
Cross-Platform Development
Suitability of Current Mobile Application Frameworks

Jan Christoph, Daniel Rösch, Thomas Schuster
Hochschule Pforzheim

Tiefenbronner Straße 65, Germany
{jan.christoph | daniel.roesch | thomas.schuster}@hs-pforzheim.de

Abstract — Mobile device adoption has increased dramatically
within the last decade. In addition to smartphones, wearables
and various sensors are among the most utilized devices. At the
same time, the multiplicity of devices increases, the number of
platforms to consider when developing applications increases
as well. It is therefore desirable to be able to generically
develop applications and deploy them to all relevant target
platforms. A typical approach is given by frameworks, which
generate platform specific code. In this article, we examine the
suitability of these frameworks. Central questions are access to
native system functions, sensors of devices and support for
upcoming platform developments. To evaluate the
frameworks, we defined a reference application and
implemented tests for different mobile devices and platforms.
A final framework comparison reveals opportunities and
limitations. This, in turn, serves as a foundation for future
work on improvements of promising approaches.

Keywords-cross-platform; app development; Web
engineering; component-based software architectures.

I. INTRODUCTION
Mobile devices have become an important platform for

today’s software applications. Especially, the utilization of
smartphones increased rapidly within the last couple of years
[1], [2]. Since smartphones are often utilized to consume or
orchestrate services, this process includes a vast range of
applications; they also connect to other domains such as the
Internet of Things (IoT) and utilize smart cloud-based
services.

The introduction of smartphones rapidly increased the
need and development of mobile software. The development
of mobile software applications is a special case of software
engineering. Mobile applications are often also referred to as
apps, which implies that the application is intended to be
used on a smartphone or wearable device [3]. Thus,
development must cope with specific aspects such as: short
application lifecycles, limited device capabilities, mobility of
users and devices, availability of network infrastructure as
well as security and privacy issues [4]. While developers are
enacted to create and distribute applications in a large scale,
they also have to deal with these inherent limitations of
mobile devices (i.e. battery life or small displays).
Furthermore, it is necessary to address different operating
systems (especially for smartphones, and, to a limited extent,
for feature phones as well). Since the market for smartphones

has consolidated recently, some operating systems (i.e.
Windows Phone, BlackberryOS and other OS hold a market
share of 0.2%) vanished again. Still, to address the
smartphone market, applications for both, Android (market
share: 85%) and iOS (market share: 14.7%) need to be
provided. In addition, Android is split into different versions,
manufacturers and various system customizations. Currently,
the most widely used Android version is Nougat (7.0 and 7.1
with 28.5%), while little use is made of the newest Version
Oreo (8.0 and 8.1; with 1.1%) [5].

To reach as many users as possible, all major platforms
and versions need to be supported [4], [6]. This introduces
the need to either develop platform specific or platform
agnostic applications. Platform specific implementations
(native apps) require as many application implementations as
platforms are intended to be addressed. Therefore, this
approach generates correspondingly high development
expenditures without additional added value. On the other
hand, with a more generic approach, a single application or
some core components could serve as the basis for multiple
platforms. Besides reduced developments efforts, a generic
approach also strengthens reuse of code and components.

Currently, generic approaches can be further subdivided
into Web and hybrid applications (see Fig. 1). Web
applications can be used virtually under any platform, as a
Web browser is preinstalled on almost all devices. The most
salient advantage is application portability, which basically
comes at no cost. Web apps are typically optimized by
means of Hyper Text Markup Language (HTML5),
Cascading Style Sheet (CSS) and JavaScript [7]. Numerous
frameworks (such as Angular, Bootstrap, React or Vue)
provide additional functionality on top of Web standard
technologies and help to speed up development of Web apps.
Major disadvantages of Web applications are that they do not
possess platform specific look and feel and often are
restricted in functionality – especially access to system
functions and device sensors. Furthermore, they must be
interpreted and suffer performance losses compared to native
applications [8].

