
Automated Data Preprocessing for Machine
Learning Based Analyses

Akshay Paranjape
IconPro GmbH

Aachen, Germany
akshay.paranjape@iconpro.com

Praneeth Katta
IconPro GmbH

Aachen, Germany
praneeth.katta@iconpro.com

Markus Ohlenforst
IconPro GmbH

Aachen, Germany
markus.ohlenforst@iconpro.com

Abstract—Data preprocessing is crucial for Machine Learning
(ML) analysis, as the quality of data can highly influence
the model performance. In recent years, we have witnessed
numerous literature works for performance enhancement, such
as AutoML libraries for tabular datasets, however, the field of
data preprocessing has not seen major advancement. AutoML
libraries and baseline models like RandomForest are known
for their easy-to-use implementation with data-cleaning and
categorical encoding as the only required steps. In this paper,
we investigate some advanced preprocessing steps such as feature
engineering, feature selection, target discretization, and sampling
for analyses on tabular datasets. Furthermore, we propose an
automated pipeline for these advanced preprocessing steps, which
are validated using RandomForest, as well as AutoML libraries.
The proposed preprocessing pipeline can also be used for any
ML-based algorithms and can be bundled into a Python package.
The pipeline also includes a novel sampling method - “Bin-
Based sampling” which can be used for general purpose data
sampling. The validity of these preprocessing methods has been
assessed on OpenML datasets using appropriate metrics such as
Kullback-Leibler (KL)-divergence, accuracy-score, and r2-score.
Experimental results show significant performance improvement
when modeling with baseline models such as RandomForest and
marginal improvements when modeling with AutoML libraries.

Index Terms—AutoML; Preprocessing; Feature Engineering;
Feature Generation; Feature selection; Sampling.

I. INTRODUCTION

Data preprocessing is a crucial step in Machine Learning
(ML) as the quality of data can have a significant influence
on its performance. Preprocessing is performed to prepare
the compatible dataset for analysis as well as to improve
the performance of the ML model. Preprocessing steps can
be roughly categorized into two types: model compatible
preprocessing (Type 1) and quality enhancement preprocessing
(Type 2). A common example of model compatible prepro-
cessing step is the encoding of string values to either Label
Encoded values or One-Hot Encoded values based on the
model requirements. Preprocessing steps like data cleaning
and missing value imputation fall into the category of Type
1, while other generic preprocessing steps like standardization
and normalization, and cyclic transformation fall into Type 2
category. The focus of this paper is Type 2 preprocessing for
supervised learning of tabular datasets.

In recent years, the ML field for tabular datasets has been
heavily researched for performance enhancement of ML-based
models, especially automated Machine Learning (AutoML)

[6]- [8]. However only a few papers [1] [2] have investigated
advanced Type 2 preprocessing steps (mainly feature genera-
tion). The validation of these preprocessing steps together with
AutoML libraries has not been studied yet. We have considered
three relevant AutoML libraries, namely AutoGluon [8], Au-
toSklearn [6], and H2O [7]. The different preprocessing steps
supported by these AutoML libraries are summarized in Table
I. It can be inferred from Table I that advanced preprocessing
steps like feature engineering and feature selection have not
been implemented in these AutoML libraries. In this paper,
we first investigate some advanced Type 2 preprocessing steps
and later propose an automated preprocessing pipeline based
on our research. A validation study of the proposed pipeline is
conducted on both the baseline model and AutoML libraries.

The automated preprocessing pipeline is designed with the
main objective of automatically generating new features from
existing input features to improve the performance metric.
If the dataset size is large, feature engineering can take a
longer computational time. Therefore, required research in
the sampling field is evident, for which we propose the Bin-
Based sampling method as an alternative to Random Sampling.
Before proceeding with feature engineering, unnecessary, ir-
relevant, and highly insignificant features are removed since
these features have neutral or significantly low information
gain for the target variable. These three techniques, viz. feature
engineering, feature selection, and sampling are the main
aspects of this paper. Therefore, in Section II, related work for
these three techniques is briefly presented. Further, in Section
III, methodology is presented. In Section IV, experiments and
the results obtained are tabulated. We conclude the work in
Section V.

