
Implicit Nested Repetition in Dataflow for Procedural Modeling

Wolfgang Thaller, Ulrich Krispel, Sven Havemann
Institute of Computer Graphics and Knowledge Visualization

Graz University of Technology
Graz, Austria

Email: {w.thaller, u.krispel, s.havemann} @cgv.tugraz.at

Dieter W. Fellner
Fraunhofer IGD and TU Darmstadt

Darmstadt, Germany
Email: d.fellner@igd.fraunhofer.de

Abstract—Creating 3D content requires a lot of expert
knowledge and is often a very time consuming task. Procedural
modeling can simplify this process for several application
domains. However, creating procedural descriptions is still a
complicated task. Graph based visual programming languages
can ease the creation workflow, however direct manipulation
of procedural 3D content rather than of a visual program is
desirable as it resembles established techniques in 3D modeling.
In this paper, we present a dataflow language that features
a novel approach to handling loops in the context of direct
interactive manipulation of procedural 3D models and show
compilation techniques to translate it to traditional languages
used in procedural modeling.

Keywords-procedural modeling, dataflow graphs, loops, term
graphs

I. INTRODUCTION

Conventional 3D models consist of geometric information
only, whereas a procedural model is represented by the oper-
ations used to create the geometry [1]. Complex man-made
shapes exhibit great regularities for a number of reasons,
from functionality over manufacturability to aesthetics and
style. A procedural representation is therefore commonly
perceived as most appropriate, but not so many 3D artists
accept a code editor as user interface for 3D modeling, and
only few of them are good programmers. Recently, dataflow
graph based visual programming languages for 3D modeling
have emerged [2], [3]. These languages facilitate a graphical
editing paradigm, thus allowing to create programs without
writing code. However, such languages are not always easier
to read than a textual representation [4]. Therefore, the goal
is a modeler that allows direct manipulation of procedural
content on the concrete 3D model, without any knowledge
of the underlying representation (code), while retaining the
expressiveness of dataflow graph based methods.

In this paper, we present a term graph based language
for procedural modeling with features that facilitate direct
manipulation. First, we give an overview of related work
in Section 2. Then we give a summary of the requirements
for the language in Section 3. Furthermore, in Section 4 the
language is formally defined, and a compilation technique to
embed such models in existing procedural modeling systems
and examine error handling in the context of partial model
evaluation is described. Section 5 contains examples and

some benchmarks showing optimization results. The last
section concludes with some points of future research.

II. RELATED WORK

Procedural modeling is an umbrella term for procedural
descriptions in computer graphics. As a procedural descrip-
tion is basically just a computer program, there are many
possibilities to express procedural content.

One category are general purpose programming languages
with geometric libraries, for example C++ with CGAL [5] or
the Generative Modeling Language (GML) [1] which utilizes
a language similar to Adobe’s PostScript [6]. Processing [7]
is an open source programming language based on Java with
a focus on computer programming within a visual context.

As many professional 3D modeling packages contain
embedded scripting languages, these can be used to express
procedural content. Some representatives are for example
MEL script for Autodesk Maya [8] or RhinoScript for
Rhinoceros [9].

Some domain specific languages have successfully been
applied to express procedural content. For example, emerg-
ing from the work of Stiny et al. [10] who applied the
concept of formal grammars (string replacements) to the
domain of 2D shapes, Wonka et al. [11] introduced split
grammars for automatic generation of architecture. These
concepts have further been extended by Mueller et al. [12]
into CGA Shape, which is available as the commercial
software package CityEngine [13] that allows procedural
generation of buildings up to whole cities.

Visual Programming Languages (VPLs) allow to create
and edit programs using a visual editing metaphor. Many
VPLs are based on a dataflow paradigm [14]; the program
is represented by a graph consisting of nodes (which repre-
sent operations) and wires along which streams of tokens
are passed. Some examples in the context of procedural
modeling are the procedural modeler Houdini [3] and the
Grasshopper plugin for Rhinoceros [9], which both feature
visual editors for dataflow graphs. Furthermore, the work of
Patow et al. [15] has shown that shape grammars can also
be represented as dataflow graphs.

Term Graphs [16] arose as a development in the field of
term rewriting. While term graphs are intuitively similar to
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dataflow graphs, there is no concept of a stream of tokens.
Term graphs are a generalization of terms and expressions
which makes explicit sharing of common subexpressions
possible. Formally, we base our work on the definitions given
in [17] rather than on any dataflow formalism.