Hybrid applications are built on frameworks such as
Apache Cordova or Adobe PhoneGap. Often they rely on
Web technologies also, and enact access to native device
functions and sensors [4]. Hybrid apps utilize a specialized
browser to present the user interface (UI). This results in a
presentation layer which is identical or very near to widgets
used in native apps. While hybrid apps overcome some

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-645-3

COLLA 2018 : The Eighth International Conference on Advanced Collaborative Networks, Systems and Applications

issues of Web apps (such as access to system functions and
sensors), they still experience a loss of performance
compared to native applications. However, it is notable that
performance of hybrid apps has improved a lot with latest
developments [4], [7]. Comparing the short development
lifecycles of devices and operating systems on the one hand
to that of hybrid app frameworks on the other, it is noticeable
that the latest developments are implemented with delays by
the frameworks. As a result, access to new functionalities
can be gained earlier when development is based on native
apps.

Your App

Embedded
Web Views

Native
Hardware
Access

Web Browser

Your App

Your App

Operating System & Device Operating System & Device Operating System & Device

Native Wrapper App

Native App Hybrid App Web App

Native UI
Views

Figure 1. Mobile App Technology Stack

Issues of supported functionality, performance and the
generic question of maintenance of cross-platform
applications lead us to the evaluation of multiple cross-
platform frameworks. The remainder of this article is
structured as follows: Section 2 provides an overview of
current mobile app development. In Section 3, a reference
architecture is presented and three framework-based
implementations of this architecture are discussed. The
reference implementations are being evaluated in Section 4.
Finally, Section 5 provides our conclusion and outlook on
future work.

II. RELATED WORK

A. Cross-Platform Development
As stated above, there are several approaches for cross-

platform development. This type of development is subject
to typical challenges of ubiquitous computing. In addition,
further challenges are typical to cross-platform development
[4], [9], the most important being associated with:

1. UI
2. Limited Resources
3. Device Management
4. Application Maintenance

The design of UI is associated with questions of
simplicity and intuitiveness. For mobile cross-platform
development, this is extended by design guidelines defined
by the different operating systems. It is further restricted
because of different device capabilities (e.g., screen sizes and
resolution) [10]. Limited resources is a typical issue in
mobile software engineering; for cross-platform
development the application size and resource consumption
(especially power and memory management) is a typical
issue [4], [11]. Since cross-platform development addresses a
vast variety of devices, their management in terms of

appropriate usage of hardware and sensors (i.e. cpu,
memory, bluetooth, or camera) becomes another typical
challenge. Furthermore, different operating systems must be
handled as well. Finally the application has to be maintained
by following short lifecycles of devices, operating systems
and frameworks [4], [10].

A lot of different methods that address cross-platform
development can be observed in science and industry. Some
are based on model-driven software engineering [12]. The
advantage of model-driven methods is, that developers and
users which are less familiar with specific programming
paradigms are enabled to efficiently implement applications.
As Object Management Group (OMG) standard, the
Interaction Flow Modeling Language (IFML) offers model-
based and platform-independent development of applications
for different types of devices. Following the Model-Driven
Architecture (MDA) it is based on a meta-model and it is
built upon Web Modeling Language (WebML). A Web-
based and an eclipse-based modeling environment is
provided for IFML. Furthermore, extensions for Apache
Cordova and PhoneGap are provided [12]. An open
challenge is to keep the extensions up-to-date. Other
solutions, such as WebView, utilize native code and combine
it with Web technologies. Native components are used as
containers to render Web pages that contain application logic
and presentation layer definitions. Native components serve
to access device-specific functions (i.e. push notifications or
sensor data). Although WebView is a native application, it
can internally use Web technologies without switching to a
standard browser. WebView also supports CSS and
JavaScript for custom interface development [8]. However,
WebView does have two main drawbacks: 1) custom styling
is necessary to gain a native look and 2) its performance is
below average [13]. In summary, we observe three general
approaches to cross-platform development:

1. Native Application
2. Transformation- or generator-based Application
3. Interpreted Application (Parser-based)

With native development, an application is developed for
each specific device (and operating system). Benefits include
the native look and feel, the ability to use all platform-
specific features and a comparatively high performance of
the app. The most prevalent disadvantage is high efforts for
development and maintenance. The latter is a result of
redundancy in code and support because each platform has to
be served by a separate application [8], [9].

The use of generators employs a meta-implementation
which is then transformed to specific platforms (e.g. as used
in Cordova or Ionic). Similarly, model-driven development
approaches (such as IFML) may use transformations to
produce platform specific code. An advantage is that the
application logic is platform agnostic [12]. Applications
which are interpreted rely on some kind of parser. The parser
interprets application code during runtime in order to create
platform specific instructions. Fabrik19 utilizes an
interpreted approach in its Mobility Suite (MOS) framework.

