -
4 1507.257 1314.996 1285.241 - - -

SEQ-R1
2 187.587 270.305 272.994 T* T T
3 222.844 322.971 322.634 - - -
4 423.71 501.281 510.492 - - -

PAR
2 141.299 189.637 185.0 T T T
3 186.318 269.309 221.306 - - -
4 290.874 384.679 296.634 - - -

PAR-R
2 199.079 299.229 280.785 T T T
3 248.545 380.596 337.698 - - -
4 1487.141 1787.865 1352.024 - - -

PROB
2 138.287 183.473 182.499 182.595 1130.434 1025.849
3 143.724 187.631 192.325 - - -
4 148.537 197.401 200.723 - - -

PROB-R
2 197.09 262.869 263.637 T T T
3 220.979 294.346 295.803 - - -
4 238.253 339.933 334.826 - - -

PROB-R1
2 186.974 262.863 260.842 T T T
3 216.312 293.574 294.891 - - -
4 230.583 337.127 345.044 - - -

Combination

Min 155.351 199.017 197.774 T T T
Max 292.297 290.975 286.386 - - -
Mean 177.582 231.562 222.059 - - -
Stdev 30.139 24.23 24.952 - - -

• (T*) means the tool is failed to produce an algebraic
expression for the property being analysed during the
predefined time.

• (-) indicates that we skipped this experiment since the
previous model is smaller than the current one, and it
failed to compute the confidence intervals in the deter-
mined time frame.

As shown in Table I, the execution time recorded for eFACT
is better than FACT’s execution time, except for the first row,
where the model has a single service (SEQ pattern with one
service). Further, to analyse the model in the first row, eFACT
requires more time to compute confidence intervals for the
component expressions (more than one expression) before
substituting their results into the model formula. Moreover,
we notice that the difference is not so significant. The table
shows that eFACT takes less time than FACT for the analysis
of other patterns and services.

For the second case study mentioned in Section IV-B,
several experiments were performed to evaluate their two
properties (P1, P2) and calculate the confidence intervals from
α=0.90 to α = 0.99. Table II illustrates the results for four
models of four servers with different patterns. FACT takes less
execution time to analyse the model of deployment D1, which
is found in the first row. The model is simple and produces
a small expression that FACT can handle. In deployment D2,
the model has some complexity (loop), and the expressions
for both properties are too large. Therefore, FACT failed to
analyse them before the time was out. eFACT can handle this
model since it deals with small component expressions to first

analyse them and then exploit their outcomes in analysing the
main formula. The third row is for deployment D3, which is
a loop-free model. We note that FACT can analyse this model
but is higher than eFACT analysis time. The last row shows
the superiority of eFACT, where FACT cannot analyse the
properties of this model since the algebraic expression failed
to be produced in 1800 seconds.

VI. RELATED WORK

Software engineers can exploit the probabilistic model
checking to analyse and assess the reliability, correctness,
potential performance and other key attributes of systems with
probabilistic behaviour. However, the model can be affected
by the unquantified estimation errors of transition probabilities,
leading to uncertainty. Specifically, the probabilities of transi-
tions from one state to another in DTMC could be unrealistic
since statistical experiments calculate them. Multiple studies
have been conducted to diminish the uncertainty that arises
in DTMC models. The studies accomplished by [13][14]
have sought to capture this kind of problem. Kozine and
Utkin [13] supposed that the probability value should be
included between two bounds (upper and lower) instead of
being a specific value. They exploited the theory of interval-
valued coherent prevision to generalise discrete Markov chains
and introduce interval-valued, discrete-time Markov chains
(IDTMCs). Škulj [14] attempted to refine the IDTMCs and
develop consecutive steps to make the IDTMCs suitable for
the models with generic convex sets of probabilities. The work
in [15] applied upper and lower bounds on the complexity

5Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

TABLE II. THE RESULTS OF THE MULTI-TIER SYSTEM.

