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Abstract—The importance of multimedia materials in justice is 
increasing. For example, a security camera recording could 
provide the evidence needed to clarify a given situation. The 
problems that arise are linked to the authenticity or 
intelligibility of the materials. There are situations in which the 
key material, (for example, a dialogue) is heavily masked. This 
paper presents the performances obtained by the Affine 
Projection Algorithm within a method for recovering speech 
signals masked by music. The results help in deciding if audio 
monitoring a certain acoustic environment could prove useful if 
the proposed method for extracting the speech is used 
afterwards. 

Keywords-multimedia forensic; noise reduction; adaptive 
filtering; affine projection algorithm. 

I.  INTRODUCTION 

The rate at which multimedia materials are captured is 
increasing as the required technology nowadays can be fit into 
a smartphone. These recordings could prove to be important 
evidence in trials. But before they can be considered, they 
must be investigated to determine if they are the original 
versions and if the key element (image, video, sound) is clear. 
The domain that studies the methods that can be used to 
determine if a multimedia material is original or not is known 
as multimedia authentication and it is a subdomain of 
multimedia forensic. The other direction is represented by 
noise reduction, which has the main task to enhance the key 
element in an audio or video material. The contribution 
presented in this paper is part of the latter category and 
investigates the following situation: if suspects have to discuss 
something of great importance, it is very likely to do it in 
person. To decrease the chances to be intercepted (recorded), 
they could turn loud a nearby music system and the music 
would heavily mask their dialogue, making any recording gear 
placed in the room apparently useless. The masking melody 
can be identified thanks to software like Shazam. The signal 
recorded by the equipment placed in the room could be 
processed to subtract the musical part, revealing the dialogue. 
Even if the masking melody is identified and available, it 
cannot be subtracted directly because in the recording it 
appears affected by the acoustic environment (by the acoustic 
impulse response of the room). This is because the sound 
waves reflect on the walls of the room and other surfaces 
placed there (furniture, people, etc.) before arriving on the 

surface of the microphone and being recorded. The acoustic 
impulse response of the room can be modelled by a finite 
impulse response (FIR) filter. The method for extracting the 
speech signal is illustrated in Figure 1. The speech and the 
masking music signal propagate through the room and are 
captured by the microphone. If the original musical signal and 
the acoustic impulse response of the room are available, a 
replica of the recorded music signal can be obtained and 
subtracted from the recording, unveiling the dialogue. It can 
be considered the classical adaptive noise reduction 
configuration in which the musical signals play the role of two 
replicas of the same noise signal.  

In Figure 1, sdialogue(t) represents the clean speech signal 
(without the effect of the room), and nmelody(t) is the masking 
melody. The impulse response of the filter that models the 
acoustic environment of the room is h(t) and r(t) is the 
recorded signal, i.e., the sum of the clean signals affected by 
the acoustics of the room. The recorded signal is used to 
identify the masking melody. The heavier the masking, the 
easier the task of the music identification software. Having the 
identified song, one only needs the acoustic impulse response 
of the room to be able to reveal the dialogue. The adaptive 
algorithm used to estimate h(t) is the affine projection 
algorithm (APA) because of its decent convergence speed and 
average computational complexity. An estimate for sdialogue(t) 
is the error signal of the algorithm, denoted by e(t). The error 
signal will not be the clean speech signal, but the speech signal 
affected by the acoustics of the room. This effect is not 
problematic (if the acoustic environment is not heavily 
reverberant) because this is what it is heard naturally when one 
speaks in a room [1]. The paper investigates the effects of the 
length and sparsity of the impulse response of the filter (which 
models the acoustic environment) on the considered 
algorithm. 

 

Figure 1.  The adaptive noise reduction configuration modelling the real 
dialogue interception situation. 
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It is important to note that the system in Figure 1, which 
models the considered interception configuration, was 
described in continuous time, for simplicity. The adaptive 
filtering is a typical digital signal processing (DSP) 
application and all the results presented in this paper are 
obtained using DSP. The required operations to pass from 
continuous time modelling to the actual processing (sampling, 
quantization, etc.) do not need special attention as they do not 
introduce effects that should be considered, if properly done. 