III. LANGUAGE REQUIREMENTS

Dataflow languages have a number of properties that make
them very desirable for interactive procedural modeling.
They allow efficient partial reevaluation in order to inter-
actively respond to “localized” changes, they are expressive
enough to cover traditional domains of procedural modeling
such as compass-and-ruler constructions and split-grammars,
and they can be extended in various ways to support repeated
structures/repeated operations.

We are currently researching direct-manipulation based
user interfaces for dataflow-based procedural modeling. This
means that the dataflow graph itself is not visible to the
user; instead, the user interacts with a concrete instance of
the procedural model, i.e., a 3D model generated from a
concrete set of parameter values. The basic usage paradigm
is that the user selects objects in this 3D view and applies
operations to them; these operations are added to the graph.

The goal of keeping the graph hidden during normal user
interaction leads to additional requirements for the language
that differ from traditional approaches.

A. Repetition

Loops should not be represented explicitly, i.e., loops
should not be represented by an object that needs to be
visualized so the user can interact with it directly. Operations
should be implicitly repeated when they are applied to
collections of objects.

It must be possible to deal with nested repetitions as
part of this implicit repetition behaviour. Existing dataflow-
based procedural modeling systems use a “stream-of-tokens”
concept, i.e., a wire in the dataflow graph transports a linear
stream of tokens that all get treated the same by subsequent
operations. Nested structures are not preserved in this model.

When directly interacting with a 3D model, we expect the
user to frequently zoom to details of the model. For example,
consider a model of a building facade that consists of several
stories, each of which contains several identical windows,
which in turn contain several separate window panes. A user
will zoom in to see a single window on their screen and
then proceed to edit that archetypal window, for example by
applying some operation to two neighbouring window panes
of that same window. All operations in the modeling user
interface should always behave consistently, independent of
whether the user is editing a model consisting of just a
single window, or one of many windows. In both cases,
the system needs to remember that a collection of window
panes belongs to a single window. Thus, flat token streams
are not suited to direct-manipulation procedural modeling.

B. Failures

There are many modeling operations that do not always
succeed, e.g., intersection operations between geometric
objects. When applying volumetric split operations, a vol-
ume might become empty, rendering (almost) all further
operations on that volume meaningless.

Often, these failures have only local effects on the model,
so aborting the evaluation of the entire model is excessive;
rather, we propagate errors only along the dependencies in
the code graph — if its sources could not be calculated,
an edge is not executed. In many cases, this is exactly
the desired behaviour and allows to easily express simple
conditional behaviours such as “if there is an intersection,
construct this object at the intersection point” or “if there is
enough space available, construct an object”.

C. Side Effects

Neither dataflow graphs nor term graphs are particularily
well-suited for dealing with side-effecting operations; also,
to simplify analysing the code for purposes of the GUI, we
have a strong motivation to forbid side effects.

However, it is a fundamental user expectation to be able to
have operations that create objects, and to be able to replace
or refine objects. Both Grasshopper and Houdini use side-
effect free operations and rely on the user to pick one or
more dataflow graph nodes whose results are to be used for
the final model; this solution is not applicable to a direct
manipulation procedural modeler because it would require
interacting with the graph rather than with a 3D model.

IV. THE LANGUAGE

Below, we will first define the term graphs that form the
basis of our language; we will then proceed to discuss our
treatment of side effects, repetition and failing operations.

A. Code Graphs

The underlying data structure is a hypergraph consisting
of nodes, which correspond to (intermediate) values and
graphical objects, and hyperedges, which represent the op-
erations applied to those values as shown in Figure 1.

Note that we are following term graph terminology here,
which differs from the terminology traditionally used for
dataflow graphs. In a dataflow graph, nodes are labelled
with operations, and they are connected with edges or
wires, which transport values or tokens. In a term graph,
hyperedges (i.e., edges that may connect more or fewer than
two nodes) are labelled with operations or literal constants,
and values are stored in nodes, which are labelled with a
type.

