
HPC–Bench:

A Tool to Optimize Benchmarking Workflow for High Performance Computing

Gianina Alina Negoita

Department of Computer Science
Iowa State University

Ames, Iowa, USA
Horia Hulubei National Institute

for Physics and Nuclear Engineering
76900 Bucharest-Magurele, Romania

Email: alina@iastate.edu

Glenn R. Luecke

Department of Mathematics
Iowa State University

Ames, Iowa, USA
Email: grl@iastate.edu

Shashi K. Gadia
and

Gurpur M. Prabhu

Department of Computer Science
Iowa State University

Ames, Iowa, USA
Email: gadia@iastate.edu

Email: prabhu@iastate.edu

Abstract—HPC–Bench is a general purpose tool to optimize
benchmarking workflow for high performance computing (HPC)
to aid in the efficient evaluation of performance using multiple
applications on an HPC machine with only a “click of a button”.
HPC–Bench allows multiple applications written in different
languages, multiple parallel versions, multiple numbers of pro-
cesses/threads to be evaluated. Performance results are put into a
database, which is then queried for the desired performance data,
and then the R statistical software package is used to generate the
desired graphs and tables. The use of HPC–Bench is illustrated
with complex applications that were run on the National Energy
Research Scientific Computing Center’s (NERSC) Edison Cray
XC30 HPC computer.

Keywords–HPC; benchmarking tools; workflow optimization.

I. INTRODUCTION

Today’s high performance computers (HPC) are complex
and constantly evolving making it important to be able to easily
evaluate the performance and scalability of parallel applica-
tions on both existing and new HPC computers. The evaluation
of the performance of applications can be long and tedious.
To optimize the workflow needed for this process, we have
developed a tool, HPC–Bench, using the Cyclone Database
Implementation Workbench (CyDIW) developed at Iowa State
University [1], [2]. HPC–Bench integrates the workflow into
CyDIW as a plain text file and encapsulates the specified
commands for multiple client systems. By clicking the “Run
All” button in CyDIW’s graphical user interface (GUI) HPC–
Bench will automatically write appropriate scripts and submit
them to the job scheduler, collect the output data for each
application and then generate performance tables and graphs.
Using HPC–Bench optimizes the benchmarking workflow and
saves time in analyzing performance results by automatically
generating performance graphs and tables. Use of HPC–Bench
is illustrated with multiple MPI and SHMEM applications [3],
which were run on the National Energy Research Scientific
Computing Center’s (NERSC) Edison Cray XC30 HPC com-
puter for different problem sizes and for different number of
MPI processes/SHMEM processing elements (PEs) to measure
their performance and scalability.

There are tools similar to HPC–Bench, but each of these
tools has been designed to only run specific applications and

measure their performance. For example, ClusterNumbers [4]
is a public domain tool developed in 2011 that automates the
processor benchmarking HPC clusters by automatically ana-
lyzing the hardware of the cluster and configuring specialized
benchmarks (HPC Challenge [5], IOzone [6], Netperf [7]).
ClusterNumbers, the NAS Parallel Benchmarks [8] and the
other benchmarking software are designed to only run and
give performance numbers for particular benchmarks, whereas
HPC–Bench is designed for easy use with any HPC application
and to automatically generate performance tables and graphs.
PerfExpert [9] is a tool developed to detect performance
problems in applications running on HPC machines. Since
it is designed to detect performance problems, PerfExpert is
different from HPC–Bench.

The objective of this work is to develop an HPC bench-
marking tool, HPC–Bench, as described above and then
demonstrate its usefulness for a complex example run on
NERSC’s Edison Cray XC30. This paper is structured as
follows: Section II describes the design of the HPC–Bench
tool, which is divided in five Parts. Section III describes the
complex example mentioned above. Section IV contains our
conclusions.

II. TOOL DESIGN

A simple definition of a workflow is the repetition of a
series of activities or steps that are necessary to complete a
task. The scientific HPC workflow takes in inputs, e.g., input
data, source codes, scripts and configuration files, runs the
applications on an HPC cluster and produces outputs that might
include visualizations such as tables and graphs. Figure 1
shows a typical example for the scientific HPC workflow
diagram.