Besides this introduction, the paper consists of three 
sections as follows: Section II generally presents some key 
adaptive filtering notions, three adaptive algorithms, and the 
measures used to characterize the performance and impulse 
responses, Section III presents the experimental configuration 
and discusses the results, and Section IV concludes the paper. 

II. ADAPTIVE FILTERING 

An adaptive filter is a linear system whose impulse 
response is computed according to an optimization algorithm. 
The following descriptions are expressed in discrete time 
(where n is the time index) and only real signals are 
considered in this paper. An adaptive algorithm processes two 
signals, generally named in the literature as the input signal 
[denoted with x(n)] and the desired signal [denoted with d(n)], 
in a way that would minimize a cost function. Depending on 
the definition of the cost function, various adaptive algorithms 
exist. The method discussed in the paper uses the APA. A 
short description of the least-mean-squares (LMS) and the 
normalized LMS (NLMS) algorithms detailed in [2] and [3] 
will be presented further because it offers a better 
understanding of APA in particular, and of the adaptive 
filtering in general. Besides the aforementioned notations, in 
the equations will also be found the following: w – the 
adaptive filter’s coefficients vector and e – the error signal, 
which are well-known notions in adaptive filtering literature. 

A. The LMS and NLMS algorithms 

The cost function in the case of the LMS algorithm gives 
the name of the algorithm. It is defined as: 

      
22 ( ) ( ) ,n e n d n yC n   

where ( )y n  is the output of the adaptive filter. Minimizing 

the cost function with respect to the w vector gives the 
following update equation: 

            T1 1 ,n n n d n n n       w w x w x 

where 
T

  is the transposition operator and  is the step size 

parameter. The values of  that assure the convergence of the 

algorithm must respect the relation: 
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where R is the autocorrelation matrix of the input signal, 
which is given by: 

     TE n nR x x  

tr{} represents the trace of a matrix, and E{} denotes 
mathematical expectation. The main advantage of the LMS 
algorithm is its simplicity, but equations (3) and (4) highlight 
its main problem, i.e., the values that assure the convergence 
are dependent on the input signal.  This issue is solved in the 
NLMS algorithm in which the step size is scaled by the short 
time estimated power of the input signal. The update equation 
for the coefficients of the adaptive filter in the case of the 
NLMS algorithm becomes:  
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where δ is the regularization parameter, which avoids the 
division by zero (if the power of the input signal is estimated 
as zero), and 

        
T

, 1 , , 1 ,n x n x n x n L      x  

where L is the length of the adaptive filter. The step size that 
now assures the convergence of the algorithm can be chosen 
in the 0 2  interval, independent on the data to be 

processed. Even if in the case of the NLMS algorithm the step 
size can be easily chosen, the disadvantage of this algorithm 
is its lack of flexibility (only one parameter – the step size – 
can be modified to get the desired behavior of the algorithm). 

B. The affine projection algorithm 

The APA [4] brings another degree of freedom in choosing 
the working parameters. Besides the step size [5] found also 
in the NLMS algorithm, a new “projection order” parameter 
(denoted by M) is introduced. It indicates how many input 
signal vectors [x(n)] are used when computing the w vector. 
An M L matrix is built using the M input signal vectors: 

        T  = , 1 ,..., 1n n n n M +   A x x x  

and equation (5) becomes: 

           
1

T T1 + ,Mn n n n n n 
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where MI is the identity matrix of order M and, consequently: 

      = ,n n ne d y  
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T

, 1 ,..., 1n d n d n d n M     d  

      1n n n y A w  

The downside of introducing this new parameter is an 
increase in computational complexity. 

C. Performance measurements of adaptive algorithms and 
sparsity degree of impulse responses 

In the problem stated in the introduction, the adaptive filter 
should estimate an unknown filter (the acoustic impulse 
response of the room). In the ideal event of a perfect 
estimation, the two filters would be identical. In real working 
conditions, perfect estimation is not likely to occur. In order 
to characterize how close the impulse response of the adaptive 
filter is to the impulse response to be estimated, a measure 
named “misalignment” (denoted with m) is introduced. Its 
computation is straightforward and, using the notations 
introduced in Figure 1, it can be written as: 

      
2

t.b.e.m n n n w w  

where  t.b.e. nw is the impulse response to be estimated and 

 is the l2 norm. 

