
Implementing the Type System for a Typed Javascript and its IDE

Lorenzo Bettini

Dip. Statistica, Informatica, Applicazioni
Università di Firenze, Italy

Email: bettini@disia.unifi.it

Jens von Pilgrim, Mark-Oliver Reiser

NumberFour AG,
Berlin, Germany

Email: {jens.von.pilgrim,mark-oliver.reiser}@numberfour.eu

Abstract—Implementing a programming language with IDE tool-
ing features poses several challenges even when using language
workbenches like Xtext that provides Eclipse integration. A
complex type system with powerful type inference mechanisms
requires focusing carefully on performance issues that might
undermine the effective usability of the IDE: the editor must
be responsive even when type inference takes place in the
background, otherwise the programmer will experience too many
lags. In this paper, we will present a real-world case study:
N4JS, a JavaScript dialect with a full-featured Java-like static
type system (including generics) and present some evaluation
results. We will concentrate on techniques to make the type
system implementation of N4JS integrate efficiently with Eclipse.
For the implementation of such a type system we use Xsemantics,
a DSL for writing type systems, reduction rules and in general
relation rules for languages implemented in Xtext. Xsemantics
uses a syntax that resembles formal type system specifications,
so that the implementation of formally defined type rules can be
implemented easier and more directly than in Java.

Keywords–DSL; Type System; Implementation; Eclipse.

I. INTRODUCTION

Xtext [1] is a popular Eclipse framework for the devel-
opment of Domain-Specific Languages (DSLs) and their In-
tegrated Development Environments (IDEs). The type system
and interpreter for a language implemented in Xtext are usually
implemented in Java. While this works for languages with a
simple type system, it becomes a problem for an advanced type
system. Since the latter is often formalized, a DSL enabling the
implementation of a type system similar to the formalization
would be useful. Besides functional aspects, implementing a
complex type system with powerful type inference mechanisms
poses several challenges due to performance issues. At the
same time, modern statically-typed languages tend to reduce
the verbosity of the syntax with respect to types by imple-
menting type inference systems that relieve the programmer
from the burden of declaring types when these can be inferred
from the context. In order to be able to cope with these high
demands on both type inference and performance, efficiently
implemented type systems are required.

In [2], Xsemantics [3] was introduced. Xsemantics is a
DSL for writing rules for languages implemented in Xtext, e.g.,
the type system, the operational semantics and the subtyping.
Given the type system specification, Xsemantics generates Java
code that can be used in the Xtext implementation. Xsemantics
specifications have a declarative flavor that resembles formal
systems, while keeping the Java-like shape. This makes it
usable both by formal theory people and by Java programmers.
Xsemantics has improved a lot in order to make it usable

for modern full-featured languages and real-world performance
requirements. The new and advanced features of Xsemantics
are presented in [4].

In this paper, we present the implementation in Xsemantics
of the type system of N4JS, a version of JavaScript imple-
mented with Xtext, with powerful type inference mechanisms
(including Java-like generics). The implementation of the type
system of N4JS focuses both on the performance of the type
system and on its integration in the Eclipse IDE. This is the
first real-world example of the applicability of Xsemantics for
a complex type system with involved type inference.

The paper is structured as follows. We provide a small in-
troduction to Xtext and Xsemantics in Section II. In Section III,
we present our main case study: the implementation of the
type system of N4JS with Xsemantics, with some performance
benchmarks related to the type system. Section IV concludes
the paper and discusses some related works.

II. XTEXT AND XSEMANTICS

In this section, we will briefly recall the main features of
Xtext and Xsemantics.