II. RELATED WORK

A. Feature Engineering

Feature engineering is the process of generating new fea-
tures with the help of domain knowledge. The construction
of novel features for the enhancement of predictive learning
is time-intensive and often requires field expertise. With the
appropriate addition of features, predictive models can show
significant performance improvement. Cognitio by Khurana et
al. [1] demonstrated a novel method for automated feature
engineering in supervised learning. Cognito performs row-
wise transforms over instances for all valid features, each

1Copyright (c) IARIA, 2022. ISBN: 978-1-61208-976-8

COLLA 2022 : The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications

TABLE I
PREPROCESSING STEPS INCLUDED IN DIFFERENT AUTOML SOLUTIONS

Name AutoSklearn AutoKeras TPOT AutoGluon H2O
Balancing yes no no yes yes
Categorical encoding yes yes yes yes yes
Imputation yes yes no yes yes
Standardization/Normalization yes yes no yes yes

Others
Densifier, PCA,

minority coalescence,
select percentile

Data augmentation Feature selector Introduce
”unknown category” None

producing a new column or columns. The number of possible
transformations is an unbounded space considering various
combination of features. These function transforms could be
unary, binary, or multiple transforms [1]. As the number of
transforms can increase exponentially based on the number of
input columns, the pruning step is included by Cognito for
feature selection to ensure a manageable size of the dataset.

Katz et al. introduced a framework ExploreKit [2] for
automated feature generation. Katz et al. demonstrate new
feature findings by using unary operators such as inverse,
addition, multiplication, division, etc., as well as higher-
order operators. The huge number of features generated in
ExploreKit are pruned and validated using a Ranking Model.
A two-step approach is proposed by ExploreKit where the
generated features in the first step are ranked based on meta-
features in the second step.

Galhotra et al. [3] focus on an automated method to utilize
domain structured knowledge to perform feature addition.
They further developed a tool KAFE (Knowledge Aided Fea-
ture Engineering) to attain knowledge about similar analyses
from 25 million tables available on the internet. Hoag et al.
presented a neural network approach to generate new features
from relational databases [4]. They use a set of Recurrent
Neural Networks (RNNs) that takes as input a sequence of
vectors and outputs a vector (with new generated features).
The Data Science Machine [5] developed a deep feature
engineering algorithm for relational databases and cannot be
generalized to tabular datasets.

B. Feature selection

In contrast to feature engineering where new features are
generated from the existing ones, feature selection implies
selecting useful features from the available set of input fea-
tures, i.e., a subset of features. Tereno et al. [10] consider
various search strategies for feature selection namely heuristic
and probabilistic. They illustrate the importance of removing
unnecessary features based on class separability measures. The
elimination of non-relevant features or features with negligible
importance can significantly reduce computation time and
resources [10]. Aliferis et al. [11] introduced an algorithmic
framework to learn local casual structure for target structure
that is later used to select features. The most popular approach
for feature selection includes correlation, Bayesian error rate,
information gain, entropy measures, etc., [12]. Elssied et al.
[13] demonstrate the use of a one-way Analysis of Variance

(ANOVA) F-test for feature selection in the context of email
spam classification.

C. Sampling

ML algorithms should be trained on a complete dataset
because a higher amount of data can improve performance.
But a sample set can help get a quick overview of data quality
as well as determine its characteristics. The popular approach
of sampling is Random sampling with or without replacement
[15]. The literature for sampling dates back to 1980 when
Cochran [14] first introduced the concept of stratified sam-
pling. Stratified sampling divides samples into homogeneous
subgroups and later the data is randomly sampled from these
subgroups. Rojas et al. [15] in their survey concluded that
the majority of data scientists use random sampling, stratified
sampling, or sampling by hand. Section III-B elaborates on
the stratified sampling technique in detail.

III. METHODOLOGY

In this paper, we present an automated preprocessing
pipeline that includes advanced preprocessing methods which
are generally not available in AutoML libraries. The aim of
this research is to develop an automated pipeline that can
improve the performance of predictive modeling on tabular
datasets. The proposed pipeline can be used with any ML
algorithms as well as for AutoML libraries. The novelty
aspects of this paper are as mentioned below:

• Hybrid Feature Engineering (HFE) method
• Generalized automated preprocessing pipeline
• Sampling technique

The proposed preprocessing pipeline is validated by analyzing
its implementation on OpenML datasets [18]. This section con-
sists of four preprocessing steps each representing an element
of the proposed pipeline, namely feature selection, sampling,
target discretization, and feature engineering. These steps are
described in detail below with their pseudo algorithms.