Scientific HPC workflows are a means by which scientists
can model and rerun their analysis. HPC–Bench was designed
to optimize the evaluation of the performance of multiple
applications. HPC–Bench was implemented using the public
domain workbench called Cyclone Database Implementation
Workbench (CyDIW). CyDIW was used to develop HPC–
Bench for the following reasons:

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

prepare source codes
write scripts and
configuration files

copy the input files
to the HPC cluster

submit the master script
to the job scheduler

Process 0
application 1
...
application n

Process 1
application 1
...
application n

Process p-1
application 1
...
application n

......

output 1
output 2
...
output n

copy the output files to
the local machine

process the output files
to generate
tables and graphs

share the results

Figure 1. An example for the scientific HPC workflow using n applications
that are run on p processes.

• It is easy-to-use, portable (Mac OS, Linux, Windows
platforms) and freely available [2].

• It has existing command-based systems registered as
clients. The clients used for HPC–Bench are the OS,
the open source R environment and the Saxon XQuery
engine.

• It has its own scripting language, which includes
variables, conditional and loop structures, as well as
comments used for documentation, instructions and
execution suppression.

• It has a simple and easy-to-use GUI that acts as an
editor and a launchpad for execution of batches of
CyDIW and client commands.

HPC–Bench uses CyDIW’s GUI and database capabilities for
managing performance data and contains about 1,000 lines of
code. HPC–Bench consists of the following five Parts with
illustrations taken from the example described in Section III:

Part 1: XML schema design. An XML schema, known as
an XML Schema Definition (XSD), describes the structure of
an XML document, i.e., rules for data content. Elements are
the main building blocks that contain data, other elements and
attributes. Each element definition within the XSD must have a
‘name’ and a ‘type’ property. Valid data values for an element
in the XML document can be further constrained using the
‘default’ and the ‘fixed’ properties. XSD also dictates which

subelements an element can contain, the number of instances
an element can appear in an XML document, the name, the
type and the use of an attribute, etc. The graphical XML
schema for this work was created and edited using Altova
XMLSpy, see Figure 2. Note the element ‘HPC EXP’ contains
a sequence of unlimited ‘Test’ elements, each ‘Test’ element
contains a sequence of 3 ‘Message’ elements, each ‘Message’
element contains a sequence of 12 ‘Implementation’ elements,
each ‘Implementation’ element contains a choice of unlimited
number of ‘Process Rank’ elements or 9 ‘Num Processes’
elements. Each ‘Process Rank’ and ‘Num Processes’ ele-
ments contain a sequence of ‘avg’, ‘max’, ‘median’, ‘min’
and ‘standard deviation’ elements. When using a ‘sequence’
compositor in XSD, the child elements in the XML do-
cument must appear in the order declared in XSD. When
using a ‘choice’ compositor in XSD, only one of the child
elements can appear in the XML document. In this work,
‘Process Rank’ element will appear in the XML document
for the first ‘Test’ element and ‘Num Processes’ otherwise.
‘Test’ elements stand for applications, ‘Message’ elements
stand for problem sizes, ‘Implementation’ elements stand for
parallel versions, ‘Process Rank’ elements stand for process’
rank, ‘Num Processes’ elements stand for number of MPI
processes/SHMEM PEs, while ‘avg’, ‘max’, ‘median’, ‘min’
and ‘standard deviation’ elements stand for statistical timing,
respectively.

Part 2: A password-less login to the HPC cluster was im-
plemented. Next, HPC–Bench writes scripts for the submission
of the batch jobs. One script is created for each application
in a loop and a master script. The master script sets up the
environment variables and calls the scripts for each application.
This is accomplished by doing the following:

• Use CyDIW’s loop structure, foreach, to loop through
each application.

• Use CyDIW’s build-in functions: createtxt, open, ap-
pend, appendln, appendfile and close to create scripts
as text files.

• Use the OS client system registered in CyDIW to copy
the files to the HPC cluster.

Part 3: HPC–Bench submits the batch job for execution on
the HPC cluster and waits for the job to finish. Suspending the
HPC–Bench execution is accomplished by doing the following:

• Launch the job.
• Store its id in a variable.
• Sleep until the ‘qstat’ command fails, by simply

checking the exit status of the ‘qstat’ command. Once
the job is completed, it is no longer displayed by the
‘qstat’ command.

HPC–Bench next copies the output text files from the HPC
cluster to the local machine and converts them to a single
written XML file (shown in Figure 3) that follows the XML
schema design from Figure 2. An ‘awk’ script parses the output
text files, then a ‘shell’ script uses the parsed data to create and
write the XML file. The XML file is then validated against the
XML schema. For example, the ‘type’ property for an element
in XSD must correspond to the correct format of its value in
the XML document, otherwise this will cause a validation error
when a validating parser attempts to parse the data from the
XML document.