Xtext [1] is a language workbench and it deals not only
with the compiler mechanisms but also with Eclipse-based
tooling: Xtext generates the Eclipse editor for the language
that we are implementing with syntax highlighting, background
parsing with error markers, outline view and code completion.
In the following we describe the two complementary mech-
anisms of Xtext that the programmer has to implement for
the type checking. Xsemantics aims at generating code for
both mechanisms. Scoping is the mechanism for binding the
symbols (i.e., references). Xtext supports the customization of
binding with the abstract concept of scope, i.e., all declarations
that are available (visible) in the current context of a reference.
The programmer provides a ScopeProvider to customize
the scoping. In Java-like languages the scoping will have to
deal with types and inheritance relations, thus, it is strictly
connected with the type system. All the other checks that
do not deal with symbol resolutions, have to be implemented
through a validator. In a Java-like language most validation
checks typically consist in checking that the program is correct
with respect to types. The validation takes place in background
while the user is writing in the editor, so that an immediate
feedback is available.

A system definition in Xsemantics is a set of judgments
(formally, assertions about the properties of programs) and a
set of rules (formally, implications between judgments). Rules
have a conclusion and a set of premises. Rules can act on any

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

judgments {
type |- Expression expression : output Type

error "cannot type " + expression
subtype |- Type left <: Type right

error left + " is not a subtype of " + right
}

Figure 1. Judgment definitions in Xsemantics.

Java object. Typically, rules act on the objects representing the
Abstract Syntax Tree (AST). Starting from the definitions of
judgments and rules, Xsemantics generates Java code that can
be used in a language implemented in Xtext for scoping and
validation.

An Xsemantics judgment consists of a name, a judgment
symbol (which can be chosen from some predefined symbols)
and the parameters of the judgment. Parameters are separated
by relation symbols (which can be chosen from some prede-
fined symbols). Two judgments must differ for the judgment
symbol or for at least one relation symbol. The parameters can
be either input parameters (using the same syntax for param-
eter declarations as in Java) or output parameters (using the
keyword output followed by the Java type). For example, the
judgment definitions for an hypothetical Java-like language are
shown in Figure 1: the judgment type takes an Expression
as input parameter and provides a Type as output parameter.
The judgment subtype does not have output parameters, thus
its output result is implicitly boolean. Judgment definitions can
include error specifications which are useful for generating
informative error information.

Rules implement judgments. Each rule consists of a name,
a rule conclusion and the premises of the rule. The conclusion
consists of the name of the environment of the rule, a judgment
symbol and the parameters of the rules, which are separated
by relation symbols. To enable better IDE tooling and a
more “programming”-like style, Xsemantics rules are written
in the opposite direction of standard deduction rules, i.e.,
the conclusion comes before the premises (similar to other
frameworks like [5], [6]).

The elements that make a rule belong to a specific judgment
are the judgment symbol and the relation symbols that separate
the parameters. Moreover, the types of the parameters of a
rule must be Java subtypes of the corresponding types of
the judgment. Two rules belonging to the same judgment
must differ for at least one input parameter’s type. This is a
sketched example of a rule, for a Java-like method invocation
expression, of the judgment type shown in Figure 1:

rule MyRule
G |- MethodSelection exp : Type type

from {
// premises
type = ... // assignment to output parameter

}

The rule environment (in formal systems it is usually
denoted by Γ and, in the example it is named G) is useful
for passing additional arguments to rules (e.g., contextual
information, bindings for specific keywords, like this in a Java-
like language). An empty environment can be passed using the
keyword empty. The environment can be accessed with the
predefined function env.

Xsemantics uses Xbase [7] to provide a rich Java-like
syntax for defining rules. Xbase is a reusable expression
language that integrates tightly with Java, its type system

and Eclipse Java Development Tools (JDT). The syntax of
Xbase is similar to Java with less “syntactic noise” and
some advanced linguistic constructs. Xbase provides extension
methods, a syntactic sugar mechanism: instead of passing the
first argument inside the parentheses of a method invocation,
the method can be called with the first argument as its receiver.
Xbase also provides lambda expressions, which have the shape
[param1, param2, ... | body]. Xbase’s lambda
expressions together with extension methods allow to easily
write statements and expressions which are not only more
readable than in Java, but they are also very close to formal
specifications.

