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Abstract—This paper explores an efficient algorithm for degn

and implementation of Proportional-Integral-Derivative (PID)

controller on the Field Programmable Gate Array (FFGA)

technology. To create a synthesizable control algithm, the

Very High Speed Integrated Circuits Hardware Develpment
Language (VHDL) was used as a programming tool. Thpaper
points to the possibilities of parallel computationwith the aim

of speeding up the control implementation. The pragcal

application of proposed control algorithm is illustated by a
test performed on a real laboratory Direct Current (DC) motor

system. The results confirm the legitimacy of usinghe FPGA
methodology for design of control algorithms, sincé& improves

speed, accuracy and compactness. In addition, it isost
effective and has a low power consumption, which ar
desirable attributes in embedded control applicatios.
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l. INTRODUCTION

Motivated by the practical success of conventionag

control methods applied in industrial process ainthere
has been an increasing amount of work on developwien
effective hardware realizations of these contrgoathms.
Despite the numerous control design methods that haen
proposed in the literature, it is estimated th@ Bdontrollers
are still employed in more than 92% of the indastri
processes today and many control systems using@&ibol
have proved its satisfactory performance [1].

have to compete for the same resources. This turadtty
also makes it possible for multiple control loopstin on a
single FPGA device at different rates. Executionetimay
be this way dramatically reduced, since parallehiéectures
allow FPGA-based controllers to reach the level
performance of their analog counterparts withoetrtimain
drawbacks as parameter drifts or lack of flexipifit]. These
features make FPGAs very interesting for rapidqigging.

The objective of this work is to design and impleta
digital PI controller algorithm on FPGA platformdamerify
its performance as well as assess the FPGA sitiyafol
control application.

The paper is organized as follows. Section Il presthe
overview to the FPGA architecture and functionatisywell
as VHDL language features and applications. Seclibn
introduces the technical background of the PID ritligm
followed by an approach for designing and impleratoi
of the control system extended with the anti-windup
FPGA technology. In Section IV, an application &iet
roposed design to a laboratory DC motor system is
resented and the experimental results on XilinA&Rhip
are discussed. Comparisons are made between
implementation on a real system and the simulatisuilts.
The conclusion and future work are provided in BecY.

of

the
.  BACKGROUND

A. FPGA Architecture
The Field Programmable Gate Array (FPGA) represents

Recently, it has been shown that FPGAs can pose &, integrated circuit containing a two-dimensioaaty of

alternative solution for the realization of digitabntrol

configurable logic blocks whose interconnection and

systems, previously dominated by the microprocessognctionality can be reprogrammed depending upoa th
systems [2]. The motivation behind using FPGAS toraquirement of the user [8]. A typical FPGA architee

implement a PID controller, rather than microcoliérs or
digital signal processors (DSPs), is that they jpl@wa good
balance between performance and cost. On the b,
although the microcontrollers may be cheaper, theynot
provide enough processing power to effectively qenf
complex calculations in real-time. Digital signabpessors
can implement complex algorithms quickly; howeubese
implementations are expensive. In addition, thetesys
designed on FPGA are flexible and can be reprogiecinam
unlimited number of times. Unlike processors, FP&x8uits
use dedicated hardware for processing commandsA§PG
logical structures can be arranged to execute imuby
parallel manner unlike the inherent sequential ettec in
microcontrollers, so different processing operatido not
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depicted in the Fig. 1 consists of three major eletst
Programmable logic blocks, which consist of
Configurable Logic Blocks (CLBs) arranged in an
array that provides the functional elements and
implements most of the logic in an FPGA. Each
logic block has two flip flop and can realize any 5
input combinational logic function.

Programmable interconnect resources provide
routing path to connect between individual CLBs
and between CLBs and input-output blocks.
Input-Output Blocks (IOBs) provide the interface
between the package pins and internal signal lines
and thus the interconnection of external signats an
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internal signals in an array of CLBs. It can bedesign can be implemented by specifying the functid

programmed and configured as input, output oreach

bidirectional port.