A. Feature selection

Feature selection implies selecting important features from
the list of input features or in other words eliminating less
significant features. As mentioned in Section II, a popular
approach for feature selection is the correlation coefficient.
In this paper, we present a mixture of variance and correla-
tion analysis for feature selection. Inspired by [10], feature
selection has been categorized into three parts:

• removal of redundant features

2Copyright (c) IARIA, 2022. ISBN: 978-1-61208-976-8

COLLA 2022 : The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications

Fig. 1. Block diagram for preprocessing pipeline together with the integration of AutoML module

• removal of highly correlated features
• elimination of insignificant features with one-way

ANOVA F-test for classification and correlation coeffi-
cient for regression

1) Redundant features: For each categorical input feature,
the number of categories is measured. Two extreme cases are
eliminated based on the number of unique values:

• Constant feature: single category features, eg., Machine
No., Nationality, etc.,

• Feature with the number of categories equal to the
number of samples, eg., Name, Email Id, etc.,

In both cases, the information gain is zero and hence the
features are removed.

2) Correlation Threshold: In this step, a one-dimensional
correlation among the input features is calculated. Pearson’s
correlation [19] coefficient as shown in (1) is calculated for all
input features. Features are merged based on their correlation
coefficient. Features with a correlation coefficient close to
1 would provide similar information for modeling and can
thus be removed to save the computational power. Equation 1
shows the correlation between two features denoted as x and
y.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

where, xi, yi are the ith elements for features x and y.

3) Analysis of Variance: After the elimination of insignif-
icant features from steps 1 and 2, the rest of the features are
analyzed based on a one-way ANOVA test for a classification
task. Each feature is divided into subgroups corresponding to
its target value. The one-way analysis of variance is carried out
with these subgroups to find the F-value, as described below.

SSR =

k∑
i=i

ni(X̄o − X̄i)
2

SSE =

k∑
i=i

ni∑
j

(X̄i −Xij)
2

SST = SSR+ SSE

dfr = k − 1

dfe =

k∑
i=1

ni − k

MSR =
SSR

dfr

MSE =
SSE

dfe

F value =
MSR

MSE

(2)

where k is the number of groups, ni is the number of samples
in group i, X̄o is the global mean of all samples of the features
and X̄i is the mean of samples in subgroup i, dfr is regression
degree of freedom and dfe is error degree of freedom. MSR
is regression mean square, MSE is error mean square, SSR
represents the regression sum of squares, SSE is the error
sum of squares and SST is the total sum of squares.

For the regression datasets, F-value is calculated via a
univariate linear regression test. Once the F-values are avail-
able for all features, they are ranked based on p−values
as suggested by Charles Poole [9]. Experimentally, it is
found that a relative comparison of p−values is a better
evaluation of the significance of the feature. The features
are arranged in decreasing order of −log(p−values) and the
maximum drop of −log(p−value) over the features is computed
by calculating their second-order gradients. The maximum
drop in the −log(p−value) is considered a threshold for that
particular dataset. Features with −log(p−value) less than this
threshold are considered insignificant. In [9], a p−value of
0.05 is considered an appropriate threshold value for selecting
the insignificant features. Experimentally, it is found that a
few datasets have many features with p−values > 0.05. To
overcome this situation where many features could be removed
because of a static threshold, the second-order gradient method

3Copyright (c) IARIA, 2022. ISBN: 978-1-61208-976-8

COLLA 2022 : The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications

is used. By using a second-order gradient, the maximum
drop of the −log(p−value) can be detected. The advantage
of this method is the threshold for the p−value and it is set
dynamically. The least important features are identified with
the threshold as mentioned below:

threshold =argmax

{
∇ (− log (p valuessorted))

}
features =features(p value<threshold)

(3)

Based on the above three methods, the most important features
are selected for later processing.

B. Sampling

The quality of a sampling method can be accessed based
on the divergence of a sampled dataset with the original
distribution. As mentioned in Section II, the most widely used
sampling techniques are random sampling, stratified sampling,
and hand-pick sampling [15]. Stratified sampling is the basis
for our proposed approach, Bin-Based sampling.