The premises of a rule, which are specified in a from
block, can be any Xbase expression, or a rule invocation.
The premises of an Xsemantics rule are considered to be in
logical and relation and are verified in the same order they
are specified in the block. If one needs premises in logical
or relation, the operator or must be used to separate blocks
of premises. If a rule does not require any premise, we can
use a special kind of rule, called axiom, which only has the
conclusion. In the premises, one can assign values to the output
parameters. When another rule is invoked, upon return, the
output arguments will have the values assigned in the invoked
rule. If one of the premises fails, then the whole rule will
fail, and in turn the stack of rule invocations will fail. In
particular, if the premise is a boolean expression, it will fail
if the expression evaluates to false. If the premise is a rule
invocation, it will fail if the invoked rule fails. An explicit
failure can be triggered using the keyword fail. At runtime,
upon rule invocation, the generated Java system will select the
most appropriate rule according to the runtime types of the
passed arguments. Note that, besides this strategy for selecting
a specific rules, Xsemantics itself does not implement, neither
it defines, any other strategy.

Besides judgments and rules, one can write auxiliary
functions. In type systems, such functions are typically used as
a support for writing rules in a more compact form, delegating
some tasks to such functions. Predicates can be seen as a
special form of auxiliary functions. In an Xsemantics system,
we can specify some special rules, checkrule, which do not
belong to any judgment. They are used by Xsemantics to
generate a Java validator for the Xtext language. A checkrule
has a name, a single parameter (which is the AST object to
be validated) and the premises (but no rule environment). The
syntax of the premises of a checkrule is the same as in the
standard rules. In an Xsemantics system, fields can be defined,
which will be available to all the rules, checkrules and auxiliary
functions, just like Java fields in a class are available to all
methods of the class. This makes it easier to reuse external
Java utility classes from an Xsemantics system. This is useful
when some mechanisms are easier to implement in Java than
in Xsemantics. Custom error information can be specified on
judgments, rules and auxiliary functions. This can be used for
providing useful error information. Moreover, when using the
explicit failure keyword fail, a custom error information can
be specified as well. This use of fail is useful together with or
blocks to provide more information about the error. Moreover,
in or blocks, the implicit variable previousFailure is
available. This allows us to build informative error messages
as shown in Section III-B.

In a language implemented with Xtext, types are used in

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

many places by the framework, e.g., in the scope provider,
in the validator and in the content assist. For the above
reasons, the results of type computations should be cached to
improve the performance of the compiler and, most of all, the
responsiveness of the Eclipse editor. However, caching usually
introduces a few levels of complexity in implementations, and,
in the context of an IDE that performs background parsing and
checking, we also need to keep track of changes that should
invalidate the cached values. Xsemantics provides automatic
caching mechanisms that can be enabled in a system specifi-
cation. The cached values will be automatically discarded as
soon as the contents of the program changes.

A. Related Work
Xsemantics can be considered the successor of Xtypes [8].

With this respect, Xsemantics provides a much richer syntax
for rules that can access any existing Java library. In Xseman-
tics, a system can extend an existing one (adding and overrid-
ing rules). However, these extensibility and compositionality
features are not as powerful as the ones of other frameworks
such as, e.g., [9], [10], [11].

There are other tools for implementing DSLs and IDE
tooling (see [12], [13] for a wider comparison). Spoofax [10],
another language workbench which targets Eclipse, relies on
Stratego [14] for rule-based specifications. Xtext Type System
(XTS) [15] is a DSL for specifying type systems for DSLs built
with Xtext. The main difference with respect to Xsemantics is
that XTS aims at expression based languages, not at general
purpose languages. EriLex [16] supports specifying syntax,
type rules, and dynamic semantics but no IDE tooling.

An Xsemantics specification can access any Java type,
not only the ones representing the AST. Thus, Xsemantics
might also be used to validate any model, independently from
Xtext itself, and possibly be used also with other language
frameworks like EMFText [17]. Other approaches, such as,
e.g., [11], [16], [18], [19], [20], [21], [22], instead require the
programmer to use the framework also for defining the syntax
of the language.