The CLBs, IOBs and their interconnectors are mathage

by a configuration program stored in a memory chip.
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logic block
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Figure 1. FPGA internal structure

A custom design can be implemented by specifyireg th
function of each logic cell and setting the conimecof each
programmable switch. The CLBs structures includd 2r
more logic cells, also called logic elements. Ttnacture of
a logic cell, as the basic grain of the FPGA, isspnted in
Fig. 2. It consists of a Look-up Table (LUT), whichn be
configured either as a ROM, RAM or a combinatorial
function.

Output carry
A
Combinational
—
Iout output
nputs
pus | LUT D > Flip-Flop
‘ Flip Flop| output
Carry path
I

l l
Input carry  Clock

Figure 2. Logic cell [7]

Also, a carry look-ahead data path is includedrdebto
build arithmetic operators and a D-Type Flip-Floithvall its
control inputs, allowing registering the output tbe logic
cell.

B. VHDL Programming Language

logic cell and setting the connection of each
programmable switch.

A circuit design process can be carried out as shiow
the Fig. 3. Once a FPGA is programmed, the internal
circuitry is connected in a way that creates a \ward
implementation of the application defined in thdtware.
The big advantage of FPGA-based algorithms desighe
possibility to employ the modular approach. Sirferée are a
lot of /O ports, it is theoretically possible tegign more
algorithms on one chip without influencing one deot

System Design

Choice of FPGA ——————— |

Design Capture

Netlist constraints ——»

Specification
changes

N

Layout and Interconnection

FPGA configuration —» l

Configured circuit

Figure 3. Design process of the circuit

The result is a user programmable piece of hardwihe
the reliability of dedicated hardware circuitry atied speed
of modern microprocessor. Finally, FPGAs are JoestT
Action Group (JTAG) compliant, thus the test datam de
serially loaded into the device and the test resoétn be
serially read out.

. IMPLEMENTATION OF CONTROLALGORITHM ON FPGA

A. Digital Pl Controller

In this paper, the PID algorithm is applied forsgd loop
control. Among the control structures used in thaustrial
segment, the classic parallel PID controller deiéh Fig. 4
is one of the most widely used due to its well le&hed
practical implementation and tuning. The controdiatput is
computed in continuous time as follows:

de(t)

5

u(t) = kp{e(t) +?1i [Lendt+T, 1)

FPGAs can be programmed using Very High Speed Wwhere the adjustable parameters are the proporiana

Integrated Circuits Hardware Development
(VHDL) [1] specifically developed to describe thehavior
and structure of a digital circuit and its attribsit It uses
significantly different principles than C languagéor

Language,. the reset timd; and the derivative tim&;, while u(t) is

the control output andt) is the error signal (setpoint
response level — measured response). The compensati
parameters allow an increase in the system perfuwena a

instance, the commands in the code are not executd@riety of ways.

sequentially, from the top to the bottom but inghiat way.
VHDL describes the connections of the logic gategether
to form adders, multipliers, registers and so oncustom
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Proportional control increases gain margin andilstab
a potentially unstable system. Integral control,tio& other

14



COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

hand, minimizes steady-state error and derivatiostrol — andk = k;T/Tiis the integral coefficient. The big advantage
increases system speed by increasing system bahdwid of this approach is that in software implementati¢s)
For a small time sampl€, (1) can be transformed to a avoids accumulation of all past errors.

difference equation by discretization using Eutgegration The PI incremental form (5) has to be decompostal in
method — rectangular integration. basic arithmetic operations:
P &(n) =w(n) - y(n) (6)