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Figure 2. Graphical XML schema using Altova XMLSpy.

1 <HPC_EXP xsi:noNamespaceSchemaLocation="HPCExp.SKG.02.xsd" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

2 <Test Name="Accessing Distant Messages" Trials="256" testNum="1">
3 <Message messageSize="8 bytes" arraySize="1">
4 <Implementation Name="shmem_get">
5 <Process_Rank rank="1">
6 <avg>7.23570582569762599E-4</avg>
7 <max>9.7059558517284452E-3</max>
8 <median>6.10370678883798406E-4</median>
9 <min>4.41066222407330286E-4</min>

10 <standard_deviation>8.63328421202984395E-4</standard_deviation>
11 </Process_Rank>
12 <Process_Rank rank="2">
13 <avg>3.37445823354852112E-3</avg>
14 <max>1.40903790087463562E-2</max>
15 <median>3.11745106205747616E-3</median>
16 <min>2.52269887546855472E-3</min>
17 <standard_deviation>1.407381050750595E-3</standard_deviation>
18 </Process_Rank>
19 ... data for other ranks, implementations and messages...
20 </Implementation>
21 </Message>
22 </Test>
23 <Test Name="Circular Right Shift" Trials="256" testNum="2">
24 <Message messageSize="8 bytes" arraySize="1">
25 <Implementation Name="shmem_get">
26 <Num_Processes num="2">
27 <avg>7.08220533111203585E-4</avg>
28 <max>1.12190753852561432E-2</max>
29 <median>6.09745939192003327E-4</median>
30 <min>4.19825072886297339E-4</min>
31 <standard_deviation>9.3970636331058724E-4</standard_deviation>
32 </Num_Processes>
33 ... data for other number of processes, implementations,
34 messages and Tests ...
35 </Test>
36 </HPC_EXP>

Figure 3. The XML file containing the output data validated against
the XSD from Figure 2.

Part 4: HPC–Bench then queries the XML file for the de-
sired performance data using the XQuery language to generate

• performance tables

and

• the XML input files to the R statistical package that
will be used to generate various graphs.

Queries were declared as string variables in CyDIW and then
run. Nested foreach command was used to iterate through
applications 2 to 5 and through different problem/message
sizes. Each output generated by the queries was directed to
an XML file, see Figure 4.

1 // Loop through each Test from 2-5;
2 $CyDB:> foreach $$j in [2, 5]
3 {
4 // Loop through each message size: 8 bytes, 10 Kbytes and 1 Mbyte;
5 $CyDB:> foreach $$k in [1, 3] {
6 $CyDB:> set $$queryRatioTest$$j[$$k] := ...
7 $CyDB:> run $Saxon $$queryRatioTest$$j[$$k] out >> output_tableRatio_Test$$j_$$

messageSize2[$$k].xml;
8 }
9 }

Figure 4. Example setting the queries as variables and running the
queries.

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

For the first application, we queried the average of the median
times over all the ranks for each problem/message size and
for each parallel version/implementation. See Figure 5 for
generating a performance table for application 1. For the
other applications we queried the median times for each run
(specified by the number of processes used) for each prob-
lem/message size and for each parallel version/implementation.
See Figure 6 for producing performance tables for applications
2 to 5.

1 $Saxon:>
2 <Test1TABLE1Ratios xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
3 <table border="1" >
4 {
5 l e t $a := doc("ComS363/Final_Project/input.MPI3.xml")//Test[@testNum="1"]
6 return
7 <tr> <td>Message Size</td>
8 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="shmem_get"]/

@Name/string()}</td>
9 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="mpi_get"]/

@Name/string()}</td>
10 <td >ratio1</td>
11 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="shmem_put"]/

@Name/string()}</td>
12 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="mpi_put"]/

@Name/string()}</td>
13 <td >ratio2</td>
14 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="mpi_send_recv"