The importance of targeting IDE tooling was recognized
also in older frameworks, such as Synthesizer [23] and Cen-
taur [18] (the latter was using several formalisms [24], [25],
[26]). Finally, we just mention other tools for the implementa-
tion of DSLs that are different from Xtext and Xsemantics for
the main goal and programming context, such as, [20], [21],
[22], [27], [28], [29], [30], [31].

III. CASE STUDY

In this section we will describe our real-world case study:
the implementation of the type system for a JavaScript dialect
with a full-featured static type system implemented with Xse-
mantics. We will also describe some performance benchmarks
related to the type system and draw some evaluations.

A. N4JS—Typed JavaScript
We have used Xsemantics to implement the type system

of a real-world language called N4JS. N4JS is a super set
of JavaScript also known as ECMAScript with modules and
classes as proposed in [32]. Most importantly N4JS adds a
full-featured static type system on top of JavaScript, similar to
TypeScript [33] or Dart [34]. N4JS is still under development,
but it is already being used internally at NumberFour AG.

function f (A p) {
var pNotNull = p || {name: "default", age: 42};
...

}

Figure 2. Typical usage of union types in N4JS

class A {
f (union{B,C} p) {

if (p instanceof B) { f B(p) }
else { f C(p) }

}
}

Figure 3. Union types used for emulated method overloading in N4JS

Moreover, it will be made available as an open source project
in the near future.

Roughly speaking, N4JS’ type system could be described
as a combination of the type systems provided by Java,
TypeScript and Dart. Besides primitive types, already present
in ECMAScript, it provides declared types such as classes
and interfaces, also supporting default methods (i.e., mixins),
and combined types such as union types [35]. N4JS supports
generics similar to Java or TypeScript, that is, it supports
generic types and generic methods (which are supported by
TypeScript but not by Dart) including wildcards, requiring
the notion of existential types (see [36]). The syntax of type
expressions is similar to Java’s type expressions as far as
possible.

Union types are an important feature in typed
ECMAScript-related languages. For example, logical operators
do not return a single boolean value in ECMAScript. This
is often used in JavaScript programs in order to avoid null
checks as demonstrated in Figure 2. The type of pNotNull
is to be inferred as the union type of A and the object literal
with a property “name” of type string and a property
“age” of type number. Union types can also be used as
a technique to emulate method overloading, which is not
directly supported by ECMAScript, as shown in Figure 3.

Functions are first-class citizens in the ECMAScript lan-
guage, which is reflected by the notion of function types
in N4JS. In combination with generic methods, function ex-
pressions and type inference, this becomes a convenient and
powerful feature, as shown in Figure 4. Note that the method
call requires a lot of type inference capabilities: firstly, the type
variable T has to be substituted correctly with A; secondly, the
signature of the function expression has to be inferred from the
formal parameter’s type, taking the type variable substitution
into account.

In Figure 5, we show the N4JS Eclipse editor in action.
Note that the type system correctly inferred the type of the
invoked method and instantiated the type parameter according

function <T> exists(Array<T> list,
{function(T p):boolean} predicate) : boolean { ... }

function existsJohn (Array<A> list): boolean {
return exists (list ,

function(p) { return p.name == "John" }
) ;

}

Figure 4. Generic method call with function expression and type inference

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Figure 5. The N4JS editor and its type inference in action.

rule subtypeRefUnionOther
G|- UnionTypeExpression U <: TypeRef S

from {
U.typeRefs.forall[T | G |- T <: S]

}

rule subtypeRefOtherUnion
G|- TypeRef S <: UnionTypeExpression U

from {
U.typeRefs.exists[T | G |- S <: T]

}

Figure 6. N4JS union types implemented with Xsemantics.

to the argument passed to the generic method create.