[ | : 7
Setpoinrt * . \ Jat —1 1 —%;1 Po = ko&(n) @
wd/dt— D J P, = ke(n-1) (8)

feedback S=Poth ©
Figure 4. PID controller structure The current control output is then calculated as
A difference equation can be implemented by digital u(n) =s, +u(n-1) (10)

systems, either in hardware or software, wherelérative
term is replaced by a first-order difference exgi@s and )
the integral part by a sum, so the equation isrgase B. Parallel Design
For the implementation of the proposed PI algorithm
n-1 onto FPGA, the parallel design [3] has been usdds T
u(n) = kpe(n)+kiZe(j)+kd(e(n)—e(n—1)) (2)  design is mainly composed of combinational logix,esich
j=0 operation has got its own arithmetic unit — adder o
multiplier. Such modified control algorithms are then
where n is a discrete time instamg, = k,T/T; is the feasible on FPGA circuits. The parallel design aedture of
integral coefficientky = k,Ty/T is the derivative coefficient the Plincremental algorithm is depicted in FigTBe design
and T is sampling time. Using this algorithm called therequires a total of 2 combinational logic multipéie3 adders
“position form”, all past errorg(0) - (n) have to be stored and 3 registers [6]. The clock signdk is used to control
to compute the sum. In this paper, we prefer therimental ~ sampling frequency. The negationyds generated using bit-
form” of the PI algorithm, where the recursive eipra Wwise complementing and subsequently adding 1. The
describing this algorithm is obtained when (2) floe time  differencew -y generates current erre(n).
instantn-1 is subtracted from the same equation for thetim  Registers are used to store the intermediate sesult
instant n. Thus, the expression fgn-1) is calculated in the obtained. Multipliers and adders are used for rpiidttion
following way: and addition of input signals according to arithmet
operations described in the previous section A. Bloek
-1 REG stores error valuegn) ande(n-1). Hence, at the rising
u(n-1) = n-1D+k Se(ij)+k,(e(n-1)-en-2 3 edge of control, signa#(n) of the last cycle is latched at
(n=1 = loen-1) ']Z::‘) () +ky(en=1) = el ) @ register REG, thus become@-1) of this cycle. Similarly,
u(n — 1) are recorded at REGs by latchirg) respectively

and the correction term as [10].

Au(n) =u(n) —u(n-1)

- 4)
= koe(n) + k(e(n-1) + ke(n-2))

Subsequently, for the Pl controller, the currenttod
input is in the form

u(n) =u(n-1) +Au(n) =u(n-1 + ke(n) + ke(n-1) (5

where clk
Figure 5. Parallel design of incremental Pl algorithm

The values ofe(n) and e(n-1) with their polarity
k =—k.+k indicating whether the calculated value is positive
1 P negative are fed to Pl equation (10) and the ctirentrol
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output is calculated. From Fig. 5, it can be sdwt the

register blocks (REG) depend on clock frequencyatTh

means that the functionality of these blocks shallwithin
the process, which responds to the rising edgekasignal.
At the same time, registers can be set to init@lies of 0
after the first start or by asserting the resenalig The
process code example can be developed as depicked. i6
below.

Regist_process : PROCESS (ceset)
BEGIN
IF reset="1'THEN
enl <=to_sfixed (0, enl);
unl <=to_sfixed (0, unl);
e <=to_sfixed (0, e);
ELSIF clkkEVENT AND clk ='1' THEN
enl<=g;
e <=to_sfixed (to_integer (unsigned (w)) —
to_integer (unsigned (y)), e);
unl <="0" & Add3 (16 downto -9);
END IF;
END PROCESS Regist_proct

Figure 6. The laboratory model of DC motor

Once the signalesetis in logical state 1, the variable§),

e(n-1) andu(n-1) are reset. When the sigmasetis in logical
state 0 and the rising edge of the sigdél occurs at the
same time, the program assigns to the variafiel) the
value of the variable(n), similarly to the variable(n-1) the

value of the variablai(n) and calculates the difference of

input signalsw -y.

C. Implementation of Anti-windup Control
In the motor speed control, the maximum contropatit

IV. CASESTUDY

A. Laboratory DC Motor System

In this section, the proposed algorithm is applted
control a real laboratory DC motor system (Fig. t@)
demonstrate its high performance and efficacy. 3ystem
consists of two co-operating real DC servomototsens the
first one is connected as a drive motor and therathe as a
generator. The manipulated variable is the inputage of
DC motor and the output controlled variable is &mgular
speed represented by the output voltage in rangeld@iV.
To obtain a model of the system, input-output refet of the
plant have been identified with the help of thetwafe
LABREG [5]. The interconnection of the laboratonode!
with the software LABREG is assured by the Advahtdata
acquisition card type PCI 1711.