We reuse the following definition from [17]:
Definition 1: A code graph over an edge label set ELab

and a set of types NType is defined as a tuple G =
(N , E , In,Out, src, trg, nType, eLab) that consists of:
• a set N of nodes and a set E of hyperedges (or edges),
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Figure 1. A code graph (as presented by [17]) is a hypergraph that consists
of nodes that correspond to results and hyperedges that represent operations
(left). In this illustration the nodes are represented as ellipses. Hyperedges
are visualized as boxes; they can have any number of source and target
nodes. Hyperedges with no source nodes correspond to constants. This
example shows a code graph that carries out a simple construction: Two
points define a straight line; two lines yield an intersection point (right).

• two node sequences In,Out : N ∗ containing the input
nodes and output nodes of the code graph,

• two functions src, trg : E → N ∗ assigning each edge
the sequence of its source nodes and target nodes
respectively,

• a function nType : N → NType assigning each node
its type, and

• a function eLab : E → ELab assigning each edge its
edge label. �

Furthermore, we require all code graphs in our system to
be acyclic and that every node occurs exactly once in either
the input list of the graph, or in exactly one target list of an
edge.

Definition 2: Edge labels are associated with an input
type sequence and an output type sequence by the functions
edgeInType and edgeOutType : ELab→ NType∗. �

Definition 3: An edge e is considered type-correct if
edgeInType(eLab(e)) matches the type of the edge’s source
nodes, and edgeOutType(eLab(e)) matches the type of its
target nodes. A codegraph is type-correct if all edges are
type-correct. �

B. Limited Side Effects

In Section III-C, we have noted the need to be able to
model creation and replacement operations. The scene is
the set of visible objects; we define it as a global mutable
set of object references. We only allow two kinds of side-
effecting operations: (a) adding a newly-created object to
the scene, thus making it visible; and (b) removing a given
object reference from the scene.

Replacement and refinement can be modeled by removing
an existing object and adding a new one. Object removal is
idempotent and only affects object visibility, not the actual
object. Object visibility cannot be observed by operations.
Therefore, no additional constraints on the order of execution
are introduced.

C. Implicit Repetition

When an operation is applied to a list rather than a single
value, it is implicitly repeated for all values in the list; if
two or more lists are given, the operation is automatically
applied to corresponding elements of the lists (cf. Figure 2).
It is assumed that the lists have been arranged properly.

We define our method of implicitly handling repetition
by defining a translation from codegraphs with implicitly-
repeated operations to codegraphs with explicit loops.

1) Explicit Loops:
Definition 4: A codegraph with explicit loops is a code-

graph where the set of possible edge labels ELab has been
been extended to include loop-boxes. A loop-box edge label
is a tuple (LOOP, G′, f) where G′ is a code graph (the loop
body) with n inputs and f ∈ {0, 1}n is a sequence of
boolean flags, such that at least one element of f is 1. The
intention behind the flags f is to indicate which inputs are
lists that are iterated over (fi = 1), and which inputs are
non-varying values that are used by the loop (fi = 0). The
number of iterations corresponds to the length of the shortest
input list. The edge input and output types of a loop are
defined by wrapping the input and output types of the loop
body (referred to as tii and toi below) with List[· · · ] as
appropriate:

edgeOutType((G, f))i := List[toi]

edgeInType ((G, f))i :=

{
List[ti i] if fi = 1

ti i otherwise
�

2) Codegraphs with Implicit Repetition: To allow implicit
repetition, we relax the type-correctness requirement that
edge input/output types match the corresponding node types.

A codegraph with implicit repetition is translated to a
codegraph with explicit loops by repeatedly applying the
following translation; the original codegraph is considered
type-correct iff this algorithm yields a codegraph with ex-
plicit loops that fulfills the type-correctness requirement.

Consider an edge e where the type-correctness condition
is violated. If any of the output nodes is not a list, or if
any of the mis-matching input nodes is not a list, abort; in
this case, the input codegraph is considered to be invalid.
Replace the edge e by a loop edge e′. The repetition flags
fi for the new loop edge are set to 1 for every input with a
type mismatch, and to 0 otherwise. The loop body G′ is a
codegraph containing just the edge e; the types of its input
and output nodes are chosen such that the edge e′ becomes
type-correct within the outer codegraph. The translation is
then applied to the loop body G′.