Because of its large dynamic range, the misalignment is 
preferred to be expressed in dB. A misalignment as small as 
possible is desired. Another wanted behavior is that the 
misalignment should get to very small values in short time. 
The measure that qualitatively characterizes this property is 
the convergence speed (a high convergence speed is sought). 
The parameters of an adaptive algorithm should be tweaked to 
get the fastest convergence speed and the smallest steady-state 
misalignment. As seen in the previous subsection, greater 
flexibility comes at a cost of computational power. 

A property of impulse responses which is of great 
importance especially in the case of acoustic systems is 
“sparsity”. An impulse response is called “sparse” when only 
a small part of the values that compose it have notable values 
and others are insignificant. There are more ways in which the 
sparsity degree (denoted with χ) can be computed. In practice, 
good results are obtained using the following relation: 

   t.b.e. 1
t.b.e.

t.b.e.

1
L

L L L
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where 
1

  is the l1 norm. The value returned by equation (13) 

can be between 1 and 0, the former indicating a high sparsity 
degree (there are only some dominant values in the analyzed 
vector). The effect of the sparsity degree on the behavior of 
the APA [6],[7] in the studied speech enhancement 
configuration is also investigated in the current paper.  

III. EXPERIMENTAL RESULTS 

Six impulse responses with various lengths and degrees of 
sparsity were used in the experiments. The considered impulse 
responses are illustrated in Figure 2 to Figure 7 and their 
degree of sparsity computed with equation (13) is mentioned. 
A speech and a musical signal were summed in a −40 dB 
signal-to-noise ratio (music in the role of noise) and then 
filtered with each of the presented impulse responses. Then 
the APA was used (with the original music signal as input and 
filtered mixture as desired signal) to estimate the acoustic 

 

Figure 2.  Acoustic impulse response with L=1001 and                                                              
χ = 0.73852. 

 

Figure 3.  Acoustic impulse response with L=1001 and          
χ = 0.45617. 

 

Figure 4.  Acoustic impulse response with L=2048 and          
χ = 0.7344. 
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impulse response, measuring the performance with equation 
(12). 

The situation presented in the introduction supposes that 
the acoustic environment [represented by h(t)] does not 
change in time. In real scenarios, this is very unlikely to 
happen because people would change their position, doors 
could be opened or closed etc. which would lead to a 
modification of the acoustic properties of the room. The 
duration of the signals used in the simulation was chosen to be 
20 seconds. This provides a sufficient time to draw 
conclusions about the performances of the algorithm and 

keeps the simulation running time acceptable on most 
computers. A change in the impulse response that models the 
unknown filter was considered, implemented as an 8 samples 
time shift, after 10 seconds have passed. This is useful because 
it can highlight the ability of the algorithm to follow any 
changes that could occur in the acoustic properties of the 
room. The results are shown in Figure 8 to Figure 13 below. 

The impulse responses that participated in the 
investigation have two lengths: 1001 (the ones illustrated in 

 

Figure 5.     Acoustic impulse response with L=2048 and          
χ =0.64495. 

 

Figure 6.     Acoustic impulse response with L=2048 and          
χ = 0.6085. 

 

Figure 7.     Acoustic impulse response with L=2048 and          
χ = 0.48781. 

 

Figure 8.  Misalignment of the APA when estimating the                                       
impulse response from Figure 2. 

 

Figure 9.  Misalignment of the APA when estimating the 
impulse response from Figure 3. 

 

Figure 10.  Misalignment of the APA when estimating the 
impulse response from Figure 4. 
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Figure 2 and Figure 3) and 2048 samples (shown in Figure 4 
to Figure 7). This large difference helps identifying how the 
behavior of the proposed method based on the APA is affected 
by the length of the impulse responses. A longer impulse 
response has the significance of a more reverberant room (for 
example rooms with less furniture and very hard walls). Each 
of the two lengths category contains impulse responses with 
very different sparsity degrees. It can be seen, for example, 

that the impulse response illustrated in Figure 3 has the same 
length as the one in Figure 2, but a considerably smaller 
sparsity degree. This helps investigating in the same time the 
effect of two key properties of impulse responses (length and 
sparsity degree) on the considered method. The adaptive 
algorithm was run for projection orders equal to 1 (in this case 
the APA is equivalent with the NLMS algorithm and 
represents a typically used reference for the performance), 2, 
4, and 8. 