B. Type System
The Xsemantics based type system is not only used for

validation purposes, but also for implementing the scoping (see
Section II), e.g., in order to find the correct method in case
of overridden methods. The whole type system of N4JS is
modeled by means of Xsemantics judgments, implemented by
approximately 30 axioms and 80 rules. Since type inference
rules can be implemented almost 1:1 with Xsemantics, many
rules are simple adaptations of rules described in the afore-
mentioned papers. For example, the subtype relation for union
types is implemented with the rules shown in Figure 6. Note
that we use many Xbase features, e.g., lambda expressions and
extension methods (described in Section II).

In the implementation of the N4JS type system in Xse-
mantics we made a heavy use of the rule environment. We are
using it not only to pass contextual information to the rules,
but also to store basic types that have to be globally available
to all the rules of the type system (e.g., boolean, integer, etc.).
This way, we can safely make the assumption that such type
instances are singletons in our type system, and can be checked
using the standard Java object equality. To make the type
system more readable, we implemented some static methods
in a separate Java class RuleEnvironmentExtensions,
and we imported such methods as extension methods in the
Xsemantics system:

import static extension RuleEnvironmentExtensions.*

These methods are used to easily access global type instances
from the rule environment, as it is shown, for example, in the
rule of Figure 7.

rule typeUnaryExpression
G |- UnaryExpression e: TypeRef T

from {
switch (e.op) {

case UnaryOperator.DELETE: T= G.booleanTypeRef()
case UnaryOperator.VOID: T= G.undefinedTypeRef()
case UnaryOperator.TYPEOF: T= G.stringTypeRef()
case UnaryOperator.NOT: T= G.booleanTypeRef()
default: // INC, DEC, POS, NEG, INV

T = G.numberTypeRef()
}

}

Figure 7. Typing of unary expression.

rule typeConditionalExpression
G |- ConditionalExpression expr : TypeRef T

from {
G |- expr.trueExpression : var TypeRef left
G |- expr.falseExpression : var TypeRef right
T = G.createUnionType(left, right)

}

Figure 8. Typing of conditional expression.

Other examples are shown in Figure 8 and 9. In particular,
these examples also show how Xsemantics rules are close to
the formal specifications. We believe they are also easy to read
and thus to maintain.

Since the type system of N4JS is quite involved, creating
useful and informative error messages is crucial to make the
language usable, especially in the IDE. We have 3 main levels
of error messages in the implementation: 1) default error
messages defined on judgment declaration, 2) custom error
messages using fail, 3) customized error messages due to failed
nested judgments using previousFailure (described in
Section II). Custom error messages are important especially
when checking subtyping relations. For example, consider
checking something like A<string> <: A<number>. The
declared types are identical (i.e., A), so the type arguments
have to be checked. If we would not catch and change
the error message produced by the nested subtype checks
string <: number and number <: string, then the
error message would be very confusing for the user, because
it only refers to the type arguments. In cases where the type
arguments are explicitly given, this might be rather obvious,
but that is not the case when the type arguments are only
defined through type variable bindings or can change due to
considering the upper/lower bound. Some examples of error
messages due to subtyping are shown in Figure 10.

C. Performance
N4JS is used to develop large scale ECMAScript ap-

plications. For this purpose, N4JS comes with a compiler,
performing all validations and eventually transpiling the code
to plain ECMAScript. We have implemented a test suite in

rule typeArrayLiteral
G |- ArrayLiteral al : TypeRef T

from {
val elementTypes = al.elements.map[

elem |
G |- elem : var TypeRef elementType;
elementType;

]

T = G.arrayType.createTypeRef(G.createUnionType(elementTypes))
}

Figure 9. Typing of array literal expression.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Figure 10. The N4JS IDE and error reporting.

// Scenario 1: function expression
function f ({function (C): A} func) { ... };
f (function (C p): A { return p.getA() || new A(); }) // typed
f (function (p) { return p.getA() || new A(); }) // inferred

// Scenario 2: generic method call
function <T> g (T p): T { ... }
var s1 = <string>g(""); // typed
var s2 = g(""); // inferred

// Scenario 3: variable declarations and references
var number y1 = 1; // typed
var number y2 = y1; ...
var x1 = 1; // inferred
var x2 = x1; var x3 = x2; ...