1) Stratified Sampling: Stratified sampling [14] by Cochran
is a well-known sampling technique that closely resembles
the original distribution statistics. In stratified sampling, a
population is divided into sub-populations strata followed by
random sampling from these strata. The proportionate alloca-
tion of sampling steps for the creation of strata is summarized
in Algorithm 1. These sub-populations are formed based on
the nested grouping of columns. One of the disadvantages of
stratified sampling is its non-realistic runtime which makes
it difficult for real-time applications. Therefore, we propose
a new sampling technique, Bin-Based sampling. Two major
advantages of bin-based sampling are:

• faster than stratified sampling
• preserves original distribution better than random sam-

pling
2) Bin-based sampling: The motivation behind bin-based

sampling is to reduce the time complexity while maintaining
the original population statistics. To achieve this, input features
are divided into different bins based on their distribution. After
the binning process, random samples are drawn from each
bin for every feature. A union set of sample collection from
every feature is now the bin-based-sampled population. Figure
2 shows the histogram of a feature before and after sampling.
We can see that the distribution is preserved with Bin-Based
sampling and it simplifies the probability of choosing a sample
by lowering the number of possibilities. The joint conditional
probabilities in stratified sampling are simplified into the
conditional probabilities of each feature, as mentioned below.

Prandom(s) =
1

N

Pbin−based(s) =
P (s|bi)P (bi)

P (bi|s)

Pbin−based(s) = P (s|bi) =
1

size(bi)

(4)

0 20
feature value

0

5000

10000

C
ou

nt

0 20
feature value

0

250

500

750

1000

C
ou

nt

Fig. 2. Bin-based Sampling: Comparison of distribution for a feature before
and after Bin-based sampling. (left: original distribution; right: sampled
distribution)

where N denotes the number of samples, s is the sample point
and bi denotes the ith bin. The pseudo-algorithm for Bin-
Based sampling is provided in Algorithm 2.

Algorithm 1: Stratified sampling

Function Subsets(Data):
for category/bin in featurei from Data do

if num features in Data > 1 then
Strata ← Subsets(Data.drop(featurei))

else
Strata ← category/bin

return Strata

Strata ← Subsets(Data)
for Stratum in Strata do

stratumSamples ← RandomSample(stratum)

StratifiedSample ← Concat(stratumSamples)
Result: StratifiedSample

Algorithm 2: Binbased Sampling

for Featurei in Features do
if Featurei is Categorical then

for Category in CategoriesFeaturei do
Sample ← RandomSample(Category)

end
featureSample ← Concat(Sample)

else
Bins ← Discretize(Featurei)
for Bin in Bins do

Sample ← RandomSample(Bin)
end
featureSample ← Concat(Sample)

end
end
BinbasedSample ← Concat(featureSample)
Result: Binbased Sample

3) Sampling size: An optimal sampling size should ensure
that the information loss is minimum. Cochran [14] has stated

4Copyright (c) IARIA, 2022. ISBN: 978-1-61208-976-8

COLLA 2022 : The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications

an optimal size for sampled population based on the size of
the population.

no =
Z2p(1− p)

e2
(5)

where e is desired level of precision (i.e., margin or error), p is
the estimated proportion of the population, and Z is the z-score
distribution value, defaulting to 0.475 for 95% distribution. For
Bin-Based sampling, a sample size with a z-score distribution
value of 0.475 is chosen, as suggested by Cochran [14].

C. Target Discretization

With the help of target discretization, a numerical output
feature can be converted into categorical values, thereby
transforming a regression task into a classification task. Based
on the baseline regression model, a regression task will
be converted to a classification task if the regression r2-
score metric value is significantly low or unacceptable. The
prediction of categorical values has less degree of freedom
than the prediction of numerical values. Taking advantage of
this fact, a classification analysis with AutoML might give a
reasonable classification accuracy rather than concluding the
datasets as not suitable for analysis. Here, each data point
in the continuous domain is converted into a discrete class
domain. Different types of target discretization methods can
be considered based on domain expertise. As an automated
solution, we have considered the discretization of the target
variable based on its z-score values.

D. Feature Engineering

Feature engineering is the process of generating new fea-
tures or transforming features from the existing set of features
using domain knowledge. Feature engineering is performed
to leverage the performance of the ML model. Since domain
knowledge is not always available, we suggest an automated
way to feature engineering - Hybrid Feature engineering,
inspired by Cognito [1] and ExploreKit [2]. They are briefly
described below.

1) Cognito: As mentioned in Section II, Cognito generates
new features by performing unary and binary operations on the
input features. As the number of input features and transform
operators increases, the number of newly generated features
increases exponentially in the order of O(f.dk+1) where f is
the number of features, d is the number of combinations and k
is the number of transforms. For a feature D and transforms τ1
and τ2, τ1(D), τ2(D), τ1τ2(D) are generated. These generated
features have to be pruned to reduce the complexity of the
problem. Feature selection is done on the generated features
using information gain as a proxy measure of accuracy.

