
A Perceptron-Based Task Predictor

for Multi-Core Processor Architectures

Jongbok Lee

Dept. of Information and Communications Engineering
Hansung University

Seoul, Republic of Korea
Email: jblee@hansung.ac.kr

Abstract—In order to increase the performance of multi-core
system processors, the task predictor which speculativelyfetches
and allocates tasks to each core should be highly accurate. In
this paper, a perceptron-based task predictor is proposed for the
multi-core processor architectures. Using SPEC 2000 benchmarks
as input, the trace-driven simulation has been performed for
the dual-core to octa-core processors employing perceptron-based
task predictor extensively. Its performance is compared with the
architecture which utilizes the conventional two-level adaptive
task predictor.

Keywords–multi-core processor, perceptron

I. I NTRODUCTION

Currently, multi-core processors are widely used for the
high performance of the computer system, such as smart
phones, tablet PCs, notebook computers, and desk top comput-
ers, etc [1]–[6]. By utilizing a task predictor, a program ispar-
titioned into speculative multiple tasks which are assigned to
the processing core units. Hence, the task predictor shouldbe
very accurate in order to effectively take advantage of a multi-
core processor architecture. Recently, neural networks such
as perceptrons are widely used in the digital systems, which
can take advantage of learning. In this paper, a perceptron-
based task predictor for multi-core processor is proposed.
The SPEC2000 integer benchmark programs are used for
estimating the performance of multi-core processors using
perceptrons. The result is compared with the performance of
the multi-core processor with the conventional scheme.

This paper is organized as follows. In the Section 2,
the perceptron-based task predictor will be discussed. The
simulation environment will be described in the Section 3. In
the Section 4, the simulation results will be analyzed. Finally,
the Section 5 concludes our paper.

II. RELATED STUDIES

Perceptron is the neural network capable of learning by
producing outputs combined with the inputs and the associated
weight values. In the past studies, it has been adopted for
predicting branches in the computer systems [7]–[9]. Figure 1
describes the graphic model of a perceptron. A perceptron is
represented by weight vectors, which are composed of positive
or negative integers. The output is the dot product of the weight
vectorw0..N and the input vectorx0..N. The first elementx0

is always set to 1 to serve as a bias input.

Figure 1. The perceptron.

y = w0 +

n∑

i=1

xiwi (1)

Therefore, before adapting to the previous branch results,the
biased weightw0 always enables the perceptron to be biased
in the initial stage. The output of a perceptron is represented
as (1). The input to a perceptron is bipolar, which means
that the branch is not taken ifxi is -1, and taken ifxi is
1. When the output is negative, the branch is predicted as not
taken; When the output is positive, it is predicted as taken.
When a branch is met, the branch address is used to generate
an index between 0 and N-1 to access the perceptron table.
After obtaining the weight vectorP0..N by fetching theith
perceptron, the dot product of the weight vector and the global
history register is generated to output y. The direction of the
next branch is predicted upon the sign of the output. When the
actual direction of the branch is available, the result is used to
update the weight value of the vector P. Then, the vector P is
recorded to theith entry of the perceptron table.

After the perceptron output y has been computed, the
following algorithm is used to train the perceptron. Let t be-1
if the branch was not taken, or 1 if it was taken, and let be the
threshold, a parameter to the training algorithm used to decide
when enough training has been done. Since t andxi are always
either -1 or 1, this algorithm increments theith weight when
the branch outcome agrees withxi, and decrements when it
disagrees.

III. T HE PERCEPTRON-BASED TASK PREDICTOR

The task prediction of multi-core processors using percep-
trons can be implemented in the similar mechanism as the
branches are predicted. Figure 3 illustrates the mechanism

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Figure 2. The perceptron algorithm

of the perceptron-based predictor. The predictor records the
finite length of task history results to the task history register
and accesses the weight vector table to make a prediction. A
temporary task history register is utilized, and at the beginning
of each multiple task prediction, the contents of the task history
register is transferred to the temporary task history register.
In order to predict multiple tasks, the task’s starting address

Figure 3. The perceptron-based task predictor

is hashed by the k-bits of history register which is used to
index the weight vector table and to predict theith task. The
i + 1th task is predicted on the assumption that the first task
prediction is correct. For this purpose, the rightmost 1-bit of
the temporary task history register is updated and multiplied to
an indexed weight vector to make thei+1th task prediction. In
this way, two tasks can be predicted per cycle. Later, when the
task outcomes are known, the task history register is updated
according to the results. Similarly, to predict thei + 2th task,
the rightmost 2 bits of the temporary task history register is
updated based on the first and the second task predictions.