]/@Name/string()}</td>
15 <td >ratio3</td>
16 </tr>
17 }
18 {
19 l e t $a := doc("ComS363/Final_Project/input.MPI3.xml")//Test[@testNum="1"]
20 for $x in $a//@messageSize
21 l e t $i := $a/Message[@messageSize=$x]/Implementation[@Name=’shmem_get’]//median
22 l e t $j := $a/Message[@messageSize=$x]/Implementation[@Name=’mpi_get’]//median
23 l e t $k := $a/Message[@messageSize=$x]/Implementation[@Name=’shmem_put’]//median
24 l e t $l := $a/Message[@messageSize=$x]/Implementation[@Name=’mpi_put’]//median
25 l e t $m := $a/Message[@messageSize=$x]/Implementation[@Name=’mpi_send_recv’]//

median
26 return
27 <tr>
28 <td> {$x/string()} </td>
29 <td>{ round(avg($i) * 10000) div 10000.0} </td>
30 <td>{ round(avg($j) * 10000) div 10000.0} </td>
31 <td >{round(avg($j) div avg($i) * 100) div 100.0}</td>
32 <td>{ round(avg($k) * 10000) div 10000.0} </td>
33 <td>{ round(avg($l) * 10000) div 10000.0} </td>
34 <td >{round(avg($l) div avg($k) * 100) div 100.0}</td>
35 <td>{ round(avg($m) * 10000) div 10000.0} </td>
36 <td >{round(avg($m) div avg($i) * 100) div 100.0}</td>
37 </tr>
38 }
39 </table>
40 </Test1TABLE1Ratios>;

Figure 5. Query that gives a performance table for application 1.

1 $CyDB:> foreach $$j in [2, 5] // Loop through each Test from 2-5;
2 {
3 $CyDB:> set $$queryRatio_8bytes[$$j] :=
4 <Test$$j_TABLE$$j_Ratios_8bytes $$namespace>
5 <table border="1" >
6 {
7 l e t $a := $$xmldoc//Test[@testNum="$$j"]/Message[@messageSize="8 bytes"]
8 return
9 <tr> <td >Message Size</td > <td >8 bytes </td >

10 <tr> Number of Processes </tr>
11 <td >{$a/Implementation[@Name="shmem_get"]/@Name/string()}</td>
12 <td >{$a/Implementation[@Name="mpi_get"]/@Name/string()}</td>
13 <td >ratio1</td>
14 <td >{$a/Implementation[@Name="shmem_put"]/@Name/string()}</td>
15 <td >{$a/Implementation[@Name="mpi_put"]/@Name/string()}</td>
16 <td >ratio2</td>
17 $$implementationRatioString1[$$j]
18 </tr>
19
20 }
21 {
22 l e t $a := $$xmldoc//Test[@testNum="$$j"]/Message[@messageSize="8 bytes"]
23 for $x in $a/Implementation[@Name=’shmem_get’]//@num
24 l e t $i := $a/Implementation[@Name=’shmem_get’]/Num_Processes[@num=$x]/median
25 l e t $j := $a/Implementation[@Name=’mpi_get’]/Num_Processes[@num=$x]/median
26 l e t $k := $a/Implementation[@Name=’shmem_put’]/Num_Processes[@num=$x]/median
27 l e t $l := $a/Implementation[@Name=’mpi_put’]/Num_Processes[@num=$x]/median
28 return
29 <tr>
30 <td> {$x/string()} </td>
31 <td>{ round($i * 10000) div 10000.0} </td>
32 <td>{ round($j * 10000) div 10000.0} </td>
33 <td>{ round($j div $i * 100) div 100.0} </td>
34 <td>{ round($k * 10000) div 10000.0} </td>
35 <td>{ round($l * 10000) div 10000.0} </td>
36 <td>{ round($l div $k * 100) div 100.0} </td>
37 $$implementationRatioString2[$$j]
38 </tr>
39 }
40 </table>
41 </Test$$j_TABLE$$j_Ratios_8bytes>;
42 $CyDB:> set $$queryRatio_10Kbytes[$$j] :=....
43 ...
44 $CyDB:> set $$queryRatio_1Mbyte[$$j] :=....

45 }
46
47 // Produce the tables for Tests 2-5 for all message sizes;
48 // Loop through each Test from 2-5;
49 $CyDB:> foreach $$j in [2, 5]
50 {
51 $CyDB:> run $$prefix $$queryRatio_8bytes[$$j] out >> output_tableRatio_Test$$j_8bytes.xml;
52 $CyDB:> run $$prefix $$queryRatio_10Kbytes[$$j] out >> output_tableRatio_Test$$j_10Kbytes.xml

;
53 $CyDB:> run $$prefix $$queryRatio_1Mbyte[$$j] out >> output_tableRatio_Test$$j_1Mbyte.xml;
54 }

Figure 6. Query that gives performance tables for applications 2 to 5.