2) ExploreKit: ExploreKit [2] takes a similar approach
towards feature engineering. Together with the unary and
binary operators, ExploreKit considers higher-order operators.
Among all the generated features, each feature is added to
the dataset, and the rank of the feature is determined with the
Ranking Model. The Ranking Model ranks the newly gener-
ated features based on either accuracy score (classification)

or r2-score (regression). Low-rank features are removed and
higher rank features are added to the original dataset so that
more information can be extracted.

3) Hybrid Feature Engineering: Inspired by Cognito and
ExploreKit, we propose a new Hybrid Feature engineering
approach for feature engineering, which can be implemented
in real-time with a modified ranking algorithm and additional
usage of the Bin-Based sampling method. In Hybrid feature
engineering, new features are generated with a single trans-
formation on a feature or features at a time. This transfor-
mation are either a unary or a binary operator. For a feature
D and unary transforms τ , τ(D) feature is generated. For
features D1, D2 and binary transform τ , τ(D1, D2) feature
is generated. These features are subjected to feature selection
as described in Section III-A instead of using the Ranking
Model directly. After the elimination of features with feature
selection, most of the insignificant features are eliminated and
we are left with a relatively less amount of features. These
features are then ranked with the Ranking Model. High-ranked
features are selected and added to the original dataset.

Consider F = f1, f2, ..., fn is a set of features, T =
τ1, τ2, ..., τn is a set of transform functions and F ′ = FXT
denotes the set of new generated features. With the help of
the Feature Selection technique, the most significant features,
I ⊂ FXT can be selected from the generated features. After
Feature Selection, the set I is fine-tuned with Ranking Model
R. (c.f. Algorithm 3, Algorithm 4)

I ← R(FXT) (6)

Algorithm 3: Hybrid Feature Engineering

for Operator in Unary/Binary Operators do
for Feature in Numerical-Features do

NewFeatures ← Operator(Feature)
end
allNewFeaturesoperator ←
FeatureSelection(NewFeatures)

end
allNewFeatures = RankingModel(allNewFeatures)
Result: Generated Features

Algorithm 4: Ranking Model

thresholdf = baseModel(Dataset)
for i = 0 to allNewFeatures do

Dataset.append(allNewFeatures[i])
RankedFeatures = []
featureScore = baseModel(Dataset)
if featureScore ≤ thresholdf then

continue
else

RankedFeatures.append(allNewFeatures[i])
end
return RankedFeatures

end
Result: Ranked features

5Copyright (c) IARIA, 2022. ISBN: 978-1-61208-976-8

COLLA 2022 : The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications

IV. EXPERIMENTS AND RESULTS

This section describes various experiments that are con-
ducted together and their validation results. The goal of this
validation study is to ensure that the proposed methods have
a positive influence on the datasets. Validation is done on
OpenML datasets [18]. RandomForest model is used as a
baseline model. The proposed auto-preprocessing pipeline is
also benchmarked against top-performing AutoML libraries
[17], namely AutoSklearn, Autogluon, and H2O. The results
are consistently compared with (w) and without (w/o) the
auto-preprocessing libraries. Figure 1 illustrates the flow of
the preprocessing pipeline.

A. Experimental Setup

For an individual experiment, a RandomForest model with
30 estimators was chosen for both classification and regression
tasks. K-fold cross-validation was used to benchmark the
results. All experiments are conducted on a Linux Virtual
Machine with 16 GB of RAM and 4 cores. Experiments are
conducted without using dask multiprocessing for AutoML
libraries.

B. Datasets

OpenML datasets were used for benchmarking the results
[6]. A comparative study shows that Hybrid Feature Engi-
neering (HFE) performs better than modeling without HFE for
around 35% of cases, no change in performance was observed
for the rest of the datasets. This trend can be observed for
both classification and regression tasks. It has to be noted that
an increase in performance can be expected only if we have
new features after the pruning method as explained in Section
III. Only 35% of the OpenML datasets reported new features
after the pruning step. Results of these datasets are provided
in Tables II - VIII.