IV. T HE SIMULATION ENVIRONMENT

A. The multi-core processor architecture
Figure 4 shows the multi-core processor with N cores. Each

core is an out-of-order superscalar processor which can execute

instructions in a task [10]. In addition, it has a L1 instruction

Figure 4. The multicore processor

cache and a L1 data cache. For the cache coherency of the L1
data cache, MESI protocol is utilized. If the data in the L1
data cache associated with a core is over-written by another
core, it is invalidated. The L2 cache is shared among the cores,
which is connected with the main memory.

The superscalar processor core is allocated with tasks
which consist of a number of instructions. The fetched instruc-
tions in the task are decoded, renamed, executed, and written
back. When all the instructions in the task are retired and
becomes empty, new instructions of task are fetched. If the
task is mispredicted, the fetch is aborted, and all the remained
instructions in the task are squashed. Since the instructions
are renamed, the instructions can be issued and executed out-
of-order as long as there is no true-dependency. Although the
instructions can be retired out-of-order, the instructions are
inserted into the reorder buffer and committed in-order as to
preserve the original program order.

The detailed architecture configurations and cache parame-
ters for each core are listed in Table I. The number of simulated
cores are 1, 2, 4, and 8. Each core is assigned with the
maximum of two tasks respectively. Since the small task size
cannot take the benefit of the instruction level parallelism, the
task sizes are set to 4, 8, and 16. The functional unit of each

TABLE I. ARCHITECTURE CONFIGURATION FOR EACH CORE.

Item Value

number of cores 1,2,4,8
number of tasks per core 1,2

task length 4,8,16
fetch,issue,retire rate 2,4,8

functional integer ALU 2,4,8
unit load/store 1,2,4

L1-instruction 64 KB, 2-way set assoc.,
cache 16 B block,

10 cycles miss penalty
L1-data 64 KB, 2-way set assoc.,
cache 32 B block

10 cycles miss penalty
task address cache 2K entry

task predictor two-level adaptive 14-bit global history
perceptron 8-bit global history,

4096 Pattern History Table

core consists of a number of ALUs, load/store units according
to each configuration. For the memory disambiguation, load-
store and store-store pairs are inhibited from the speculative

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

execution when the effective addresses are matched, within
or among the cores. The L1 instruction cache and L1 data
cache for each core is 64 KB, and it is designed as 2-
way set associative. This is because the data cache hit ratio
can be degraded by using MESI protocol among multiple
cores. For the reference, tasks are predicted using the two-
level adaptive prediction scheme. The two-level adaptive task
predictor is similar to the two-level adaptive branch prediction
scheme where the branch address simply corresponds to the
task starting address [11] [12]. In correspondence with the
perceptron-based task predictor, the two-level adaptive task
predictor employs a 14-bits of global history register and
16,384 items for the pattern history table. For the perceptron-
based task predictor, the length of task history register is8-
bits, and the number of pattern history table is set to 4096.
The threshold value for the perceptron learning is shown as 2,
whereTN is the length of the task history register. For both
predictors, the task address cache has the size of 2048 entries.
Since we do not model the main memory, the hit ratio of L2
cache is assumed to be as 100 %.

θ = 2× TN + 14 (2)

B. The multi-core processor simulator
Figure 5 depicts how the developed simulator works

[13]. Initialize function initializes all the associated variables,
andGrouping, Create Window, andFetch One Instr function
fetches new instructions to fill core tasks every cycle. The

Analysis

Initialize

Grouping(N)

Create_Window(N)

Fetch_One_Instr(N)

Get_Node(N)

Rename(N)

Insert(N)

Grouping(1)

Create_Window(1)

Fetch_One_Instr(1)

Get_Node(1)

Rename(1)

Insert(1)

Issue(N)

Mem_Process(N)

Mark_Node(N)

Delete_Node(N)

Issue(1)

Mem_Process(1)

Mark_Node(1)

Delete_Node(1)