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-645-3

COLLA 2018 : The Eighth International Conference on Advanced Collaborative Networks, Systems and Applications

B. Cross-Platform Frameworks
As discussed above, there are a lot of cross-platform

frameworks like IFML, Cordova, Corona Software
Development Kit (SDK), Appcelerator Titanium,
TheAppBuilder, PhoneGap, Native Script, SenchaTouch,
Framework7, Apache Weex, Flutter, Jasonette or Manifold –
also see [6]. All of them utilize one or a combination of the
three methods to create platform specific applications. In our
comparison, we strive to evaluate the most frequently used
and most progressively developed frameworks (see Fig. 2).

Figure 2. Ionic vs. React vs. Xamarin [14]

Ionic offers a generator-based approach [15]. The
framework is free to use and available as open source.
Additionally, several services are available via pay on
demand. The generator utilizes a Web application as input.
Thus, development of cross-platform applications is based
on Web technologies (JavaScript/TypeScript, HTML5 and
CSS; see Fig. 3). Ionic also relies on Angular [15] in order to
foster component based development and reuse of templates.
Ionic officially supports Android, iOS and UWP [16]. Since
Ionic is based on Web applications that are generated into
platform specific applications through Apache Cordova,
these source applications may also be executed in any Web
browser. Native operating system functions and access to
sensors is only available after generation of platform specific
code. The utilization device specific functionalities often also
rely on plugins that have to be declared as dependency [17].

Services & Directives

Services & Directives

Figure 3. Ionic Architecture

Xamarin is another framework to develop cross-
platform apps for Android, iOS and Universal Windows

Platform (UWP) [18]. Other platforms such as Linux are not
supported and MacOS support was recently added with the
launch of Xamarin.Mac.

Xamarin is based on .Net and utilizes C# as
programming language. Xamarin is divided into two major
parts: 1) Xamarin platform and 2) Xamarin.Forms. The
Xamarin platform (Xamarin.Android, Xamarin.iOS)
provides APIs to share code for application logic between all
platforms. The UI is written individually for each platform.
Xamarin.Forms allows to create additional platform-
independent UI, which are mapped into native UI in a second
step. The development environment is based on Visual
Studio (or Xamarin Studio for macOS) [18].

React Native is a parser based open-source framework
for building cross-platform applications [19]. It is based on
React. Both frameworks are being developed by Facebook.
React Native currently supports Android and iOS. However,
with a little more effort, it is also possible to deploy to UWP.
Since React is built on JavaScript, this holds true for React
Native as well. React Native invokes Objective-C APIs to
render to iOS components and Java Application
Programming Interface (APIs) to render to Android
components. This means that no code generation is utilized
in React Native. Facebook promises that the performance of
apps would be almost as good as that of native applications.
Components for React Native may either be built as
functional components or class components [19].

III. REFERENCE ARCHITECTURE AND IMPLEMENTATION
This paper follows the constructivist paradigm of design

science [20]. Thus, insights will be retrieved by creating and
evaluating artifacts in the form of models, reference
architectures and, in our case, specific implementation
variants and efforts spent on their creation. Contrary to
empirical research, the goal is not necessarily to evaluate the
validity of research results with respect to their truth, but to
the usefulness and feasibility of the different approaches in
order to solve a common problem – here, to deploy with ease
to different mobile platforms. Following this line of thought,
requirements will be imposed by the definition of a reference
application architecture. The reference architecture is derived
using common hypotheses, practitioner interviews and
literature review. The reference architecture serves as
requirements model for the implementation of different
alternatives and tests in a real environment.

Thus, the reference application architecture is defined to
compare most utilized frameworks against each other and to
identify strengths and weaknesses. To enact a comprehensive
comparison [6], [21], the application should access native
system functionalities and provide a platform specific UI. In
short, the frameworks should generate applications, which
are close to native applications. Thus, we also evaluated
against platform specific UI guidelines for Android and iOS
[22]. We defined the following functional reference criteria:

1. Layout: Grid
2. Layout: Tab
3. Operating System Function: Access current time
4. Sensor Function: Access current position (GPS)

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-645-3

COLLA 2018 : The Eighth International Conference on Advanced Collaborative Networks, Systems and Applications

5. Sensor Function: Access the phone camera

In addition to functional criteria, it is also important to
measure quality aspects, such as development efforts and
application performance. Therefore, we analyzed two
different types of layouts mentioned in the list above, that are
often used in today’s apps – Mockups are depicted in Fig. 4.