3) Fusing Loops: The result of the above translation is
a codegraph that contains separate (and possibly nested)
loops for each edge. This is undesirable for two reasons,
namely performance and code readability. Performance is
relevant whenever the operations used in the codegraph
edges are relatively cheap, such as, for example, compass
and ruler constructions, as opposed to boolean operations
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(a) (b) (c) (d)

Figure 2. Handling repetitions: The images show examples of simple procedural models ((b) and (d)) that create a list of line segments (blue) and their
respective code graphs ((a) and (c)). Points, lines and circles correspond to intermediate results (nodes) of the same color. makeCircle creates a circle out
of a point and a radius, pointsOnCircle creates a list of evenly distributed points on a circle and makeSegment creates a straight line segment between
two points. This operation can be implicitly repeated to create segments from a list of points (on a circle) to a single point ((b)), or between two lists of
points on circles ((d)) using makeSegment. Multiple graphical elements are represented by single nodes in the corresponding code graphs ((a) and (c)).

on 3D volumes (constructive solid geometry, CSG). Code
readability is important because a procedural model might
still need to be modified after it has been exported from our
system to a traditional script-based system.

Consecutive loops, i.e., loops where the second loop
iterates over an output of the first, can be fused if both loops
have the same number of iterations and if the second loop
does not, either directly nor indirectly, depend on values
from other iterations of the first loop.

To determine which loops have the same number of
iterations, we will annotate each occurence of List in each
node type with a symbolic item count, represented by a set
of variable names. Each variable is an arbitrary name for an
integer that is unknown at compile time. A set denotes the
minimum of all the contained variables. List{a}[t] means
a list of a items of type t, and List{a,b}[t] means a list of
min(a, b) items.

All List types that appear as outputs of non-loop edges
are annotated with a single unique variable name each. Every
loop edge is annotated with a symbolic iteration count that is
the minimum (represented by set union) of the symbolic item
counts of all the lists it iterates over. Annotations on nested
List types are propagated into and out of the loop bodies.
The resulting List types of a loop box are annotated with
a symbolic item count that is equal to the symbolic iteration
count of the loop.

Two consecutive loop edges e1 and e2 can be fused when
the symbolic iteration counts of the loops are equal, the
repetition flag fi is set to 1 for all inputs of e2 that are
outputs of e1, and e2 is not reachable from any edge that is
reachable from e1, other than e1 and e2 themselves.

If all these conditions are fulfilled for a given pair of
edges, the edges can then be replaced by a single edge (cf.
Figure 3); the fused loop body is the sequential concatena-
tion of the two individual loop bodies. The inputs for the
fused edge are the inputs of e1 and all nodes that are inputs

Figure 3. Two consecutive loops containing one operation each that gets
applied to every item of the list. Under certain conditions (see text) the
loops can be fused in order to simplify the graph.

of e2 but not outputs of e1. The flags fi for the fused edge
are equal to the corresponding flags for inputs of e1 and e2.
The outputs for the fused edge are all nodes that are either
outputs of e1 or of e2.

This fusing operation is applied until no more edges can
be fused.

D. Handling Errors

The desired error-handling behaviour can be described
by regarding ERROR as a special value which is propagated
through the codegraph. If an operation fails, all its outputs
are set to ERROR; an operation is also considered to fail
whenever any of its inputs are ERROR.

In a naive translation, all arguments need to be explicitly
checked for every single operation. To arrive at a better
translation, we use a similar method as for the loops above;
we first make the error checking explicit and then introduce
a rule for combining consecutive error-checks.

Definition 5: Opt[t] := t ∪ {ERROR} for all types t, i.e.,
Opt[t] is a type that can take any value that type t can, or
a special error token. Opt[t] is idempotent: Opt[Opt[t]] =
Opt[t]. Also note that Opt can nest with List — the types
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Figure 4. Left: two consecutive if-boxes used for handling potentially-
failing operations. The input (Opt[x] at the top) is already the result of a
potentially-failing operation. Note that in this example, operation A itself
cannot fail (result type is plain y), while operation B can (result type is
Opt[z]). They can be combined by nesting the second box inside the first
(center). This often exposes opportunities for eliminating redundant error
checks (right).