Figure 5. The flow chart of the multi-core processor simulator

instruction fetched byGet Node function is renamed atRe-
name function by receiving timestamps. After the instruction
is renamed, it is inserted into a core task byInsert function.
At the Issue function, the instruction in the core task can
be retired so long as the corresponding functional unit is
available and its time stamp is less than or equal to the current
cycle. For implementing the multi-core simulation,Grouping
function fills instructions of n-core tasks, andIssue function
deletes instructions according to their timestamps. This process
is repeated until all the fetched instructions in the core tasks
are deleted to become empty. Then, the core tasks are filled

again with instructions byGrouping function. Since the cycle
is incremented for each process, the core which spends the
longest cycles determines the global cycle. If the total number
of executed instruction is divided by the number of global
cycles spent, then Instruction per Cycle (IPC) can be obtained.
The eight SPEC 2000 integer benchmark programs that is used
for the input arebzip2, crafty, gap, gcc, gzip, mcf, parser, and
twolf as shown in Table II. The programs are compiled by

TABLE II. SPEC 2000 BENCHMARK PROGRAMS

benchmark description

bzip2 compression
crafty chess game
gap group theory interpreter
gcc C programming language compiler
gzip compression
mcf optimization of combination
parser word processor
twolf placement and global routing

SimpleScalar cross C compiler to obtain executables under
Linux 3.3.4 [14]. The execution files are again run with
SimpleScalar to obtain 100 million MIPS IV instruction traces,
which are used as input for the multi-core processors. The task-
level parallelism is mapped onto each core, and the trace-driven
simulation is performed to get performance [15].

V. THE SIMULATION RESULTS

Figure 6 presents the simulation results of running SPEC
2000 integer programs on the three different task lengths for
the single-core, dual-core, quad-core, and octa-core processors.
The performance results obtained by the two-level adaptive
task predictor and the perceptron-based task predictor are
compared in parallel. Figure 6a and 6b are the result of
the multi-core processors with the maximum task length of
four. Across the number of different cores,bzip2 and mcf
scores the highest performance owing to the relatively high
parallelism and the low cache miss rates. However,gcc results
in the lowest performance due to the severe losses from the
low instruction and data cache hit rates. For the dual-core
processors, the two-level adaptive task predictor brings the
geometrical mean of 2.60 IPC, whereas the perceptron-based
task predictor results in 2.63 IPC. For the octa-core processors,
the two-level adaptive task predictor and the perceptron-based
predictor results in 7.64 IPC and 7.73 IPC, respectively. With
the perceptron-based task predictor, the performance is 1.7
times enhanced as the number of cores doubles. Therefore,
when the performance of the octa-core processor is compared
with the single-core, it is 5.4 times higher. With the maximum
task length of four, the perceptron-based task predictor per-
forms 1.1 % higher than the two-level adaptive task predictor.

Figure 6c and 6d show the results with the maximum
task length of eight. Still,bzip2 and gcc show the best
and the poorest performance, respectively. For the quad-core
processor, the two-level adaptive task predictor brings 7.53
IPC, whereas the perceptron-based task predictor scores 7.75
IPC. The respective performance for the octa-core processor
are 12.3 IPC and 12.5 IPC. With the task length of eight, the
octa-core processor brings 5.3 times higher performance than
the single-core processor, which is slightly lower than thetask
length of four. However, the task length of eight performs 1.6
times better than the task length of four. Hence, the proposed

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

scheme scores higher performance than the two-level adaptive
scheme by 2.8 %.

Finally, Figure 6e and 6f present the comparison result
when the maximum task length is sixteen.Parser outperforms
bzip2 by the enlargement of the task length, whereasgcc still
maintains low performance. For the dual-core processors, the
two-level adaptive task predictor brings 6.5 IPC, whereas the
perceptron-based task predictor results in 6.9 IPC. For the
quad-cores, the respective values are 11.24 IPC and 11.67 IPC.
And for the octa-cores, they are increased to 17.8 IPC and 18.3
IPC, respectively. With the perceptron, the performance has
increased 1.8 times higher as the single-core goes to the dual-
core processor. However, it is slightly decreased to 1.6 times
when the quad-cores go to the octa-cores. The octa-core results
in the 4.9 times higher performance than the single-core with
the maximum task length of sixteen. Although the increase rate
has been slowed down, the maximum task length of sixteen
gives 1.5 times and 2.4 times higher performances than the
maximum task length of eight and four, respectively. When
the maximum task length is sixteen, the perceptron-based task
predictor prevails the two-level adaptive task predictor by 5.1
%.

