
Tests as Documentation:
a First Attempt at Quality Evaluation

Maura Cerioli and Giovanni Lagorio

DIBRIS - University of Genova
Genova, Italy

Email: {maura.cerioli,giovanni.lagorio}@unige.it

Abstract—We present a novel method, and its associated sup-
porting tool, for automatically singling out sloppy tests; that is,
tests that run successfully on (some) incorrect implementations,
that violate the property they are expected to verify. Our freely
available tool is written in C#, but the technique is language
agnostic and can be easily applied to other languages.

Keywords–Testing; Debugging.

I. INTRODUCTION

Test methods, for instance those written using a framework
of the xUnit family [1], simply called tests from now on, have
initially been introduced in software development process for
unit testing, that is, testing of small units of code during their
development, more than thirty years ago [2].

More recently, tests have been also used to capture infor-
mation about the code to be developed, playing in some sense
the role of running specifications. This is the case, for instance,
of the test-driven approach [3], where tests are developed
along with the code, and used to improve the developer
understanding of the required code, making it explicit. Though
tests in the test-driven approach are aimed more at knowledge
capture than code improvement, they are still white box, written
by the software developers taking advantage of private code
structures for the set up.

A more innovative use of tests is in refactoring and/or
migration of legacy systems [4], or in iterative development
processes. Indeed, in those cases, tests are defined and verified
against a version of the system, be it the system to be
refactored or the current iteration prototype, but are intended to
be run on the next versions, still to be developed at the moment
such tests are written. In this way, tests capture observable
behaviors of the system, approved by the stakeholders on the
current version, and guarantee the next version to preserve
such behaviors, complementing (or altogether replacing) the
corresponding documentation.

To put the system in the required state, before the call of
the method to be tested, this approach requires the tests not
to rely on the internal structure of the system, that is going to
change. Instead, each operation has to go through the interface
of the system [5][6][7], in a black box style. Moreover, the
design of the overall test suite cannot be driven by the current
implementation, as it is going to change, and all the adequacy
criteria based on code coverage are unreliable.

Analogous problems arise for tests distributed along the
specification of components/services, as convincing evidence
of their correctness [8]. Indeed, when the tests are used to

capture knowledge about the functionalities of a system, they
cannot rely on its internal structure when preparing the initial
state for the call under test. Otherwise, they would risk undue
disclosures of the system implementation to users, who have
full access to the tests, and the approach would be brittle
against changes to the implementation.

Moving from white box tests used to improve the system
implementation, to black box tests used to document the
system, requires to change the definition of test quality, as well
as the techniques to evaluate it. Indeed, when tests are aimed
at improving the technical quality of the system under test, it
may suffice that the overall test suite is capturing enough bugs.
Thus, in literature, we find plenty of techniques to assess the
quality of a test suite, by measuring how extensively the test
suite, as a whole, exercize the system. The exact meaning of
extensively may vary, giving rise to different quality criteria.
For instance, statement/branch/multiple condition coverage [9],
or mutation testing [10].

However, in our target cases, tests are used as living doc-
umentation [11]. Thus, the description of each individual test
must correspond to its implementation, because stakeholders
and maintenance staff will rely on those test descriptions to
understand the system behavior. Therefore, in this setting, we
need to assess the quality of each individual test, as opposite
to the quality of the overall test suite. Moreover, the meaning
of quality is also different w.r.t. standard approaches, because
a test has a high quality when it strictly conforms to its
description, disregarding both its capability to spot bugs, and
the portion of system it exercises.

Therefore, standard evaluation techniques are not appropri-
ate, and we propose here a different approach.

The first step to get high-quality tests is to verify their
correctness, that is, that they run successfully on a correct
implementation of the system. In other words, tests, as any
other software, need to be tested. Such a necessity is partially
reduced by their intrinsically limited complexity. However,
even when writing small tests, it is rather easy to introduce
mistakes or to misinterpret their goals. There are basically
two approaches to test verification: inspection by a human
reader, as peer review can improve the quality of tests [12],
and the execution on a reference implementation, known to
be correct. The former method permits, in a single pass, to
verify the correctness of the tests and evaluate their quality,
in terms of correspondence to their definition. However, it is
extremely time consuming [13], hence expensive. Moreover,
as tests are many and often quite similar, the attention level of
the human inspector and, accordingly, the number of detected

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

imperfections/mistakes may decrease. Finally, such costs have
to be sustained whenever tests are updated.