From the length point of view, the results are clear: the 
algorithm shows better results (lower misalignment) in the 
given simulation time for shorter impulse responses. 

In the case of sparsity degree, the results show that sparse 
impulse responses lead to better performances. This can be 
observed for the impulse responses that have a length equal to 
1001 samples, the first (shown in Figure 2) having a larger 
sparsity degree (0.73852) than the second one (Figure 3, 
sparsity degree equal to 0.45617), but also for the longer ones 
(the impulse responses in Figure 4 and Figure 7 have lengths 
equal to 2048 samples, but the sparsity degree of the first is 
equal to 0.7344 is greater than of the latter, 0.48781). Those 
results are shown in Figure 8 and Figure 9 for the first 
considered pair and in Figure 10 and Figure 13 for the second 
pair. The impulse responses illustrated in Figure 5 and Figure 
6 have equal lengths and similar sparsity, so that the 
performances of the algorithm used by the forensic method 
were very similar in their cases (results shown in Figure 11 
and Figure 12). The obtained graphs suggest that the method 
should be used if the room in which the intercepting device 
(microphone) is placed is small and not very reverberant.  

It is of great importance to notice that the APA manages 
to obtain a misalignment less than −15 dB for all the impulse 
responses that were studied. It was determined that values for 
the misalignment greater than −10 dB lead to an unintelligible 
recovered speech signal. In the situations considered in this 
work, the best all-around results are obtained for a projection 
order equal to 8. In this case, the worst-case scenario is 
obtained when estimating the impulse response from Figure 7 
(which has a large length and a relatively low sparsity degree). 
Up to 5 seconds of recovered speech signal could still be 
unintelligible (the time needed by the algorithm to get to −10 
dB misalignment). For short and sparse impulse responses, the 
usage of a projection order larger than 4 does not bring an 
increase in performance to worth the extra cost of 
computational power. 

It can be concluded that the APA based forensic method 
for recovering speech signals heavily masked by music is 
showing robustness properties and can be used when the 
recording was done in various acoustic environments. It also 
shows very good performances if the acoustic impulse 
response of the room is short and sparse (e.g., offices).  

IV. CONCLUSION AND FUTURE WORK 

In this paper, the problem of recovering a speech signal 
heavily masked by music was described. 

It was shown how a dialogue interception scenario can be 
modelled using adaptive filters (the adaptive noise reduction 
configuration). Short theoretical description of the LMS, 
NLMS, and APA helps to understand why the latter is a good 

 

Figure 11.  Misalignment of the APA when estimating the 
impulse response from Figure 5. 

 

Figure 12.  Misalignment of the APA when estimating the 
impulse response from Figure 6. 

 

Figure 13.  Misalignment of the APA when estimating the 
impulse response from Figure 7. 
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candidate to such signal processing method, thanks to its good 
performances, flexibility, and decent computational demands.  

To evaluate the reliability of the method in various 
situations, a collection of six impulse responses with different 
lengths and sparsity degrees were used to simulate the 
acoustic environment in which the intercepting device was 
placed. To further increase the realism of the modelled 
scenario, a sudden change in the acoustic environment was 
introduced at the half of the investigation time, as an 8 samples 
time shift of the impulse response.  

The results show that the method offers good performance 
especially for short and sparse impulse responses. In all the 
considered situations, the adaptive algorithm managed to 
obtain a misalignment equal or smaller than −15 dB, which 
indicates that the recovered signal has fair to high chances to 
be intelligible, confirming the versatility of the method. For 
short and sparse impulse responses, a projection order equal 
to 4 is recommended. In harsher situations, an M parameter 
equal to 8 could be needed to avoid getting a recovered speech 
signal with long unintelligible parts. 

Since the effect of a change in the acoustic environment 
seems to be very clear (a large modification of the 
misalignment), new applications could be investigated in 
future works (e.g., monitoring of the acoustic environment).  
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