
Code-level Optimization for Program Energy Consumption

Cuijiao Fu, Depei Qian, Tianming Huang, Zhongzhi Luan

School of Computer Science and Engineering
Beihang University
 Beijing, China

 e-mail: {fucuijiao, depeiq, tianminghuang, luan.zhongzhi}@buaa.edu.cn

Abstract—A lot of time is spent on Central Processing Unit

(CPU) waiting for memory accesses to complete during the

program is being executed, which would be longer because of

data structure choice, lack of design for performance, and

ineffective compiler optimization. Longer execution time

means more energy consumption. To save energy, avoiding

unnecessary memory accesses operations is desirable. In this

paper, we optimize program energy consumption by detecting

and modifying the dead write, which is a common inefficient

memory access. Our analysis of the Standard Performance

Evaluation Corporation (SPEC) CPU2006 benchmarks shows

that the reduction of the program running energy consumption

is significant after the dead write in the code was modified. For

example, the SPEC CPU2006 gcc benchmark had reduced

energy consumption by up to 26.7% in some inputs and 13.5%

on average. We think this energy optimization approach has

tremendous benefits for the developer to develop more energy-

efficient software.

Keywords-Energy Optimization; Ineffective Memory Access;

Energy-efficient Software

I. INTRODUCTION

As power and energy consumption are becoming one
of the key challenges in the system and software design,
several researchers have focused on the energy efficiency of
hardware and embedded systems [1][2], the role of
application software in Information Technology (IT) energy
consumption still needs investigation. On modern computer
architectures, memory accesses are costly. For many
programs, exposed memory latency accounts for a
significant fraction of execution time. Unnecessary memory
accesses, whether cache hits or misses, which lead to poor
resource utilization and have a high energy cost as well [3].
In the era where processor to memory gap is widening
[4][5], gratuitous accesses to memory are a cause of
inefficiency, wasting so much energy, especially in large
data centers or High Performance Computer (HPC) running
complex scientific calculations. Therefore, the optimization
of program memory access can bring about significant
effects on energy consumption reduction.

Prior work about on the optimization of energy
consumption in computer systems mostly focused on the
scheduling of system resources, such as the research and
attempt of load balancing in clusters [6]. Due to the

complexity of the computer system when the program is
running and the uneven level of the developer, it is difficult
to modify the program code for energy optimization. Our
analysis found that there are a lot of redundant memory
accesses in common programs, and the energy waste they
cause cannot be eliminated by resource allocation and
scheduling. It is very necessary to analyze and optimize the
source code of the program.

Fortunately, we found it conveniently to analyze and
record the memory accesses during program execution by
using Pin [7]. Pin is a dynamic binary instrumentation tool
powered by Intel, which provides a rich set of high-level
Application Programming Interfaces (APIs) to instrument a
program with analysis routines at different granularities
including module, function, trace, basic block and
instruction. With this tool, we can instrument every read and
write instruction, which helps us find out the redundant
memory access clips in the program source code.

In this paper, we focused on the impact of dead write
on program energy consumption. A ‘dead write’ occurs
when there are two successive writes to a memory location
without an intervening read. Our work mainly focuses on
the following three aspects. 1) Locating dead writes exactly
to the line in the source code of programs. 2) Analyzing and
modifying the source code fragments found in 1). 3)
Measuring and comparing energy consumption of programs
before and after modification of dead writes.

The rest of the paper is organized as follows. Section 2
presents detailed decision process of dead write and
sketches the methodology for positioning dead writes in
programs' source lines. Section 3 analyses two codes to
explore the causes of dead writes and the energy
optimization benefits of dead write elimination. Finally,
conclusions are drawn in Section 4.

II. METHODOLOGY

Chabbi et al. [8] described a type of redundant memory
access and named it dead write, which means two writes to
the same memory location without an intervening read

operation make the first write to that memory location dead.
This definition gives us a way to reduce energy
consumption of programs by optimizing programs' memory
access codes.

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-709-2

COMPUTATION TOOLS 2019 : The Tenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

In the following subsections, we first describe in detail
the conditions and scenarios of the formation of dead write.
Then, we introduce our methodology to find out the dead
writes in programs' source codes.