The automatic verification by a reference implementation,
on the other hand, is widely used in practice whenever a
reference system is available during the implementation of the
tests, as in the cases we are addressing. In such settings, the
reference system is assumed to be a correct oracle so, if a
particular test fails, then it is known a priori to be incorrect.
Once tests appear to be correct, i.e., they successfully run on
the oracle, their quality has to be evaluated.

To carry on this task in automatic verification style, we
need slight variations of the system. Each of these variations,
that we call anti-oracles, intentionally violates the description
of a specific test t, and hence it is a prospective victim of the
t, that should be able to kill it. Then, from the outcome of t
on that anti-oracle, we can get precise information about the
adequacy of t w..r.t. its description, that is, on its quality.

To keep the design effort of such anti-oracles sustainable,
we propose a method to instrument the oracle. The instru-
mented oracle, I , can behave both as a correct implementation
and as the needed anti-oracles, in different runs.

Our method is supported by a lightweight tool, which takes
care of differentiating the runs on I . Note that, in our target
scenarios, tests, in their setup code, must (only) use the very
same elements of the public interfaces under test. Thus, our
anti-oracles, to be effective, should behave correctly on all
calls, except for the call under test. This fact imposes further
requirements on the design of the supporting tool.

Our approach is reminiscent of the mutation testing tech-
nique, in that our anti-oracles are variation of the oracle. But,
while mutants are randomly generated and used to estimate
the probability of the whole test suite to detect technical
bugs, each anti-oracle is designed to target an individual
test and verify the adequacy to its description. Thus, the
mutation testing technique cannot address the problem we are
interested into. We introduce our method in Section II, and we
briefly sketch its implementation in Section III. A preliminary
evaluation of our method is provided in Section IV, and in
Section V we discuss its relations to mutation testing, while
some conclusions are drawn in Section VI.

II. PROPOSED METHOD

We consider basic standard test methods consisting of three
parts: the setup, usually few lines of code to initialize the status
of the system, the call under test, that is the specific method
invocation whose behaviour is verified by the test, and, finally,
an assertion stating properties about the result of the call, in
terms of both the yielded value, if any, and the resulting state
of the system.

Our method assumes the existence of a working system, to
be used as the oracle, and of the specifications of the tests to
be implemented. Such specifications should be as accurate as
possible, but cannot be expected to be formally expressed in a
rigorous specification language, like, for instance, some kind
of logic. Indeed, in most realistic cases it is not possible, or
highly inconvenient, to formalize the properties to be checked.

This limitation rules out the possibility of automatically
generating tests from their formal specification (such tests
would be obviously consistent with their specification by
construction, provided the generator to be correct).

Let us clarify the expected level of formality of test

public class IntStack {
private Stack<int> _stack = new Stack<int>();
public int Size(){
return this._stack.Count;

}
public void Push(int i){
this._stack.Push(i);

}
public void Pop(){
this._stack.Pop();

}
/* ... */ }

Figure 1. A stack of integers.

specifications on a toy example, written in C# and using
NUnit [14] (however, the idea is independent from both). The
class IntStack, shown in Figure 1, implements a very basic
stack of integers as a tiny wrapper on the standard generic
class Stack<>.

Using this prototype, we want to polish a set of tests, for
instance, targeting the method Push:
• PushDoesNotAffectPreviousElements

• AfterPushSizeIsPositive

• PushIncreasesSizeFrom3To4

• PushAddsElement

PushDoesNotAffectPreviousElements could be specified by:
“after pushing a number on a stack, already containing some
items, they will be still on the stack and in the same order”.

The goal is verifying the individual tests to be adequate
w.r.t. their specification. The oracle (i.e., the reference im-
plementation) is used first to verify that all the tests appear
to be correct, that is, successfully running on the oracle.
The next step of our method is to verify that they are also
sufficiently strict. To this end, we first derive, from each test
specification, a list of possible mistakes, which the test should
be able to detect accordingly to its specification. For instance,
for PushDoesNotAffectPreviousElements, the list of possible
mistakes includes: one of the original items is dropped; one of
the original items is replaced by another number; two of the
original items are swapped.

Then, each mistake from such a list is implemented by an
anti-oracle, which should replace the correct oracle implemen-
tation to answer the call under test, and only that particular
call, making the test fail (if it is sufficiently strict).

For instance, AfterPushSizeIsPositive should be able to
capture anti-oracles where the size is zero after an element has
been pushed. So, the body of Push, in such a anti-oracle, could
simply empty this._stack.