Figure 11. Scenario snippets used in performance tests

order to measure the performance of the type system. Since
we want to be able to measure the effect on performance
of specific constructs, we use synthetic tests with configured
scenarios. In spite of being artifical, these scenarios mimic
typical situations in Javascript programming. There are several
constructs and features which are performance critical, as they
require a lot of type inference (which means a lot of rules are
to be called). We want to discuss three scenarios in detail,
Figure 11 summarizes the important code snippets used in
these scenarios.

Function Expression: Although it is possible to specify the
types of the formal parameters and the return type of functions,
this is very inconvenient for function expressions. The function
definition f (Figure 11) is called in the lines below the
definition. Function f takes a function as argument, which
itself requires a parameter of type C and returns an A element.
Both calls (below the definition) use function expressions. The
first call uses a fully typed function expression, while the
second one relies on type inference. Generic Method Calls:
As in Java, it is possible to explicitly specify type arguments
in a call of a generic function. Similar to type expressions,
it is more convenient to let the type system infer the type
arguments, which actually is a typical constraint resolution
problem. The generic function g (Figure 11) is called one time
with explicitly specified type argument, and one time without
type arguments. Variable Declarations: The type of a variable
can either be explicitly declared, or it is inferred from the
type of the expression used in an assignment. This scenario

TABLE I. PERFORMANCE MEASUREMENTS (RUNTIME IN MS)

Scenario without caching with caching
size typed inferred typed inferred

Function Expressions
250 875 865 772 804
500 1,860 1,797 1,608 1,676

1000 4,046 3,993 3,106 3,222
2000 9,252 9,544 8,143 8,204

Generic Method Calls
250 219 273 223 280
500 566 644 548 654

1000 1,570 1,751 1,935 1,703
2000 6,143 6,436 6,146 6,427

Variable Declarations
50 19 580 18 39

100 27 3,848 26 102
200 44 31,143 36 252

demonstrates why caching is so important: without caching,
the type of x1 would be inferred three times. Of course, this
is not the case if the type of the variable is declared explicitly.

Table I shows some performance measurements, using the
described scenarios to set up larger tests. That is, test files are
generated with 250 or more usages of function expressions,
or with up to 200 variables initialized following the pattern
described above. In all cases, we run the tests with and without
caching enabled. Also, for all scenarios we used two variants:
with and without declared types. We measure the time required
to execute the JUnit tests.

There are several conclusions, which could be drawn from
the measurement results. First of all, caching is only worth in
some cases, but these cases can make all the difference. The
first two scenarios do not gain much from caching, actually
the overhead for managing the cache even slightly decreases
performance in case of generic methods calls. In many cases,
types are to be computed only once. In our example, the types
of the type arguments in the method call are only used for
that particular call. Thus, caching the arguments there does not
make any sense. Things are different for variable declarations.
As described above, caching the type of a variable, which
is used many times, makes a lot of sense. Increasing the
performance by the factor of more than 100 is not only about
speeding up the system a little bit—it is about making it work
at all for larger programs. Even if all types are declared, type
inference is still required in order to ensure that the inferred
type is compatible with the declared type. This is why in
some cases the fully typed scenario is even slower than the
scenario which uses only inferred types. While in some cases
(scenario 1 and 3) the performance increases linearly with
the size, this is not true for scenario 2, the generic method
call. This demonstrates a general problem with interpreting
absolute performance measurements: it is very hard to pinpoint
the exact location in case of performance problems, as many
parts, such as the parser, the scoping system and the type
system are involved. Therefore, we concentrate on relative
performance between slightly modified versions of the type
system implementation (while leaving all other subsystems
unchanged).

Summarizing, we learned that different scenarios must be
taken into account when working on performance optimization,

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

in order to make the right decision about whether using caching
or not. Surely, when type information is reused in other parts of
the program over and over again, like in the variable scenario,
caching optimization is crucial. Combining the type system
with control flow analysis, leading to effect systems, may make
caching dispensable in many cases. Further investigation in this
direction is ongoing work.