Figure 7. The laboratory model of DC motor

The discrete transfer function we obtained with the

from a Pl controller is determined by the converterselected sampling rafg = 0.1s has been converted to the

protection, magnetic saturation and motor overhgati

following continuous-time model:

Hence, the saturation is applied even at the cdst o

introduction a non-linearity into
overshoot, long settling time or even unstable eddsop
system.

The goal of the implementation of anti-windup ire th
incremental form of the PI controller is to elimi@athe

wind-up in the error integrator and to provide acHy

aperiodic step response even in case with largaitinp

disturbance. The implementation of anti-windup eystis
easy using incremental Pl algorithm. The contrdiioac
value is being checked ang, is determined according to
the following equation [4]:

Uin if Umnax > Uin > Unin
Uout = 9 Umax if Uin 2 Umax (11)
u if u, <u

min in = “min

the system. This
phenomenon, called windup effect, can lead to gelar

0.0804%+ 1677
cls)=

- 2 (12)
04142° + 1053%+1
The control objective was to drive the angular spet
the motor to track the desired reference signal.

B. Design of Control Algorithm

The first control algorithm has been developed gisin
VHDL language in the Xilinx ISE Design Suite 14.4
software environment according to incremental Binf(Fig.
5). Firstly, a software implementation was devetbed
tested to verify the algorithm functionality. By asing of
appropriate sampling period and fixed point formaiscrete
Pl controller has been developed from continuometiPl
controller, whereas the inverse dynamic tuning wethas
been used to tune the paramet&gsand T, From the
parameter tuning experiment the following resulterav
obtained: proportional gaik, = 0.2025, integral coefficient

whereu,,(n) represents the control output before saturationi = 0.4752, derivative coefficieft = 0 and sample period

andug,(n) is the saturated control output variable.
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= 0.1s. The same discrete Pl parameters were dgplithe
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hardware implementation on FPGA to perform the mdnt
tests.

Because of the fact that most FPGAs are limitefihite
precision signal processing using fixed-point anigtic, the
bit word-length and radix setting of input and audtpignals
were determined carefully to ensure the fidelity tbe
algorithm. Since every addition or subtraction esuadding
an extra bit as well as every multiplication result have a
bit width equal to the sum of the number of bit$Ha inputs,
this was the most important part of the designindpte flow
diagram (Fig. 8) shows the implementation of thsigteed
algorithm using FPGA. The algorithm has 4 inputse t
motor system output, the reference signalith the same bit
width as signay, clock and reset.

MOTOR SYSTEM

Il
1

Reference signal
(user-defined)

i e(n)

Implementation of
arithmetic operations

¥

Calculation of control
output with current error

]

‘ Control output optimization

e

Figure 8. FPGA-based control implementation cycle

The step sequence of the algorithm can be detednzise
follows:

Step 1: Initialization of the system (set clockduency,
declaration of system variables);

Setting of bit width of the signals (ibm@nd
output signals according to the resolution of A/D
conversion results);

Calculation of the current error accaydin the
reference signal defined by userg(w —y);

Calculation of the control output with the
current error based on the combinatorial logic
operations according to relation (10) and parallel
architecture (Fig. 5);

Optimization of the obtained control amtfor
8-bit D/A converter;

The analog output signal obtained is fk tio
drive the speed of DC motor system.

Step 2:
Step 3:

Step 4:

Step 5:

Step 6:
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The second control algorithm was developed accgrdin
to section C and (11) and also applied to the tieed-speed
control of the laboratory motor system. This altfon is
unlike the first one augmented of the anti-windup
mechanism. The calculated control output is adjuste
according to (10) and after that optimized and lhedk to
motor system through 8-bit DAC.