VI. CONCLUSIONS

In this paper, a perceptron-based task predictor for multi-
core processors has been proposed. The single-core to octa-
core processors using perceptron with different task lengths
have been simulated. As the result shows, the performance of
multi-core processors with the perceptron-based task predictor
scores higher performance than the two-level adaptive task
predictor. When the task lengths are 4, 8, and 16, the respective
performance increase over the two-level adaptive scheme are
1.1 %, 2.8 %, and 5.1 %.

For the future research, we will apply the perceptron-based
task predictor to the asymmetric multi-core processor to further
improve the efficiency, as well as expanding our scope to the
multi-core embedded and multi-core digital signal processor
architectures.

ACKNOWLEDGMENT

The author would like to thank Hansung University for the
financial support of this research.

REFERENCES

[1] D. E. Culler and J. P. Singh, Parallel Computer Architecture. Morgan
Kauffmann Publishers Inc., Aug. 1998.

[2] T. Ungerer, B. Robic, and J. Silk, “Multithreaded Processors,” The
Computer Journal, vol. 45, no. 3, 2002.

[3] S. W. Keckler, K. Olukotun, and H. P. Hofsee, Multicore Processors
and Systems. Springer, 2009.

[4] M. Monchiero, “How to simulate 1000 cores,” ACM SIGARCH Com-
puter Architecture News archive, vol. 37, no. 2, May 2009, pp. 10–19.

[5] S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwood,and F. T.
Chong, “Multi-execution : Multicore caching for data-similar execu-
tions,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 164–173.

[6] D. Genbrugge and L. Eckhout, “Chip multiprocessor design space
exploration through statistical simulation,” IEEE Transactions on Com-
puters, vol. 58, no. 12, Dec. 2009, pp. 1668–1681.

[7] D. A. Jimenez and C. Lin, “Neural methods for dynamic branch
prediction,” ACM Transactions on Computer Systems, vol. 40, no. 2,
Mar 1999, pp. 24–36.

[8] ——, “Dynamic branch prediction with perceptrons,” in High Perfor-
mance Computer Architecture, Jun 2001, pp. 197–206.

[9] D. A. Jimenez, “Fast path-based neural branch prediction,” in Pro-
ceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, Dec 2003, pp. 243–252.

[10] T. N. Vijaykumar and G. S. Sohi, “Task selection for a multiscalar
processor,” in 31st International Symposium on Microarchitecture, Dec
1998, pp. 81–92.

[11] T.-Y. Yeh and Y. Patt, “Alternative Implementations ofTwo-Level
Adaptive Branch Prediction,” in Proceedings of the 19th International
Symposium on Computer Architecture, May. 1992, pp. 124–134.

[12] J. Gummaraju and M. Franklin, “Branch prediction in multi-threaded
processors,” in Parallel Architectures and Compilation Techniques, Oct
2000, pp. 179–188.

[13] J. Lee, “The study of statistical simulation for multicore processor
architectures,” in The Sixth International Conference on Computational
Logics, Algebras, Programming, Tools, and Benchmarking, Mar 2015,
pp. 27–30.

[14] T. Austin, E. Larson, and D. Ernest, “SimpleScalar : An Infrastructure
for Computer System Modeling,” Computer, vol. 35, no. 2, Feb. 2002,
pp. 59–67.

[15] A.Rico, A. Duran, F. Cabarcas, A. Ramirex, and M. Valero, “Trace-
driven simulation of multithreaded applications,” in ISPASS, Apr 2011,
pp. 87–96.

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 0

 2

 4

 6

 8

 10

 12

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(a) two-level adaptive, maximum task length of 4

 0

 2

 4

 6

 8

 10

 12

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(b) perceptron, maximum task length of 4

 0

 5

 10

 15

 20

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(c) two-level adaptive, maximum task length of 8

 0

 5

 10

 15

 20

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(d) perceptron, maximum task length of 8

 0

 5

 10

 15

 20

 25

 30

 35

 40

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(e) two-level adaptive, maximum task length of 16

 0

 5

 10

 15

 20

 25

 30

 35

 40

bzip2 crafty gap gcc gzip mcf parser twolf

IP
C

Benchmarks

1-core
2-cores
4-cores
8-cores

(f) perceptron, maximum task length of 16

Figure 6. Performance results of the two-level adaptive andthe perceptron-based task predictor

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-466-4

COMPUTATION TOOLS 2016 : The Seventh International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