Figure 4. Wireframes

A. Ionic
Layout – Grid: Ionic provides a typical Grid-View with

the <ion-grid> component [16]. Furthermore, styling of the
GridView can be set individually. Layout – Tab: Using
Tabs in Ionic is easy as wall, it may be just derived by use of
the starter template (which provides this from scratch).
Precise instructions may also be found in the documentation
[16].

Access system time: This is derived by simple and built-
in JavaScript function calls (e.g., date().getHours() is used to
get the current hour). Access current position (GPS): To
determine the position, the Cordova plug-in Geolocation has
to be installed via npm. Then, it can be integrated in the
project [16]. As shown Listing 1, the position can be
retrieved, if the necessary sensors are available and
permissions are given. Access to the camera: To use the
camera, the Cordova plugin Camera is required and has to be
integrated into the project [16].

Listing 1

getThePosition(){
 this.geolocation.getCurrentPosition().
 then((resp) =>{

 this.longitude = resp.coords.longitude;
 this.latitude = resp.coords. latitude;
 this.altitude = resp.coords. altitude;
 this.speed = resp.coords. speed;
 }).catch((error) => {
 console.log("Error getting location", error);
 });
}

Debugging & testing: Ionic offers several methods to
debug and test apps. If the application is not utilizing sensor
information, a clean Web test can be driven (by ionic
serve). Web tests may be carried out as known for Web
applications in general – such as debugging by means of the
browser’s developer console (F12 shortcut) or employing

Web driver test scripts. If sensor information is utilized the
application has to be deployed to a platform specific device
or an emulator. With Ionic this can be done by calling ionic
cordova build android|ios to build the app and ionic
cordova emulate android|ios to execute the app on an
emulator. If a test device is being utilized instead of
emulation (by calling ionic cordova run android|ios)
the application may again be tested in a browser, e.g. using
Google Chrome (chrome://inspect/#devices has to be
called and the specific device has to be selected). In order to
automate unit testing typical tooling as known for other
JavaScript-based frameworks can be used. To test the
reference implementation, we could simply employ the well-
known frameworks Karma and Jasmin.

B. Xamarin
Layout – Grid: In Xamarin the layout differs, depending

on the chosen platform. For Android GridView and for iOS
uicollectionview has to be used [18]. Layout – Tab: In
Xamarin tabs have to be set up manually. There is no
standard template available to support this layout. Typically,
a tabbed page will be used to reference other content
integrated as tabs.

Access system time: To retrieve the system time, a
ViewModel is created, and a DateTime attribute tracks the
current time. For updates a PropertyChanged event is fired.
The reference is made possible by the data binding. Access
current position (GPS): The current position is determined
by the plugin Xam.Plugin.Geolocator [18] (installed via
NuGet). Adjustments are needed to support Android. In
addition, necessary privileges for querying the position must
be granted. After configuration, the logic can be
implemented. Attributes for longitude and latitude have to be
mapped to determine the location (see Listing 2). Access to
the camera: Camera access is realized with the plugin
Xam.Plugin.Media [18]. It has to configured by means of
xml. In important step is the definition of a resources folder
to determine where to store captured pictures and videos.
The camera itself can be called asynchronously
(getTakePhotoAsyncCommand).

Listing 2

public async System.Threading.Tasks.Task
getLocationAsync()
{
 var locator = CrossGeolocator.Current;
 locator.DesiredAccuracy = 50;

if (locator.IsGeolocationAvailable &&
locator.IsGeolocationEnabled) {

 var position = await
 locator.GetPositionAsync();
 this.Longitude="Longitude" +

 position.Longitude.ToString();
 this.Latitude="Latitude" +

 position.Latitude.ToString();
 }
}

Debugging & testing: Xamarin enables unit testing and
debugging with Visual Studio. For Xamarin, Visual Studio
basically offers the same mechanisms as known for any other

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-645-3

COLLA 2018 : The Eighth International Conference on Advanced Collaborative Networks, Systems and Applications

component which is developed within Visual Studio (such as
break points and live debugging). Visual also offers support
for asynchronous testing and mock object creation, e.g. if the
Model View Viewmodel (MVVM) pattern is applied and
view models invoke service operations asynchronously.
Visual Studio also provides a well sophisticated profiler,
which provides monitoring of memory utilization and object
allocation. Finally, Xamarin also offers also a test cloud for
UI-Tests – where automated testing for native and hybrid
applications is done by employing the App-Center.