C. Feature selection

A comparative study was conducted to compare the per-
formance with and without feature selection. It can be seen
that for all datasets performance remains the same after the
elimination of less significant features, as described in Section
III-A. Reduction in the training time is not very significant for
the baseline model, as the model has only 30 estimators and
the size of the datasets is comparatively less. For MNIST,
a total of 64 features out of 784 features were eliminated
maintaining the same accuracy. Feature selection is the first
step in the preprocessing pipeline. The results of the analysis
are summarized in Tables II and III.

D. Bin-Based sampling

Bin-based sampling is used to reduce computation time for
the baseline model used for feature engineering. Stratified
sampling is known to sample a good representation from a
population but at the cost of computation time with a time
complexity O(n2) where n is the number of input features.
Random Sampling, on the other hand, has the complexity of
O(1) and Bin-Based sampling, as explained in Section III-B

O(n3). The sampling technique is validated using Kullback-
Leibler (KL) divergence (7) considering the original distribu-
tion as the reference distribution [16].

DKL(P∥Q) =

∫ inf

− inf
P (x)log

(
P (x)

Q(x)

)
dx (7)

where P (x) is the original distribution and Q(x) is the
sampled distribution. We can observe that KL-divergence for
Bin-Based sampling is comparatively much lower than random
sampling. Stratified sampling has the least KL-divergence,
but 10 times the computation time as can be inferred from
Table IV. These experiments are conducted on a Linux VM
with 256 GB of RAM. Experiments also revealed that Bin-
Based sampling failed to perform well for the datasets of
smaller sizes. The reason for this is that performing a binning
operation and extracting random samples from each bin might
cause a loss of information. Therefore, for such datasets of
small size, sampling is not useful.

E. Hybrid Feature Engineering

Significant improvement in performance is achieved for a
few OpenML datasets. These are summarized in Tables V
and VI. A performance improvement for 35% of datasets is
observed when testing over 50+ OpenML datasets. All tests are
performed on a cross-validation split. It should be noted that
performance improvement is achieved only if new significant
features are generated after the pruning step. The performance
with HFE is higher or similar, in no case did we encounter a
decrease in performance.

F. Overall Pipeline

An auto preprocessing pipeline, as shown in Figure 1,
is used together with AutoML libraries mainly AutoGluon,
AutoSklearn, and H2O for benchmarking. Significant improve-
ments compared to the baseline model are not achieved with
AutoML libraries for all datasets shown in Tables V and
VI. The results with AutoML libraries are shown in Tables
VII and VIII. The stopping criteria for training of AutoML-
libraries are set with the runtime limit. The benchmarking
for AutoML libraries is done on a single core. The runtime
across all AutoML libraries is set to 10 minutes and the results
are 4-fold cross-validated. Overall, the combination of auto-
preprocessing and AutoML libraries performed better or was
similar to “only AutoML libraries”. As mentioned in Table I,
AutoML libraries do not consider feature engineering in their
preprocessing step.

V. CONCLUSION

A significant amount of recent work in the field of
automated-Machine Learning is being done, but the same
has not been the case for data preprocessing. This paper
reviews and suggests some advanced preprocessing steps that
can either be used individually or combined as a pipeline.
Although performance improvements cannot be ensured for
all datasets, datasets that have inter-feature dependency can
be observed to perform better. For example, length and width

6Copyright (c) IARIA, 2022. ISBN: 978-1-61208-976-8

COLLA 2022 : The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications

TABLE II
VALIDATION OF FEATURE SELECTION TECHNIQUE FOR CLASSIFICATION TASK

OpenML dataset Accuracy w/o
feature selection

Accuracy with
feature selection

Number of features
removed

Difference
in accuracy

11 0.607 0.607 3 0
54 0.753 0.753 0 0
188 0.579 0.579 0 0
333 0.908 0.908 3 0
335 0.977 0.977 2 0
470 0.661 0.661 4 0
1459 0.588 0.588 0 0
1461 0.692 0.692 2 0
23381 0.560 0.560 5 0
amazon-employee-access 0.943 0.943 3 0
australian 0.857 0.857 2 0
bank-marketing 0.692 0.692 2 0
credit-g 0.761 0.761 2 0
sylvine 0.941 0.941 7 0

TABLE III
VALIDATION OF FEATURE SELECTION TECHNIQUE FOR REGRESSION TASK

OpenML dataset r2-score w/o
feature selection

r2-score with
feature selection

Number of features
removed

Difference
in r2-score

537 0.484 0.484 0 0
495 0.616 0.616 5 0
344 0.999 0.999 2 0
215 0.948 0.948 1 0
189 0.579 0.579 0 0
507 0.391 0.390 0 0