The database was then queried for the data needed to
generate the performance graphs. Figure 7 shows the query
that gives the median times for all the parallel versions/imple-
mentations for 8-byte messages for application 2. The XML
file containing the performance data obtained by this query is
shown in Figure 8.

1 $CyDB:> set $$query_plot_8bytes[2] :=
2 <Test$$j_plot$$j_8bytes $$namespace>
3 {
4 l e t $a := $$xmldoc//Test[@testNum="$$j"]/Message[@messageSize="8 bytes"]
5 for $x in $a/Implementation[@Name=’shmem_get’]//@num
6 return
7 <Num_Processes>
8 {
9 <num_pes> {$x/string()} </num_pes>,

10 <shmem_get> { round($a/Implementation[@Name=’shmem_get’]/Num_Processes[@num=$x]/
median * 10000) div 10000.0} </shmem_get>,

11 <mpi_get>{ round($a/Implementation[@Name=’mpi_get’]/Num_Processes[@num=$x]/median *
10000) div 10000.0} </mpi_get>,

12 <shmem_put>{ round($a/Implementation[@Name=’shmem_put’]/Num_Processes[@num=$x]/median

* 10000) div 10000.0} </shmem_put>,
13 <mpi_put>{ round($a/Implementation[@Name=’mpi_put’]/Num_Processes[@num=$x]/median *

10000) div 10000.0} </mpi_put>,
14 $$implementationString[$$j]
15 }
16 </Num_Processes>
17 }
18 </Test$$j_plot$$j_8bytes>
19 ;
20 $CyDB:> run $Saxon $$query_plot_8bytes[2] out >> output_plot_Test2_8bytes.xml;

Figure 7. Query that gives the performance data needed to generate
the performance graph for 8-byte messages for application 2.

1 <Root>
2 <Test2_plot2_8bytes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
3 <Num_Processes>
4 <num_pes>2</num_pes>
5 <shmem_get>0.0005</shmem_get>
6 <mpi_get>0.0113</mpi_get>
7 <shmem_put>0.0013</shmem_put>
8 <mpi_put>0.0096</mpi_put>
9 <mpi_sendrecv>0.0026</mpi_sendrecv>

10 <mpi_isend_irecv>0.0037</mpi_isend_irecv>
11 <mpi_send_recv>0.0054</mpi_send_recv>
12 </Num_Processes>
13 <Num_Processes>
14 <num_pes>4</num_pes>
15 <shmem_get>0.0051</shmem_get>
16 <mpi_get>0.0169</mpi_get>
17 <shmem_put>0.007</shmem_put>
18 <mpi_put>0.0155</mpi_put>
19 <mpi_sendrecv>0.0093</mpi_sendrecv>
20 <mpi_isend_irecv>0.0076</mpi_isend_irecv>
21 <mpi_send_recv>0.0084</mpi_send_recv>
22 </Num_Processes>
23
24 </Test2_plot2_8bytes>
25 </Root>

Figure 8. The XML file generated by the query above for application
2.

Part 5: HPC–Bench uses R to generate the performance
graphs. This is accomplished by first converting the XML files
generated by the queries for graphs from Part 4 (see Figure 8
as an example) to R dataframes and then setting up the plotting
environment, e.g., the size of the graphs, the style of the X and
Y axes, graph labels, colors, legends, etc.

The first step for generating the performance graphs is
to install the “XML”, “plyr”, “ggplot2”, “gridExtra” and
“reshape2” R packages and load them in R. The “plyr”
package is used to convert the XML file to a dataframe.
Next, HPC–Bench reads the XML file into an R tree, i.e.,
R-level XML node objects using the xmlTreeParse() function.

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Then HPC–Bench uses the xmlApply() function for traversing
the nodes (applies the same function to each child of an
XML node). function(node) xmlSApply(node, xmlV alue)
does the initial processing of an individual Num Processes
node, where xmlValue() returns the text content within an
XML node. This function must be called on the first child
of the root node, e.g., xmlSApply(doc[[1]], xmlV alue). All
the Num Processes nodes are processed with the command
xmlSApply(doc[[1]], function(x) xmlSApply(x, xmlV alue)).
The result is a character matrix whose rows are variables and
whose columns are records. After transposing this matrix, it
is converted to a dataframe. As an example, see Figure 9 that
generates the dataframe shown in Table I for application 2.
This completes working with XML files and the rest is R
programming.