Finally, we instrument the oracle to derive an enriched
system able to make the call under test fail for each test. At
this aim we define a utility class FindCaller that, depending
on a global switch (for instance, the value of an environment
variable), may operate in two modes: record and evaluate.

The basic idea is that in record mode the enriched system
behaves like the oracle, so all tests must be successful, while
our utility class logs some information about the execution,
which are needed for subsequent runs in evaluate mode. In
such a mode, instead, for each test t, the anti-oracle(s) designed
for t is used to answer the call under test by t, while all other
calls are answered by the (correct) oracle methods. Thus, in

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

public void Push(int i) {
string caller = FindCaller.GetTestName();
if (caller == "AfterPushSizeIsPositive" ||

caller == "PushIncreasesSizeFrom3To4") {
this._stack.Clear();
return;

}
if (caller ==

"PushDoesNotAffectPreviousElements") {
int previous = this._stack.Pop();
this._stack.Push(previous+123);
// continue as if nothing has happened

}
if (caller == "PushAddsElement") {
this.Push(i+1);

// the *direct* caller for this recursive
// call is not PushAddsElement, so we get
// normal behavior for this call

return;
}

// everything as before...
// (that is, the behaviour of the oracle)

Figure 2. Instrumented Push method.

[Test]
public void PushIncreasesSizeFrom3To4() {
IntStack s = new IntStack();
for (int i=0; i<=2; i++)
s.Push(i);

int sizeBeforePush = s.Size();
s.Push(3);
Assert.That(s.Size(),

Is.Not.EqualTo(sizeBeforePush));
}

Figure 3. An example of a sloppy test.

this mode, all tests should fail.
The class FindCaller offers the method GetTestName,

whose behavior changes dramatically depending on the op-
erating mode:
• in record mode, GetTestName always returns null, but

also logs some method call information, to be later
used in evaluate mode;

• in evaluate mode, GetTestName returns the name of a
test-method t if it is invoked by the call under test by
t; otherwise it yields null.

Thus, to decide if the standard implementation of a method, or
its anti-oracle, failing on a test-method t, has to be used, we
can simply check if GetTestName() returns the string t. Hence,
we can inject the failing anti-oracle into our oracle and have
a single software product P to maintain (we will address how
to keep the actual implementation and its anti-oracles separate
in Section VI). This product P behaves, in record mode, as the
original oracle, while in evaluate mode behaves as the needed
sophisticated anti-oracles previously discussed.

Figure 2 shows how to instrument the method Push in P .
In evaluate mode, the instrumented code behaves as the

provided failing anti-oracle for each test-method, on its call
under test. Hence, all tests should fail. Yet, if we ran the test
shown in Figure 3, we would discover that it still passes.

This points out an inadequacy of the test (i.e., the test is
sloppy): indeed, instead of asserting that the Size() of the

stack, after the Push(3), is different than before, it should
assert that the size has increased by one.

Notice that, in the code of anti-oracles, all the internal
structure of the oracle can be used, including calls to the public
methods, because such calls will be automatically answered by
the oracle code. Thus, each anti-oracle is usually implemented
by very few lines of code, in most cases just a single one.

Every time a verification fails, that is, tests pass in evaluate
mode, a refinement step is needed. However, our method does
not prescribe how to perform it. Thus, it can be plugged on
different processes for improving test quality.

III. IMPLEMENTATION OF THE UTILITY CLASS

As described in the previous section, our utility class
FindCaller offers the static method GetTestName that allows
any implementation method m to know the name of the
running test t, when the current call of m is the call under
test of t (otherwise, GetTestName simply returns null).

The simplest way to detect if the current call of m is the
call under test, for some test t, would be to require call under
test to be annotated in some way (e.g., by some attribute, and
use such information via reflection). However, we want to be
able to evaluate existing tests as they are, without having to
tamper with them, so the implementation of GetTestName is
more challenging.

Here, we just sketch the idea, since our C# implementation
takes into consideration some technical details that are not
particularly relevant. We refer interested readers to the freely
available source code [15].

In order to understand if a call to a method m, of the
implementation, may be the call under test for some test t,
GetTestName simply rules out the cases that cannot be a call
under test, which are:

1) m has been called by another implementation method
m′ (possibly coinciding with m, in case of recursion),
instead than directly by some test;

2) there is a (temporally) subsequent direct call to m,
by the same test t, hence the current call is just part
of the setup.