Opt[List[t]] and List[Opt[t]] and Opt[List[Opt[t]]] are
three different types. �

Definition 6: An if-box edge label is a tuple (IF, G′, f)
where G′ is a codegraph with n inputs and f ∈ {0, 1}n is a
sequence of boolean flags, such that at least one element of f
is 1. The edge input and output types of a loop are defined
by wrapping the input and output types of the loop body
with Opt[· · · ] as appropriate, analogously to the treatment of
loop boxes (cf. Definition 4). When an if-box is executed, all
input values for which fi = 1 are first checked for ERRORs;
if any of the input values is equal to ERROR, execution of
the box immediately finishes with a result value of ERROR
for each output. If none of the inputs are ERROR, the body
G′ is executed; its output values are the output values of the
if-box. �

Predefined operations that can fail will return optional
values (Opt[· · · ]). For every edge in the code graph, if-boxes
have to be inserted if necessary to make the codegraph type-
consistent.

Two consecutive if-box edges e1 and e2 can be fused when
the flag fi is set to 1 for at least one input e2 that is an output
of e1, and e2 is not reachable from any edge that is reachable
from e1, other than e1 and e2 themselves.

Fusing of if-boxes happens by moving the edge e2 into
the body of the if-box e1, yielding two nested if-boxes (cf.
Figure 4). The inputs for the fused edge are the inputs of
e1 and additionally all nodes that are inputs of e2 but not
outputs of e1; the flags fi for the additional flags are all set
to 0, which means that the outer box does not need to check
these inputs against ERROR, because the inner box will do
so if necessary. For the nested if-box inside the fused edge,
we next check whether that box is still required; first, for
every input whose node type is not of the form Opt[t], the
corresponding flag fi is set to 0. If all flags are set to zero
for the inner if-box, the box is elminated by replacing the
edge with its body codegraph.

(a) (b)

Figure 5. This gothic window construction was created in our test
framework using direct manipulation without any code or graph editing.
The numnber of repetitions is an input parameter of the model.

V. EXAMPLES AND RESULTS

In this section, we describe some common modeling
operations and their realization within our framework. The
examples in this section have been created using direct
manipulation on a visible model only (without visualization
of the underlying code graph), the concrete user interface is
however still in a preliminary stage.

A. Compass & Ruler

Compass and ruler operations have long been used in
interactive procedural modeling [18]; these operations are
well suited to a side-effect free implementation, and usually
return only a single result per operation. Our addition of
repetition allows for new constructions (Figure 5).

B. Split Grammars

We can use a methodology similar to Patow et al. [15] to
map split grammars to code graphs (see Figure 6). Just as in
CGA Shape [12], volumes called Scopes are partitioned into
smaller volumes by operations split and repeat (replacement
as side-effect). split partitions the scope in a predefined
number of parts, whereas with repeat the number of parts
is determined by the size of the scope at the time of rule
application.

C. Optimization Benchmark

We benchmarked the loop fusion and error handling
optimizations on three different models. The code graphs
are compiled to GML, a language syntactically similar to
PostScript. The measurement is based on the number of ex-
ecutable statements, or tokens; this is independent of model
parameters (repetition counts) and of the implementation
quality of basic operations. See Table I for the results of
optimizing loops (Opt A) and loops and error handling (Opt
B).
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Figure 6. Split grammar example: A simple shape grammar with split
and repeat operations can be expressed using a textual description (a). This
structure can be mapped to a codegraph (b) and executed (c).

Model Tokens Opt A Opt B
gothic ornament 1322 992 789
simple house 408 258 225
complex facade 69769 30846 24865

Table I
OPTIMIZATION BENCHMARK: EFFECTS OF FUSING LOOPS (OPT A) AND

LOOPS & ERROR HANDLING (OPT B) ON MODEL SIZE.

VI. CONCLUSION AND FUTURE WORK

We have presented a formal framework for the represen-
tation of procedural models, with a focus on implicit loop
representations and improved partial error handling which
is particularly suited for direct manipulation of procedural
3D content. We have further described algorithms that allow
translation of these models to traditional programming-
language based procedural modeling systems.

Using the framework presented in this paper, we believe
it will soon be possible to create procedural constructions of
medium complexity without writing code or using a visual
programming language.

There are many research opportunities for adapting ex-
isting techniques to our framework and to the context of
direct manipulation procedural modeling. Defining modules
or functions is a well-known technique, but it is unknown
how well they can be adapted to the special requirements
imposed by direct manipulation. Complex procedural 3D
models will necessarily suffer from the same problems as
complex software does in general; so at some point it will
be necessary to investigate methods of ’shape refactoring’.
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