TABLE IV
SAMPLING COMPARISON ON OPENML DATASETS CALCULATED OVER 100 TRIALS

OpenML dataset
Mean of

KL-divergence
Bin-Based sampling

Mean of
KL-divergence

Stratified sampling

Mean of
KL-divergence

Random sampling

Time (in sec)
Bin-Based sampling

Time (in sec)
Stratified sampling

183 0.017 0.173 0.057 0.359 5.230
223 0.067 0.079 0 0.273 7.600
287 0.076 0.356 0.027 0.399 4.807
307 0.0 0.097 0.006 0.214 7.572
528 0.0 0.0215 0.0 0.054 0.489
537 0.190 0.886 1.160 2.052 133.939
550 0.0 0.011 0.004 0.302 0.738
Amazon-employee-access 0.019 0.460 0.753 0.466 2.112
Blood-transfusion 0.065 0.002 0.001 0.062 0.069
Phoneme 0.0 0.168 0.143 0.580 1.383

of a workpiece can be combined to form a new feature “area
of the workpiece”, which can have a significant impact on
the ML-based model. The proposed method does it without
domain knowledge in an automated manner. This paper also
introduces a new sampling method that can be used for general
application as well as for ML-based modeling. We used the
Bin-Based sampling method during the Feature Engineering
step to generate new features and select them using a Ranking
Model. Usage of sampled data for Feature Engineering has sig-
nificantly reduced the preprocessing time. It can be concluded
that a significant performance improvement of around 4-7% is
observed for the analysis conducted with the baseline model
on OpenML datasets. For the same set of datasets, a marginal
improvement was observed for analysis with the AutoML
libraries. The proposed pipeline is currently not parallelized.
Parallelization can significantly reduce the time for feature

engineering and this we would like to focus on in our future
work.

REFERENCES

[1] U. Khurana, D. Turaga, H. Samulowitz and S. Parthasrathy, “Cognito:
Automated Feature Engineering for Supervised Learning.” 2016 IEEE
16th International Conference on Data Mining Workshops (ICDMW),
2016: pp. 1304-1307.

[2] G. Katz, E. C. R. Shin and D. Song, ”ExploreKit: Automatic
Feature Generation and Selection,” 2016 IEEE 16th International
Conference on Data Mining (ICDM), 2016, pp. 979-984, doi:
10.1109/ICDM.2016.0123.

[3] S. Galhotra, U. Khurana, O. Hassanzadeh, K. Srinivas, H. Samu-
lowitz and M. Qi, ”Automated Feature Enhancement for Predictive
Modeling using External Knowledge,” 2019 International Conference
on Data Mining Workshops (ICDMW), 2019, pp. 1094-1097, doi:
10.1109/ICDMW.2019.00161.

[4] H. T. Lam, T. N. Minh, M. Sinn, B. Buesser, and M. Wistuba,
“Neural Feature Learning From Relational Database.” arXiv: Artificial
Intelligence, 2018.

7Copyright (c) IARIA, 2022. ISBN: 978-1-61208-976-8

COLLA 2022 : The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications

TABLE V
HYBRID FEATURE ENGINEERING FOR CLASSIFICATION DATASETS WITH BASELINE MODEL

OpenML datasets Number of features Number of classes Accuracy before Accuracy after Percentage Gain New features
188 14 5 0.466 0.506 8.386 2
1461 7 2 0.692 0.718 4.748 2
1459 7 10 0.588 0.635 7.952 1
54 18 4 0.753 0.759 0.786 2

TABLE VI
HYBRID FEATURE ENGINEERING FOR REGRESSION DATASETS WITH BASELINE MODEL

OpenML datasets Number of features r2-score before r2-score after Percentage Gain New features
189 8 0.579 0.615 6.227 1
507 6 0.390 0.411 5.361 1
537 8 0.484 0.494 2.000 1
495 13 0.616 0.632 2.700 2

TABLE VII
OVERALL PREPROCESSING PIPELINE PERFORMANCE COMPARISON WITH AUTOML LIBRARIES (CLASSIFICATION - ACCURACY)

OpenML datasets AutoGluon AutoSklearn H2O RandomForest
w/o w w/o w w/o w w/o w

188 0.728 0.726 0.674 0.696 0.717 0.739 0.466 0.506
1461 0.914 0.914 0.906 0.906 0.907 0.907 0.692 0.718
1459 0.815 0.82 0.919 0.919 0.922 0.927 0.588 0.635
54 0.858 0.857 0.839 0.839 0.707 0.708 0.753 0.759