A. Dead Write

For every used memory address, building a state
machine based on the access instructions. The state machine
state is changed to initial mark V (Virgin) for each used
memory address, indicating that no access operation is
performed, and when an access operation is performed, the
state is set to R (Read) according to the type of operation.
Or W (Write). According to access to the same address, the
state machine implements state transitions. The following
two cases will be judged to be dead write:

1) A state transition from W to W corresponds to a
dead write.
2) At the end of the program, the memory address in
the W state, meaning that the program did not read it
until the end of the operation.

Figure 1 State transition of dead write diagram

A halt instruction transitions the automaton to the

terminating state. The Report Dead behavior indicates that

an invalid write is detected and can be reported.

Because the state machine records every memory

access operation from the beginning to the end of the

program, false positive or false negative situations can be

avoided, and the judgment result is reliable.

B. Finding dead writes in source lines

Developing a tool based on CCTLib, a library uses Pin
to track each program instruction, and builds dynamic
Calling Context Tree (CCT) [9] with the information of
memory access instructions. Each interior node in our CCT
represents a function invocation; and each leaf node
represents a write instruction. After the program is executed,
each dead write will be presented to the user as a pair of
CCT branches.

Specifically implemented on our tool is the use of
shadow memory [10] on the Linux platform to save the state
of each memory location. In order to trace dead writes, each
memory access instruction to address M is updated
according to the state machine of Figure 1 with the state
STATE (M), while saving pointers to restore its calling
context and reporting dead writes when encountered. When
the node in the created call tree reaches the state needs to
report dead write according to the transition state of the state

machine in Figure 1, our tool will record this context and
output all contexts at the end of the entire analysis. By
adding the -g option to the gcc compiler when compiling the
program to be analyzed, the debugging information is
obtained so that the contexts is mapped to the source codes.

III. OPTIMIZATION FOR DEAD WRITES

In this section, we discuss the optimal solution for dead

write that has been found in programs. There are many

causes of dead writing. For example, Figure 2 is the

simplest scenario because of the repeated initialization of an

array. The Figure 2 shows the function Bar () and function

Foo () initializes the array a separately before the function

Foo1 () reads it. In the following, we analyze two complex

situations of the gcc benchmark in SPEC CPU2006 [11].

1 #define N (0xfffff)

2 int a[N]

3 void Foo() {

4 int i;

5 for (i=0; i<N; i++) a[i] = 0;

6 }

7 void Bar() {

8 int i;

9 for (i=0; i<N; i++) a[i] = 0;

10 }

11 void Foo1() {

12 int i;

13 for (i=0; i<N; i++) a[i] = a[i];

14 +1;

15 }

16 int main() {

17 Foo();

18 Bar();

19 Foo1();

20 return 0;

21 }

Figure 2 A simple example for dead write

For 403.gcc, after testing each input, it was found that
for the input c-typeck.i, the dead write is very large,
accounting for 73% of the total amount of memory accesses.
For gcc with the input c-typeck.i, do the following analysis
and optimization.

1 void loop_regs_scan (struct loop * loop, ...)

2 {...

3 last set=(rtx *) xcalloc (-regs>num,

4 sizeof (rtx));

5 /*register used in the loop*/

6 for (each instr in loop) {...

7 if(MATCH(ATTERN (insn))==SET || ...)

8 count_one_set ...(, last_set, ...);

9 ...

10 if(block is end)

11 memset (last_set, 0, regs->num

12 *sizeof(rtx));

13 }...

14 }

Figure 3 Dead writes in gcc due to an inappropriate data structure

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-709-2

COMPUTATION TOOLS 2019 : The Tenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

The code snippet shown in Figure 3 is refined in a
frequently-called function named loop_regs_scan () in the
file loop.c. The function of this part of the code fragment is
as follows:

• On line 3, 132KB of space is allocated to the array
last_set, with a total of 16937 elements, each
element occupying 8KB.

• On Lines 6-14, iterating through each instruction in
the incoming parameter loop.

• On line 8-9, if the instruction matches a pattern, the
count_one_set function is called. The function is to
update last_set with the last instruction that sets the
virtual register.

• On lines 11-12, if the previous module completes,
reset the entire last_set by calling the memset () in
the next loop.