IV. CONCLUSIONS

In this paper, we presented the implementation in Xseman-
tics of the type system of N4JS, a statically typed JavaScript,
with powerful type inference mechanisms, focusing both on
the performance of the type system and on its integration in
the Eclipse IDE. The N4JS case study proved that Xsemantics
is mature and powerful enough to implement a complex type
system of a real-world language.

Thanks to Xtext, Xsemantics offers a rich Eclipse tooling,
including the debugger for Xsemantics rule definitions. These
features are extremely important for the effective usability of
Xsemantics, especially in complex type systems like N4JS’
one. With respect to manual implementations of type systems
in Java, Xsemantics specifications are more compact and closer
to formal systems. We also refer to [37] for a wider discussion
about the importance of having a DSL for type systems in
language frameworks. In particular, Xsemantics integration
with Java allows the developers to incrementally migrate
existing type systems implemented in Java to Xsemantics [38].

ACKNOWLEDGMENT

The first author was partially supported by itemis Schweiz,
MIUR (proj. CINA), Ateneo/CSP (proj. SALT), and ICT
COST Action IC1201 BETTY. We also want to thank Se-
bastian Zarnekow, Jörg Reichert and the colleagues at Num-
berFour, in particular Jakub Siberski and Torsten Krämer, for
feedback and for implementing N4JS with us.

REFERENCES
[1] L. Bettini, Implementing Domain-Specific Languages with Xtext and

Xtend. Packt Publishing, 2013.
[2] ——, “Implementing Java-like languages in Xtext with Xsemantics,” in

OOPS (SAC). ACM, 2013, pp. 1559–1564.
[3] ——, “Xsemantics,” http://xsemantics.sf.net, 2016, ac-

cessed: 2016-01-07.
[4] ——, “Implementing Type Systems for the IDE with Xsemantics,”

Journal of Logical and Algebraic Methods in Programming, 2016, to
Appear.

[5] E. Visser et al, “A Language Designer’s Workbench: A One-Stop-Shop
for Implementation and Verification of Language Designs,” in Onward!
ACM, 2014, pp. 95–111.

[6] V. A. Vergu, P. Neron, and E. Visser, “DynSem: A DSL for Dynamic
Semantics Specification,” in RTA, ser. LIPIcs, vol. 36. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 365–378.

[7] S. Efftinge et al, “Xbase: Implementing Domain-Specific Languages for
Java,” in GPCE. ACM, 2012, pp. 112–121.

[8] L. Bettini, “A DSL for Writing Type Systems for Xtext Languages,” in
PPPJ. ACM, 2011, pp. 31–40.

[9] T. Ekman and G. Hedin, “The JastAdd system – modular extensible
compiler construction,” Science of Computer Programming, vol. 69,
no. 1-3, 2007, pp. 14 – 26.

[10] L. C. L. Kats and E. Visser, “The Spoofax language workbench. Rules
for declarative specification of languages and IDEs,” in OOPSLA.
ACM, 2010, pp. 444–463.

[11] E. Vacchi and W. Cazzola, “Neverlang: A Framework for Feature-
Oriented Language Development,” Computer Languages, Systems &
Structures, vol. 43, no. 3, 2015, pp. 1–40.

[12] M. Voelter et al, DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages, 2013.

[13] M. Pfeiffer and J. Pichler, “A comparison of tool support for textual
domain-specific languages,” in Proc. DSM, 2008, pp. 1–7.

[14] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/
XT 0.17. A language and toolset for program transformation,” Science
of Computer Programming, vol. 72, no. 1–2, 2008, pp. 52–70.

[15] M. Voelter, “Xtext/TS - A Typesystem Framework for Xtext,” 2011.
[16] H. Xu, “EriLex: An Embedded Domain Specific Language Generator,”

in TOOLS, ser. LNCS, vol. 6141. Springer, 2010, pp. 192–212.
[17] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende,

“Derivation and Refinement of Textual Syntax for Models,” in ECMDA-
FA, ser. LNCS, vol. 5562. Springer, 2009, pp. 114–129.