Thus, GetTestName returns t for the last call of any im-
plementation method m directly called by t (or one of its
auxiliary methods), even if m is not the one tested by t,
say mt. However, this is not a problem, as the condition
FindCaller.GetTestName()=="t" is only checked inside the
instrumented version of mt, so that returning t, instead of
null, to the call of some other method goes undetected, and
is immaterial.

Therefore, the tasks of method GetTestName are to identify:
1) the name of the currently running test, say t;
2) if m has been called by another method of the

implementation;
3) if this call to m by t is its (temporally) last call to

m.
Since almost every programming language keeps the infor-
mation about the (direct and indirect) callers of a method in
the (machine) call-stack, we can address tasks 1 and 2, by
performing a stack walk. The remaining task, 3, needs another
technique, which is discussed below.

In languages offering reflection/introspection features, like
C# and Java, the call-stack is readily available. For instance, in

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Figure 4. Two examples of call stacks.

C#, using the standard class StackTrace we can easily obtain
an array of StackFrame objects.

Figure 4 shows two examples of the kind of call stacks that
GetTestName has to deal with. The topmost frame is always
for GetTestName. The rest of the stack consists of three groups
of frames (from the bottom): those of the test runner, those
of the test methods, and, finally, those of the implementation
methods. The topmost of this latest group, that is, the second
frame from the top, belongs to the method m, that has to decide
whether to behave as the oracle or some anti-oracle.

The lowest frame of the test method group is the one for
t (task 1) and is identified by our utility class by checking
whether the method is annotated by one of the custom at-
tributes of NUnit [14]. Of course, this can be easily generalized
to other testing-framework.

Task 2 corresponds to checking whether, between the frame
of m and the one of t, there are some other frames belonging
to implementation methods. Figure 4 shows, side by side, two
possibilities:

• left: m is directly called by t (or some of its auxiliary
methods), so GetTestName must return t (unless Task 3
detects a subsequent call to m);

• right: t invokes mt, which could for instance be the
method under test, and then mt calls some other
implementation methods (m′, . . . ,m). Each of these
methods, being instrumented, will call GetTestName,
that must recognize that the current execution of its
direct caller (m, in the figure) does not correspond
to the call under test. Thus, even if its direct caller
coincided with mt, that is, m = mt, GetTestName

should return null.

These two cases are also exemplified in the sequence
diagram shown in Figure 5, where the test runner invokes the
test PushAddsElement, which, in turn, invokes Push, which
invokes GetTestName. In this case, GetTestName returns the
string "PushAddsElement", so the instrumented Push method
misbehaves by pushing (i+1), instead of i (see Figure 2),
by recursively invoking itself. In this second activation,

GetTestNames returns null, so no anti-oracle is activated and
the call is answered by running the oracle code. Notice that
the call of Top invokes GetTestName too, and gets the string
"PushAddsElement" as result. But, having no instrumentation
for that test, Top behaves as the oracle.

Task 3, that is, detecting if this call to m by t is its
(temporally) last call to m, can be tackled by exploiting the
following idea: since we want any failing implementation (for
t) to differ from the oracle only on the call under test c, the
execution flow of t, until it reaches c, has to be exactly the
same on both the oracle and the anti-oracle.

Because all tests pass on the oracle, a single run of all
tests in record mode allows our class FindCaller to collect
the information about the order of all the calls that any test
makes to any implementation method. After these information
have been collected and persisted, they can be used in evaluate
mode to discern, for each test t, which call is, indeed, the
temporally last one.

IV. PRELIMINARY EVALUATION

The proposed method has been experimented in the con-
text of the project evaluation of an undergraduate course on
component based development. Such a project consisted of
two independent phases: the development of tests against the
specification of a toy component for the management of an
auction site, and the implementation of the component itself.
The component specification consisted of five small interfaces
for about 20 methods and 12 properties, and a few exceptions.
The semantics of each method/property was expressed by few
lines of text in natural language, as in our running example,
and the reference implementation was about 600 lines of code.

The first phase was a collaborative activity by 16 groups
of 5 persons each, with the goal of redundantly implementing
150 test specifications. Each test specification, given in natural
language, fixed the method to be tested, the call parameters (if
any), the required setup of the system, and the expected result.