This piece of code will produce a large number of dead
writes, because the program spends a lot of time to reset the
last_set to zero. In the module, only a very small number of
elements of the array would be used in one cycle. However,
at the beginning of the allocation, the largest array size
possible for last_set is used. It means there are a large
number of elements that were repeatedly reseted and cleared
when they have not been accessed. It was found through
sampling that in the 99.6% case, only 22 different elements
per cycle would be written with a new value. Thus, a simple
optimization scheme is: we maintain an array of 22 elements
to record the index of the modified element of the last_set.
Reseting only the elements of the subscript stored in the
array when the reset is cleared. Reseting the entire 132KB
array if the encounter array is overflow, then call memset ()
at the end of the period to reset the entire array.

Another dead write context was found in cselib_init ().
As shown in Figure 4, the macro VARRY_ELT_LIST_
INIT () allocates an array and initializes to 0. Then, the
function clear_table () initializes the array to 0 again,
apparently resulting in a dead write. By reading the source
code, there is a more lightweight implementation for
clear_table (). This implementation does not initialize the
array reg_values, so this dead write could be eliminated by
changing the interface.

1 void cselib_init () {

2 ...

3 cselib nregs = max reg num();

4 /*initializ reg_values to 0 */

5 VARRY_ELT_LIST_INIT (reg_values,

6 cselib_nregs, ...);

7 ...

8 clear_table (1);

9 }

10 void clear_table (int clear_all) {

11 /*reset all elements of reg_values to 0 */

12 for (int i = 0; i < cselib_nregs; i++)

13 REG_VALUES (i) = 0;

14 ...

15 }

Figure 4 Dead writes in gcc due to excessive reset

IV. EXPERIMENT

In this section, we actually take the readings of the

hardware performance counters by sampling them while the

program is running. Those readings are the input of the

Power Model [12] we had published in 2016. The output of

the model is the power of the whole system. Obviously,

time-based integration of power is energy consumption.

A. Experiment environment

We used PAPI [13] to get the readings of the hardware
performance counters and gcc to compile the programs with
option -g before they are analyzed by dead write analysis
tool. Detailed hardware configuration of the experiment
platform is shown in Table I.

TABLE I. HARDWARE CONFIGURATION

Component Description($)

CPU 2.93GHz Intel Core i3

Memory 4GB DDR3 1333HZ

Hard Disk Seagate Barracuda 7200.12

Net 1000Mb/s Ethernet

B. Calculation method

In our prior work [12], we have presented a full system

energy consumption model based on performance events,

and its accuracy had been verified. We use it in our work

this time.

In the model, we calculated full system power as the

linear regression of three kinds of readings of the hardware

performance counters according to performance Events. As

shown in Formula 1. The three kinds of performance Events

are Active Cycles ({Cycles in which processor are active.),

Instruction Retired (The instruction (micro-operation)

leaves the "Retirement Unit".) and Last-Level Cache (LLC)

Misses (Count each cache miss condition for references to

the last level cache.).

 Psystem = 23.834+ActiveCycles+2.093

 ×InstructionRetired + 72.113 (1)

 ×LLCMisses+47.675

When the host computer does not run the test program,

it also has background programs running, and the

components are also consuming power. Therefore, the

energy consumption, when the host computer is not running

the test program, should be removed to see more obvious

contrast. Firstly, reading the host hardware performance

counters' value when the test program is not running. Then,

using Formula 1 to calculate the long-term power average

valueP2 which is taken as the background power of the

host. The energy consumption of this part can be calculated

asP2 multiple the running time (which is Tend - Tstart). The

final energy consumption will be energy caused by P1

subtract that fromP2. Therefore, the energy consumption of

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-709-2

COMPUTATION TOOLS 2019 : The Tenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

the test program can be calculated using Formula 2 since

energy is the integral of power over time.

)21 (startend

Tend

Tstart

result TTPPE −×−= ∫ (2)

When the test program is running, the three hardware

performance counters in Formula 1 are sampled every 5

seconds. The calculated system power is connected to each

sampling point using a Bezier curve. Then, the energy

consumption is calculated by integrating the time with

Formula 2.