Deployment Number of
instances

Server
type eFACT FACT

Server
A

Server
B

Server
C

Server
D P1 P2 P1 P

D1 6 V V B B 203.266 214.387 94.088 86.317
D2 6 VM VM B B 331.342 359.419 T T
D3 10 V V V V 337.281 365.966 687.554 730.999
D4 10 VM VM VM VM 824.153 873.638 T* T*

of calculating values for undetermined probabilities in the
model checking of an interval Markov chains that increased
the likelihood of satisfying ω-regular specification. FACT [1]
computes confidence intervals for analysing the properties of
Markov chains instead of giving a single value to resolve
uncertainty. However, FACT fails to compute the confidence
intervals when the produced algebraic expression is too large
or not produced. eFACT employs the ePMC approach to
compute the confidence intervals when FACT cannot.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced eFACT, a new model checker
with confidence intervals that significantly improves the scal-
ability of existing solutions for the analysis of pDTMCs. In
addition, eFACT can benefit engineers who want to establish
the analysed pDTMC model’s confidence level in the satisfac-
tion or violation of a given non-functional requirement. Our
experimental results show that eFACT has better execution
times than the model checker FACT that it builds on, outper-
forming FACT in most cases. One of our work’s limitation is
that the model requires a repository of components’ equations
and an abstract model that require a domain expert. However,
this limitation can be resolved using a recently introduced
generic method for efficient parametric model checking [16].
Integrating this new method into eFACT and further evaluating
the scalability of the tool represent areas of future work for
our project. As another future work direction, the efficiency of
eFACT can be further increased by analysing the component
expressions generated by ePMC in parallel.

REFERENCES

[1] R. Calinescu, K. Johnson, and C. Paterson, “FACT: A probabilistic
model checker for formal verification with confidence intervals,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2016, pp. 540–546.

[2] N. Alasmari, R. Calinescu, C. Paterson, and R. Mirandola, “Quan-
titative verification with adaptive uncertainty reduction,” Journal of
Systems and Software, 2022, in press. Pre-print available at https:
//www.sciencedirect.com/science/article/abs/pii/S016412122200036X.

[3] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic
symbolic model checker,” in International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation. Springer,
2002, pp. 200–204.

[4] R. Calinescu, C. Paterson, and K. Johnson, “Efficient parametric model
checking using domain knowledge,” IEEE Transactions on Software
Engineering, vol. 47, no. 6, pp. 1114–1133, 2019.

[5] R. Calinescu, K. Johnson, and C. Paterson, “Efficient parametric model
checking using domain-specific modelling patterns,” in 2018 IEEE/ACM
40th International Conference on Software Engineering: New Ideas and
Emerging Technologies Results (ICSE-NIER). IEEE, 2018, pp. 61–64.

[6] M. Deubler, J. Grünbauer, J. Jürjens, and G. Wimmel, “Sound devel-
opment of secure service-based systems,” in Proceedings of the 2nd
International Conference on Service Oriented Computing, 2004, pp.
115–124.

[7] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis
of probabilistic models for quality-of-service software engineering,” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2015, pp. 319–330.

[8] R. Calinescu, S. Kikuchi, and K. Johnson, “Compositional reverification
of probabilistic safety properties for large-scale complex IT systems,”
in Monterey Workshop. Springer, 2012, pp. 303–329.

[9] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming:
A modern probabilistic model checker,” in International Conference on
Computer Aided Verification. Springer, 2017, pp. 592–600.

[10] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in
MATLAB,” in 2004 IEEE International Conference on Robotics and
Automation (IEEE Cat. No.04CH37508), 2004, pp. 284–289.

[11] J. Löfberg, “Modeling and solving uncertain optimization problems in
yalmip,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 1337–1341,
2008.

[12] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[13] I. O. Kozine and L. V. Utkin, “Interval-valued finite Markov chains,”
Reliable computing, vol. 8, no. 2, pp. 97–113, 2002.

[14] D. Škulj, “Discrete time Markov chains with interval probabilities,”
International Journal of Approximate Reasoning, vol. 50, no. 8, pp.
1314–1329, 2009.

[15] M. Benedikt, R. Lenhardt, and J. Worrell, “LTL model checking of
interval Markov chains,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2013, pp. 32–46.

[16] X. Fang, R. Calinescu, S. Gerasimou, and F. Alhwikem, “Fast parametric
model checking through model fragmentation,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 835–846.

6Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 https://www.sciencedirect.com/science/article/abs/pii/S016412122200036X
 https://www.sciencedirect.com/science/article/abs/pii/S016412122200036X
https://www.gurobi.com

	Introduction
	Confidence intervals for large pDTMCs
	Finding the highest confidence level
	Case studies
	Service-based systems
	Three-tier software architectures

	Evaluation
	Experimental environment
	Results

	Related work
	Conclusion and Future work
	References