Each group member was required to individually develop
10 tests and inspect those written by the other group members.
Students were equally penalized by errors made during the

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

[Test]

public void PushAddsElement() {

IntStack s = new IntStack();

s.Push(7);

int pushedElement = s.Top();

Assert.That(pushedElement,

Is.EqualTo(7));

}

:NUnitRunner :TestClass :IntStack :FindCaller

new

PushAddsElement

new

Push

GetTestName

"PushAddsElement"

Push

GetTestName

null

Top

GetTestName

"PushAddsElement"

Figure 5. PushAddsElement and its sequence diagram.

development and peer review. Therefore, they were motivated
to carefully read the tests by other members of their team.
Indeed, from the discussions going on in a forum for intra-
group communications, we know that most students took the
assignment seriously and devoted energy and time to get it
done at the best of their abilities.

At the end of the review phase, we evaluated the tests
using our reference implementation, and 428 out of 590 passed
(note that not all the enrolled students completed the project;
so only 590 out of the expected 800 tests were submitted for
evaluation). Then, we applied our method to those apparently
correct, in order to detect sloppy tests: 13 tests out of 428 did
not fail as they should have been. That is, about the 3% of
the peer-reviewed tests were still slack. Notwithstanding the
apparently low value, it is worth noting that:

• 50% of the groups delivered at least one sloppy test,
and a group even produced 5 sloppy tests out of 30,
as it can be seen in Table I (only groups with at least
one sloppy tests have been inserted);

• the tests had been already manually inspected by other
members of the group to improve their quality [12];

• for each test specification we implemented just the

Group # test
methods Failed Correct Sloppy

16 40 10 25 5 (16,67%)
1 30 7 21 2 (8,70%)
4 40 9 30 1 (3,23%)
5 30 6 23 1 (4,17%)
6 40 7 32 1 (3,03%)
7 40 2 37 1 (2,63%)
8 40 8 31 1 (3,13%)

13 30 7 22 1 (4,35%)

TABLE I. EVALUATION RESULTS.

most obvious failure, hence, capturing only a part of
the sloppy tests;

• the given test specifications have been kept very sim-
ple to simplify the students’ work. With more complex
test specifications a higher number of sloppy tests
should be expected.

The sloppy tests detected by our experiment can be roughly
categorized into three classes:

• Verifying a property weaker than the one expressed
by their informal specification. For instance, though
required to verify that the result R of some operation
is S = {a, b, c}, they just check that R has three
elements, or that R ⊆ S, or viceversa. This is by
far the most common error, and corresponds to the
intuition of sloppy test.

• Verifying the thrown exception to be the one re-
quired, but without discriminating if it has been
thrown by the method under test, or by some pre-
vious call during the test setup. This sloppiness
may easily go undetected when system exceptions,
like, for instance, InvalidOperationException or
ArgumentNullException, are expected, since they
may be thrown in many different situations.

• Making blatantly stupid mistakes, like, for instance,
invoking a different method in place of the one to be
tested. It may sound unlikely that such evident mis-
takes are overlooked by reviewers. But, it does happen
since their attention is often focused on checking small
details, or the logical flow of the test to make sense
per se, forgetting to check it against its specification.

A threat to the validity of this experiment might be that
the subjects were students instead of professionals. Thus, the
evaluation could be biased by their limited skills. We plan to
apply our technique to the tests of some open-source project
in order to estimate its usefulness in a real world context.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

V. RELATED WORK

To the best of our knowledge, our method is the first one
proposed in literature for revealing sloppy test cases. While
our work uses an idea similar to mutation testing [16] [17],
there are substantial differences.

Mutation testing is a technique for evaluating the ability
of a test suite in detecting faults, and can also be used as a
tool to add new test cases to obtain higher coverage scores.
The technique consists of two steps: the creation of mutants
and their execution. First, mutants, i.e., clones of the original
program with the exception of one random atomic change, are
created. For example, a mutant could be produced by changing
a binary operator (e.g., “+”) into another (e.g., “*”) to create a
faulty version of the original program. The “rule” that changes
an operator with another is called mutation operator. Then, the
target test suite is executed against all the produced mutants.
A mutant is said killed if at least a test case belonging to
the suite is able to reveal the performed mutation. The test
suite adequacy is computed by dividing the number of killed
mutants by the total number of mutants.