C. Result

Since the same benchmark is running on different

inputs, the functions in it invoked are different, so

optimization tests are performed for different inputs. For

some benchmarks, such as bzip2, because the program

execution time is too short to sample an accurate reading,

which are not suitable for energy consumption measurement.

According to 403.gcc, it has a long execution time so that

we can observe the changes in energy consumption before

and after dead write optimization under different inputs. The

results are shown in Table II. All the energy consumptions

were calculated by using the methods described in previous

parts.

TABLE II. CHANGES IN ENERGY CONSUMPTION FOR GCC

Input Energy consumption (J) %Reduction

 before after

166.i 141.65 128.48 9.3

200.i 207.34 203.2 2

c-typeck.i 182.37 137.69 24.5

cp-decl.i 133.36 115.76 13.2

expr.i 153.13 127.4 16.8

expr2.i 197.48 169.64 14.1

scilab.i 98.46 97.8 0.8

g23.i 254.07 219.26 13.7

s04.i 227.0 166.39 26.7

% Average 13.46

The average energy consumption is reduced by 13.46%,

which has a significant effect. The result shows that finding

and the dead writes in the program code can significantly

reduce the energy consumption of the programs.

V. CONCLUSIONS

This paper proposes an optimization method for

program energy consumption. The method is based on the

optimization of dead write, a widely-existing redundant

memory access in the source code. Finding out and

eliminating the dead writes in programs, which could

increase system efficiency and reduce energy consumption.

From the experimental results, the effect is significant.

Subsequent work should be focused on developing the tools

based this paper, which allow more developers to use simple

operations to optimize energy consumption of written

program code.

ACKNOWLEDGMENT

This research is supported by the National Key R&D

Program (Grant No.2017YFB0202202).

REFERENCES

[1] E. Capra, C. Francalanci, and S.A. Slaughter, “Is software
green? Application development environments and energy
efficiency in open source applications”, Information &
Software Technology, vol. 54, no. 1, pp. 60–71, 2012.

[2] I. Manotas, L. Pollock, and J.Clause, “Seeds: a software
engineer’s energy-optimization decision support framework”,
Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 503–514.

[3] P. Hicks, M. Walnock, and R. M.Owens, “Analysis of power
consumption in memory hierarchies”, International
Symposium on Low Power Electronics and Design, 1997, pp.
239–242.

[4] B. Jacob, “The memory system: you can’t avoid it, you can’t
ignore it, you can’t fake it”, Synthesis Lectures on Computer
Architecture, vol.4, no. 1, 2009, pp.1-15.

[5] S. A. Mckee, “Reflections on the memory wall”, in
Conference on Computing Frontiers, 2004, p. 162.

[6] R. Azimi, M.Badiei, X. Zhan, N. Li, and S. Reda, “Fast
decentralized power capping for server clusters”, in IEEE
International Symposium on High Performance Computer
Architecture, 2017, pp. 181–192.

[7] C.K.Luk et.al, “Pin: building customized program analysis
tools with dynamic instrumentation”, 2005, pp.190–200.

[8] M.Chabbi, and J. Mellor-Crummey, “Deadspy: a tool to
pinpoint program inefficiencies”, Proceedings of the Tenth
International Symposium on Code Generation and
Optimization(CGO’12), pp. 124-134.

[9] M. Chabbi, X. Liu, and J. Mellor-Crummey, “Call paths for
pin tools”, IEEE/ACM International Symposium on Code
Generation and Optimization, 2014, pp. 76–86.

[10] N. Nethercote and J. Seward, “How to shadow every byte of
memory used by a program”, International Conference on
Virtual Execution Environments, 2007, pp. 65–74.

[11] J. L. Henning, “Spec cpu2006 benchmark descriptions”,
ACM SIGARCH Computer Architecture News, vol. 34, no. 4,
pp. 1–17, 2006.

[12] S. Yang, Z. Luan, B. Li, G. Zhang, T. Huang, and D. Qian,
“Performance events based full system estimation on
application power consumption”, IEEE International
Conference on High Performance Computing and
Communications, 2017, pp.749–756.

[13] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A
portable interface to hardware performance counters”, DoD
Hpcmp Users Group Conference, 1999, pp.7–10.

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-709-2

COMPUTATION TOOLS 2019 : The Tenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