[18] P. Borras et al, “CENTAUR: the system,” in Software Engineering
Symposium on Practical Software Development Environments, ser.
SIGPLAN. ACM, 1988, vol. 24, no. 2, pp. 14–24.

[19] M. Fowler, “A Language Workbench in Action - MPS,”
http://martinfowler.com/articles/mpsAgree.html,
2008, accessed: 2016-01-07.

[20] M. G. J. V. D. Brand, J. Heering, P. Klint, and P. A. Olivier, “Compiling
language definitions: the ASF+SDF compiler,” ACM TOPLAS, vol. 24,
no. 4, 2002, pp. 334–368.

[21] A. Dijkstra and S. D. Swierstra, “Ruler: Programming Type Rules,” in
FLOPS, ser. LNCS, vol. 3945. Springer, 2006, pp. 30–46.

[22] M. Felleisen, R. B. Findler, and M. Flatt, Semantics Engineering with
PLT Redex. The MIT Press, 2009.

[23] T. Reps and T. Teitelbaum, “The Synthesizer Generator,” in Software
Engineering Symposium on Practical Software Development Environ-
ments. ACM, 1984, pp. 42–48.

[24] G. Kahn, B. Lang, B. Melese, and E. Morcos, “Metal: A formalism to
specify formalisms,” Science of Computer Programming, vol. 3, no. 2,
1983, pp. 151–188.

[25] E. Morcos-Chounet and A. Conchon, “PPML: A general formalism to
specify prettyprinting,” in IFIP Congress, 1986, pp. 583–590.

[26] T. Despeyroux, “Typol: a formalism to implement natural semantics,”
INRIA, Tech. Rep. 94, Mar. 1988.

[27] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implement-
ing Domain-Specific Languages,” in ICSR. IEEE, 1998, pp. 143–153.

[28] M. Bravenboer, R. de Groot, and E. Visser, “MetaBorg in Action:
Examples of Domain-Specific Language Embedding and Assimilation
Using Stratego/XT,” in GTTSE, ser. LNCS, vol. 4143. Springer, 2006,
pp. 297–311.

[29] H. Krahn, B. Rumpe, and S. Völkel, “Monticore: a framework for com-
positional development of domain specific languages,” STTT, vol. 12,
no. 5, 2010, pp. 353–372.

[30] T. Clark, P. Sammut, and J. Willans, Superlanguages, Developing
Languages and Applications with XMF, 1st ed. Ceteva, 2008.

[31] L. Renggli, M. Denker, and O. Nierstrasz, “Language Boxes: Bending
the Host Language with Modular Language Changes,” in SLE, ser.
LNCS, vol. 5969. Springer, 2009, pp. 274–293.

[32] “Draft ECMAScript Language Specification,” ISO/IEC, Working Draft
ECMA-262, 6th Edition, Apr. 2014.

[33] A. Hejlsberg and S. Lucco, TypeScript Language Specification, 1st ed.,
Microsoft, Apr. 2014.

[34] Dart Team, Dart Programming Language Specification, 1st ed., Mar.
2014.

[35] A. Igarashi and H. Nagira, “Union types for object-oriented program-
ming,” Journal of Object Technology, vol. 6, no. 2, 2007, pp. 47–68.

[36] N. Cameron, E. Ernst, and S. Drossopoulou, “Towards an Existential
Types Model for Java Wildcards,” in Formal Techniques for Java-like
Programs (FTfJP), July 2007, pp. 1–17.

[37] L. Bettini, D. Stoll, M. Völter, and S. Colameo, “Approaches and Tools
for Implementing Type Systems in Xtext,” in SLE, ser. LNCS, vol. 7745.
Springer, 2012, pp. 392–412.

[38] A. Heiduk and S. Skatulla, “From Spaghetti to Xsemantics - Practi-
cal experiences migrating typesystems for 12 languages,” XtextCon,
http://xtextcon.org, 2015.

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