Although mutation testing is largely recognized as a satis-
factory technique for the improvement of a test suite, the aim is
revealing parts of system code not exercised by any test, where
randomly mutations go undetected. This allows to improve
the test suite as a whole, by adding test cases targeting the
unexplored parts. But, mutation testing is inadequate for our
goal, that is, individual test adequacy against its specification,
in a setting where testing must go through the public interfaces
of the system. Indeed, mutation testing
• evaluates and improves test suites as a whole instead

of individual tests;
• addresses a different concept of quality, without any

connection to the users’ expectations about the kind of
bugs that should be detected by the tests, accordingly
to their description;

• could yield a false positive, if mutants are killed by a
failing test setup involving the very same methods to
be tested; this cannot happen with white-box testing,
where the setup explicitly accesses the internal struc-
ture of the system, but it is quite common when also
tests must go through the public interfaces.

VI. CONCLUSION AND FUTURE WORK

We have proposed a method to verify the adequacy of
individual tests to their specification. Our method requires
to elaborate minimal changes to a reference implementation,
making a well written test fail on the resulting anti-oracle.
Moreover, our method is supported by a tool, that takes care
of having such changes executed only on that test.

Currently, the changes are manually injected into the
oracle, except for those tests expecting an exception, where
the tool can automatically throws an exception of unexpected
type to verify that the test is correctly strict. We plan to
use aspect-oriented programming [18] techniques in order to
keep separate the code to be injected from the reference
implementation. Indeed, we are currently evaluating PostSharp
Express [19] for .NET, as a supporting tool.

A further enhancement is allowing several different
anti-oracles for the same test t, implementing different
bugs t should be able to detect. At this aim, the test-
runner should be made aware that some tests need to be

run several times, and method GetTestName should yield, on
the call under test, not only the test name, but also the number
of its run, in order to possibly change the behaviour.

The current version of the tool has been preliminarily eval-
uated by an experiment on the projects of a course. The results
were quite encouraging, as we captured 3% of sloppy tests on
a population already improved by a preliminary peer-review
process. However, they were also obviously limited, being
based on the performance of students instead of professionals.
Further applications to some industrial sized project are needed
in order to estimate its real usefulness.

ACKNOWLEDGMENT

We warmly thank Filippo Ricca for the helpful discussions
on mutation testing.

REFERENCES
[1] P. Hamill, Unit Test Frameworks: Tools for High-Quality Software

Development. O’Reilly, 2004.
[2] G. Myers, The Art of Software Testing, ser. A Wiley-Interscience

publication. Wiley, 1979.
[3] K. Beck, Test-Driven Development by Example, ser. The Addison-

Wesley Signature Series. Addison-Wesley, 2003.
[4] A. Marchetto and F. Ricca, “From objects to services: toward a step-

wise migration approach for Java applications,” International Journal
Software Tools Technological Transfer, vol. 11, no. 6, 2009, pp. 427–
440.

[5] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “WSDL-Based automatic
test case generation for web services testing,” in SOSE ’05: Proceedings
of the IEEE International Workshop. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 215–220.

[6] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Systematic generation
of XML instances to test complex software applications,” in RISE, 2006,
pp. 114–129.

[7] H. M. Sneed and S. Huang, “The design and use of WSDL-Test: a tool
for testing web services: Special issue articles,” J. Softw. Maint. Evol.,
vol. 19, no. 5, 2007, pp. 297–314.

[8] R. Heckel and L. Mariani, “Automatic conformance testing of web
services,” in FASE, 2005, pp. 34–48.

[9] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital
computer programs,” Communications of the ACM, vol. 6, no. 2, Feb.
1963, pp. 58–63.

[10] W. E. Wong, Mutation Testing for the New Century. Springer, 2001.
[11] G. Adzic, Specification by Example: How Successful Teams Deliver

the Right Software. Manning Publications, 2011.
[12] F. Lanubile and T. Mallardo, “Inspecting automated test code: A

preliminary study,” in Proc. of 8th International Conference on Agile
Software Development (XP 2007). Springer-Verlag, 2007.

[13] T. Thelin, H. Petersson, P. Runeson, and C. Wohlin, “Applying sampling
to improve software inspections,” Journal of Systems and Software,
vol. 73, no. 2, October 2004, pp. 257–269.

[14] “NUnit,” 2014, URL: http://www.nunit.org [accessed: 2014-03-09].
[15] “FindCaller,” 2014, URL: http://www.disi.unige.it/person/LagorioG/

FindCaller.cs [accessed: 2014-03-09].
[16] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE

Transactions on Software Engineering, vol. 3, no. 4, Jul. 1977, pp.
279–290.

[17] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, Apr. 1978, pp. 34–41.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-m.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP.
Springer-Verlag, 1997.

[19] “PostSharp Express,” 2014, URL: http://www.postsharp.net/ [accessed:
2014-03-09].

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