1 # Nodes traversing function
2 function(node) xmlSApply(node, xmlValue)
3 doc = xmlRoot(xmlTreeParse(inputFile.xml)
4 numLoop = xmlSize(doc[[1]])
5 tmp = xmlSApply(doc[[1]], function(x) xmlSApply(x, xmlValue))
6 tmp = t(tmp) # transpose matrix
7 df = as.data.frame(matrix(as.numeric(tmp), numLoop))
8 names(df)<- c("Number Processes", "shmem_get", "mpi_get", "shmem_put", "mpi_put", "

mpi_sendrecv", "mpi_isend_irecv", "mpi_send_recv")

Figure 9. Code to convert an XML file to an R dataframe.

TABLE I. THE R DATAFRAME GENERATED WITH THE CODE FROM
FIGURE 9 FOR 8-BYTE MESSAGE SIZE FOR APPLICATION 2.

Num shmem mpi shmem mpi mpi mpi mpi
Proc get get put put send- isend send

-recv irecv recv

1 2 0.0005 0.0113 0.0013 0.0096 0.0026 0.0037 0.0054
2 4 0.0051 0.0169 0.0070 0.0155 0.0093 0.0076 0.0084
3 8 0.0046 0.0178 0.0084 0.0171 0.0118 0.0106 0.0125
4 16 0.0056 0.0246 0.0088 0.0250 0.0124 0.0115 0.0137
5 32 0.0048 0.0289 0.0088 0.0269 0.0142 0.0126 0.0113
6 64 0.0053 0.0357 0.0112 0.0329 0.0144 0.0134 0.0160
7 128 0.0054 0.0494 0.0122 0.0378 0.0165 0.0190 0.0215
8 256 0.0057 0.0518 0.0120 0.0502 0.0207 0.0225 0.0232
9 384 0.0093 0.0584 0.0198 0.0540 0.0223 0.0224 0.0247

After obtaining the R dataframes, HPC–Bench sets up the
plotting environment as follows:

• Use the “ggplot2”,“gridExtra” and “reshape2” R pack-
ages to create graphs and put multiple graphs on one
panel.

• Write a function to create minor ticks and then write
another function to mirror both axes with ticks.

• Set and update a personalized theme:
theme set(theme bw()), theme update(. . .).

• For each application, plot the dataframe for each
problem/message size using the ggplot() function with
personalized options. See Figure 10.

1 p <- ggplot(data=df.melted, aes(x=‘Number Processes‘, y=value, group=variable, shape=factor(
variable), color=variable))

2 p <- p + geom_line(aes(linetype=variable)) + geom_point(fill = "white", size = 2.5)
3 p <- p + geom_line(aes(linetype=variable)) + geom_point(fill = "white", size = 2.5)
4 p <- p + scale_colour_manual(messageSize[c(i)], values=c("red", "red", "blue", "blue", "

brown4", "darkgreen", "green"), labels=c("SHMEM get", "MPI get","SHMEM put", "MPI
put", "MPI sendrecv", "MPI isend&irecv", "MPI send&recv"))

Figure 10. Code that generates a plot using the df dataframe.

For each application and for each problem/message size, HPC–
Bench plots the desired timing data for all versions/imple-
mentations. Next, for each application, HPC–Bench places the
three plots for different problem/message sizes (p1, p2 and

p3) into one panel using gtable to generate a graph, that is
then printed to PDF format, see Figure 11. At the end of the
HPC–Bench execution, performance graphs are displayed for
all applications in popup windows. Figures 14 and 15 illustrate
this.

1 ge <- gtable:::rbind_gtable(p1, p2, "first")
2 g <- gtable:::rbind_gtable(ge, p3, "first")
3 grid.newpage()
4 # grid.draw(ge) # draw 2 figures
5 grid.draw(g) # draw 3 figures, show the plot
6 # Print to pdf using pdf and plot
7 pdf(outputFile)
8 plot(g)
9 dev.off()

Figure 11. Code that places 3 plots into one panel.

Figure 12 shows the HPC workflow diagram for HPC–
Bench. The blue boxes are components of the HPC workflow,
which include input data and output data to manage, as well as
source codes, scripts and configuration files for the system. The
red boxes show the portions of the HPC workflow controlled
by HPC–Bench.

prepare source codes

Process 0
application 1
...
application n

Process 1
application 1
...
application n

Process p-1
application 1
...
application n

......

output 1
output 2
...
output n

write scripts and
configuration files

copy the input files
to the HPC cluster

submit the master script
to the job scheduler

copy the output files to
the local machine

place the output data
into a database

HPC-Bench

HPC-Bench
suspend execution
until the output files
are ready

query the database
for the desired
performance data

share the results generate tables
and graphs

Figure 12. HPC workflow diagram for HPC–Bench.