TABLE VIII
OVERALL PREPROCESSING PIPELINE PERFORMANCE COMPARISON WITH AUTOML LIBRARIES (REGRESSION - R2-SCORE)

OpenML datasets AutoGluon AutoSklearn H2O RandomForest
w/o w w/o w w/o w w/o w

189 0.913 0.913 0.902 0.903 0.913 0.918 0.579 0.615
507 0.731 0.741 0.753 0.753 0.762 0.761 0.390 0.411
537 0.815 0.821 0.862 0.865 0.861 0.869 0.484 0.494
495 0.496 0.495 0.494 0.494 0.441 0.442 0.616 0.632

[5] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards
automating data science endeavors.” 2015 IEEE International Confer-
ence on Data Science and Advanced Analytics (DSAA), 2015: pp. 1-10.

[6] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum and
F. Hutter, “Efficient and Robust Automated Machine Learning.” NIPS
2015.

[7] E. LeDell and S. Poirier, “H2O AutoML: Scalable Automatic Machine
Learning”. 7th ICML Workshop on Automated Machine Learning (Au-
toML), July 2020.

[8] N. Erickson et al., “AutoGluon-Tabular: Robust and Accurate AutoML
for Structured Data.” ArXiv abs/2003.06505, 2020.

[9] C. Poole, “Low P-values or narrow confidence intervals: which are more
durable?” Epidemiology 12, 2001: pp. 291-294.

[10] T. Terano, H Liu and L. P. Arbee, “Chen Knowledge Discovery and
Data Mining.” 4th Pacific-Asia Conference, PAKDD 2000, Kyoto Japan,
2000.

[11] C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D.
Koutsoukos, “Local Causal and Markov Blanket Induction for Causal
Discovery and Feature Selection for Classification Part I: Algorithms and
Empirical Evaluation.” J. Mach. Learn. Res. 11, 2010, pp. 171–234.

[12] C. Jie, L. Jiawei, W. Shulin and Y. Sheng, “Feature selection in machine
learning: A new perspective.” Neurocomputing 300, 2018: pp. 70-79.

[13] N. O. F. Elssied, O. Ibrahim and A. H. Osman, “A Novel Feature Selec-
tion Based on One-Way ANOVA F-Test for E-Mail Spam Classification.”
Research Journal of Applied Sciences, Engineering and Technology 7,
2014: pp. 625-638.

[14] Cochran William, Sampling Techniques, 3rd edition, John Wiley and
Sons, 1978.

[15] J. A. R. Rojas, M. B. Kery, S Rosenthal, and A. Dey, “Sampling
techniques to improve big data exploration.” 2017 IEEE 7th Symposium
on Large Data Analysis and Visualization (LDAV), 2017: pp. 26-35.

[16] J. M. James, “Kullback-Leibler Divergence”. International Encyclopedia
of Statistical Science, 2011.

[17] P. Gijsbers, E. LeDell, J. K. Thomas, S. Poirier, B. Bischl,
and J. Vanschoren, “An Open Source AutoML Benchmark.” ArXiv
abs/1907.00909, 2019.

[18] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “OpenML:
networked science in machine learning.” SIGKDD Explorations 15(2),
2013, pp. 49-60.

[19] Kirch Wilhelm, “Pearson’s Correlation Coefficient.” Encyclopedia of
Public Health, 2008. Springer, Dordrecht. https://doi.org/10.1007/978-
1-4020-5614-7 2569 .

8Copyright (c) IARIA, 2022. ISBN: 978-1-61208-976-8

COLLA 2022 : The Twelfth International Conference on Advanced Collaborative Networks, Systems and Applications

https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1007/978-1-4020-5614-7_2569

	Introduction
	Related Work
	Feature Engineering
	Feature selection
	Sampling

	Methodology
	Feature selection
	Redundant features
	Correlation Threshold
	Analysis of Variance

	Sampling
	Stratified Sampling
	Bin-based sampling
	Sampling size

	Target Discretization
	Feature Engineering
	Cognito
	ExploreKit
	Hybrid Feature Engineering

	Experiments and Results
	Experimental Setup
	Datasets
	Feature selection
	Bin-Based sampling
	Hybrid Feature Engineering
	Overall Pipeline

	Conclusion
	References