C. Experimental Results

The experimental studies were carried out to etaltre
performance of the proposed control algorithm. The
algorithm was downloaded into SPARTAN-6 FPGA
development kit (Fig. 9) and the complete systers ngaet.

Figure 9. SPARTAN-6 development board

The comparison of the experimental results executed
using FPGA with the simulation results obtainednfro
MATLAB are illustrated in Fig. 10 below.

B e+t ————F————I———— e e
= T | T |
g | | | | | |
= | | | | | |
a1
4 | | | | | |
% | | | | | |
B | | | | | |
3,2 | setpoint 211~ ~{—setpoint
S — output (real) —output
0 — output (simulation) 0 ——output (anti-windup
10 20 30 10 20 30
time [s
h | | n |
4 o 1 q
| | |
3 - ed
> 1 1 1
) of -1t
——upper bound
b ——control (simulation P] —control
—control (real) — control (anti-winup
10 20 30 10 20 30
time [s] time [s]

Figure 10.Time responses of the real system and simulation

The comparison of the performance of the proposéd a
windup PI control algorithm with the PI control afghm
without the anti-windup mechanism is also depictéte

17



COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

results show the effectiveness and good performahctie
FPGA-based controller. The limited vector sizeheaf signals
due to the different interpretation of the fixedfgo
arithmetic has an effect in the calculation andefuee in the
shape of the obtained time responses.

The objective evaluation of quality has been penfmt
by meaning of various performance and quality gt the
time domain (settling time, maximal overshoot ambtr
mean square error (RMSE)) with results expressethlrie
1. The PID algorithm has been demonstrated to feetafe
for DC motor speed control.

TABLE I. QUANTIFICATION OF QUALITY CONTROL CRITERIA
Control Performance
Controlled output Settling time bR RMSE
Overshoot (%)
Real system 8,25 6,9449 0,8937
Simulatior 91 5,6301 0,899
Real system with anti-windup5,3 0,7815 0,9217

As seen in Table 1, anti-windup mechanism has

improved the control performance mostly in the wafy
overshoot and settling time.

D. Resource Usage

Xilinx tool device utilization summary and percegeeof
available resources reports, which have been usedhé
current design using FPGA are shown in Table 2vibelo

TABLE II. DEVICESUTILIZATION SUMMARY

Device Utilization Summary

Slice Logic Utilization Used | Available | Utilization
Number of Slice Registe 17C |18,22¢ |1%
Number used as Flip Flops 168§
Number used as Latches 2
Number of Slice LUTs 313 | 9,112 3%
Number used as logic 305) 9,112 3%
Number of occupied Slices 124 2,278 5%
Number of MUXCYs used 204 ) 4,556 4%
Number with an unused Flip Flop 186 344 54%
Number with an unused LUT 31 344 9%
Number of fully used LUT-FF pairs 127 344 36%

Number of slice register sites lost to

o 94 18,224 | 1%
control set restrictions

Number of bonded 10Bs 33 232 14%
Number of LOCed |IOBs 13 33 39%
Number of RAMB16BWERs 0 32 0%
Number of RAMB8BWERSs 0 64 0%
Number of BUFG/BUFGMUXs 5 16 31%
Number of DSP48A1s 3 32 9%
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Hardware resources usage was: 168 slice flip-flags,
slice registers and 313 slice LUT's. It can be dban just
5% of the FPGA was used.

V.  CONCLUSION AND FUTURE WORK

In this paper, a closed-loop Pl algorithm was psaub
designed and successfully implemented on FPGAgqptatf
The performance was verified and tested for contbl
laboratory DC motor system. The control algorithas bbeen
improved by using the anti-windup structure in cade
considering the input constraints. The overall aunt
algorithm has been programmed using VHDL languagk a
implemented on Xilinx Spartan-6 FPGA developmerit ki
The experimental results show a good set-poinkimgcand
demonstrate that FPGAs are well suited for impleatéemn
of complex motor control algorithms due to theigthispeed
execution characteristics. The future work will Ideéh the
design and implementation of more complex predictiv
control algorithm considering the constraints opuir) state
and output variables.
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