Since the output processing part cannot begin until all the
runs are complete, HPC–Bench suspends execution until all
the output data is available. HPC–Bench then puts the output
data into a database and queries it for the desired results.

III. EXAMPLE USING HPC–BENCH

In this section, we illustrate how HPC–Bench can be used
in a complex benchmarking environment. The example and the
benchmarking environment information come from [3]. The

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

benchmark tests used for this example were: accessing distant
messages, circular right shift, gather, broadcast, and all-to-all.
Each test has several parallel versions, which use: MPI get, put,
blocking and non-blocking sends/receives, gather, broadcast
and alltoall routines as well as the SHMEM get, put, broadcast
and alltoall routines.

The NERSC’s Edison Cray XC30 with the Aries intercon-
nect was used for benchmarking. Edison has 5576 XC30 nodes
with 2 Intel Xeon E5-2695v2 12-chip processor for a total of
24 cores per node. There are 30 cabinets and each cabinet
consists of 192 nodes. Cabinets are interconnected using the
Dragonfly topology with 2 cabinets in a single group.

For this example, 2 cabinets in a single group (2x192
nodes) were reserved. Each application was run with 2 MPI
processes/SHMEM PEs per node using message sizes of 8
bytes, 10 Kbytes and 1 Mbyte and 2 to 384 MPI process-
es/SHMEM PEs.

Use of HPC–Bench is illustrated via CyDIW’s GUI, shown
in Figure 13. The GUI is intentionally designed to be as simple
as possible for ease-of-use: it has a “Commands Pane”, an
“Output Pane” and a “Console”. The “Commands Pane” acts
as an editor and a launch-pad for execution of batches of
commands, written as text files. The output can be shown in
the “Output Pane”, directed to files, or displayed in popup
windows. The “Output Pane” is an html viewer, but it can
display plain text as well. For example, a user can see an html
table computed by an XQuery query displayed in the “Output
Pane”. The html code or the display in an html browser can
be viewed without having to get out of the GUI in order to
use a text editor or an html browser. The “Console” displays
the status and error messages for the commands.

In CyDIW’s GUI, click “Open” and then browse to the
HPC–Bench file to open HPC–Bench. One can run all the
applications from scratch and produce the performance tables
and graphs in a “click of a button” by clicking the “Run All”
button. HPC–Bench displays one three-panel graph for each
application in a popup window. See Figures 14 and 15 as
examples for performance graphs produced by HPC–Bench.

Figure 14 shows the median time in milliseconds (ms)
versus the process’ rank for the accessing distant messages test
with 8-byte, 10-Kbyte and 1-Mbyte messages. The purpose
of this test is to determine the performance differences of
‘sending’ messages between ‘close’ processes and ‘distant’
processes using SHMEM and MPI routines. The curves rep-
resent various implementations of this test using the SHMEM
and MPI get and put routines, as well as the MPI send/receive
routines as shown in the legend. Figure 14 shows that times to
access messages within a group of two cabinets on NERSC’s
Edison Cray XC30 were nearly constant for each implemen-
tation, showing the good design of the machine.

Figure 15 shows the median time in milliseconds (ms)
versus the number of processes for the circular right shift test
with 8-byte, 10-Kbyte and 1-Mbyte messages. In this test, each
process ‘sends’ a message to the right process and ‘receives’ a
message from the left process. The curves represent various
implementations of this test using the SHMEM and MPI
get and put routines, as well as the MPI two-sided routines,
e.g., send/receive, isend/ireceive and sendrecv as shown in the
legend. Figure 15 shows that all implementations scaled well
with the number of processes for all message sizes.

HPC–Bench can be easily modified by clicking the “Edit”
button to run only selected applications or to change the
number of processes, library version or configuration to run
on, as well as to add more queries to do a different per-
formance analysis. Alternatively, one can run parts of HPC–
Bench selecting which parts to run and then clicking the
“Run Selected” button. This is useful when one would like
to produce additional tables and graphs from existing output
data without having to rerun the applications.

IV. CONCLUSION

HPC–Bench is a general purpose tool to minimize the
workflow time needed to evaluate the performance of mul-
tiple applications on an HPC machine at the “click of a
button”. HPC–Bench can be used for performance evaluation
for multiple applications using multiple MPI processes, Cray
SHMEM PEs, threads and written in Fortran, Coarray Fortran,
C/C++, UPC, OpenMP, OpenACC, CUDA, etc. Moreover,
HPC–Bench can be run on any client machine where R
and the CyDIW workbench have been installed. CyDIW is
preconfigured and ready to be used on a Windows, Mac OS
or Linux system where Java is supported. The usefulness of
HPC–Bench was demonstrated using complex applications on
a NERSC’s Cray XC30 HPC machine.

ACKNOWLEDGMENT

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a DOE Office
of Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. Personnel time for this project was supported by
Iowa State University.

REFERENCES
[1] X. Zhao and S. K. Gadia, “A Lightweight Workbench for Database

Benchmarking, Experimentation, and Implementation,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 24, no. 11, Nov. 2012,
pp. 1937–1949, DOI: 10.1109/TKDE.2011.169, ISSN: 1041-4347.

[2] “Cyclone Database Implementation Workbench (CyDIW),” 2012, URL:
http://www.research.cs.iastate.edu/cydiw/ [accessed: 2018-01-10].

[3] G. A. Negoita, G. R. Luecke, M. Kraeva, G. M. Prabhu, and J. P. Vary,
“The Performance and Scalability of the SHMEM and Corresponding
MPI Routines on a Cray XC30,” in Proceedings of the 16th International
Symposium on Parallel and Distributed Computing (ISPDC 2017) July
3–6, 2017, Innsbruck, Austria. IEEE, Jul. 2017, pp. 62–69, DOI:
10.1109/ISPDC.2017.19, ISBN: 978-1-5386-0862-3.

[4] “ClusterNumbers,” 2011, URL: https://sourceforge.net/projects/cluster-
numbers/ [accessed: 2018-01-10].

[5] “The HPC Challenge Benchmarks,” URL: http://icl.cs.utk.edu/hpcc/ [ac-
cessed: 2018-01-10].

[6] “IOzone,” URL: http://iozone.org/ [accessed: 2018-01-10].
[7] “Netperf,” URL: https://hewlettpackard.github.io/netperf/ [accessed:

2018-01-10].
[8] “The NAS Parallel Benchmarks derived from computational fluid dynam-

ics (CFD) applications,” URL: www.nas.nasa.gov/publications/npb.html
[accessed: 2018-01-10].

[9] M. Burtscher, B. D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne, “PerfExpert: An Easy-to-Use Performance Diagnosis Tool for
HPC Applications,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2010, November 13–19, 2010, New Orleans, LA, USA.
ACM/IEEE, Nov. 2010, pp. 1–11, DOI: 10.1109/SC.2010.41.

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Figure 13. CyDIW’s GUI showing the table generated by XQuery for 8-byte message for application 2, containing the same performance data as Table I.

● ●
●

●
●

● ● ●
●

● ●
●

● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ●
●

●

● ●

●
● ● ● ●

● ● ●
●

● ● ● ● ● ●
● ● ●

●
●

●
●

● ●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
Process Rank

M
ed

ia
n

T
im

e
(m

s)
M

ed
ia

n
T

im
e

(m
s)

M
ed

ia
n

T
im

e
(m

s)

8 bytes
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI send&recv

10 Kbytes
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI send&recv

1 Mbyte
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI send&recv

Test1: Accessing Distant Messages

Figure 14. An example of a graph generated by HPC–Bench for application
1, accessing distant messages test.

●
●● ● ● ● ● ●

●

●

●● ● ●
● ● ●

●

●
●● ● ● ● ● ●

●

●

●● ● ●
● ●

●

●

●●
●

● ● ● ● ●
●

●●● ● ● ●
● ●

●

0

0.02

0.04

0.06

0

0.02

0.04

0.06

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
Number of Processes

M
ed

ia
n

T
im

e
(m

s)
M

ed
ia

n
T

im
e

(m
s)

M
ed

ia
n

T
im

e
(m

s)

8 bytes
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI sendrecv
MPI isend&irecv
MPI send&recv

10 Kbytes
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI sendrecv
MPI isend&irecv
MPI send&recv

1 Mbyte
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI sendrecv
MPI isend&irecv
MPI send&recv

Test2: Circular Right Shift

Figure 15. An example of a graph generated by HPC–Bench for application
2, circular right shift test.

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