C. React Native
Layout – Grid: React Native does not provide a grid

layout immediately. To resemble a grid-layout within the
reference implementation, a ScrollView component was used
and individual views had been adapted by means of CSS.
Alternatively, third-party grid components could be utilized
as well to resemble a grid layout. React Native Easy Grid
and React Native Layout Grid are just two examples of these
components, which may be installed via npm. Layout –
Tab: React-Native Expo IDE can create a starter app which
directly operates with tabs. Manual creation is not as easy as
in Ionic but efforts are still considerably low.

Access system time: Is achieved by simple JavaScript
calls. this.state [19] is needed for the databinding and new
Date().getHours() retrieves the current hour. Access
current position (GPS): The determination of the current
position is already integrated in the React Native API [19].
The position is retrieved by calling navigator.
geolocation.getCurrentPosition, further details can be
seen in Listing 3. Access to the camera: Camera and access
rights have to be configured and hasCameraPermission has
to be set to zero. The componentWillMount method the
permissions are checked and we the status is updated. The
asynchronous method takePicture is utilized to check if the
camera is available and if it was possible to take a picture.

Listing 3

Navigator.geolocation.getCurrentPosition(
 (position) => {
 this.setState({
 latitude: position.coords.latitude,
 longitude: position.coords.longitude,
 error: null,
 });
},
(error) => this.setState({ error: error.message }),
{ enableHighAccuracy: true, timeout: 20000,
maximumAge: 1000},
);

Debugging & testing: React Native similarly offers
multiple ways to debug and test apps. Debugging mode can
be activated from a developer menu. This can be called by
keyboard shortcuts or, if running on a test device, by shaking
the smartphone. To debug the JavaScript code in Chrome, a
remote debugging session can by created when select Debug
JS Remotely is selected from the developer menu. This will
open http://localhost:8081/debugger-ui in a new

browser tab. Other debugger implementations may be used
as well and a recommendation then would be to use the
standalone version of React developer tools. These can be
installed via npm install -g react-devtools and may be
called via react-devtools. To set up unit testing for React
Native it is recommended to utilize Jest and execute tests via
node. For integration testing, several different options exist.
Integration testing always relies on platform specific
environments; thus those have to be set up first.

IV. EVALUTION
The evaluation and comparison of different frameworks

is based on our test app. We selected evaluation criteria
based on the evaluation framework developed by Heitkötter
et al. [23]. It covers different evaluation criteria, especially
for infrastructure (including the lifecycle as well as the
functionality and usability of the app) and app development
(including testing, debugging and developing the app). We
also extended or removed some criteria (e.g. scalability) to
focus the following app properties:

1. Supported platforms
2. Supported development environment
3. Access to platform-specific functions
4. Application look and feel
5. Application portability
6. Simplicity of development
7. Application performance

It is important which platforms (Android, iOS, UWP,
etc.) and to which extent these are supported by each
framework. The next criterion discusses all possible
development platforms and environments (Windows,
MacOS and Linux). With the help of our test app we intend
to analyze if platform-specific functions are available. Also,
an evaluation of the UI is conducted to measure platform
specific look and feel. Moreover, we want to unveil if the
source code is reusable and if it can be integrated into other
frameworks (portability). Also, the development efforts play
a major role and will be evaluated within criterion 6. In order
to assess and evaluate efforts and feasibility of the
frameworks, we asked five experiences developers to
implement our test application according the reference
architecture. The following evaluation is also based on their
feedback. Finally, we conducted an assessment of the
application's performance. Therefore, the test app is used to
measure: start time, used memory and execution speed of
internal functionalities such as GPS polling. For this purpose,
three test devices (Honor 9, Sony XZ1, Samsung Galaxy S7)
were used. 100 test runs were conducted for each device to
stabilize results.

A. Ionic
Configuring a system for Ionic and creating a first app

only takes a few minutes. Regarding ramp up, the majority
of our developers found that Ionic is the easiest framework to
start with. It has to be mentioned, that it is necessary to
ensure that all dependencies (to plug-ins) are installed
according their declared version. This can be error prone,
especially when Ionic is updated. In case of multiple app

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-645-3

COLLA 2018 : The Eighth International Conference on Advanced Collaborative Networks, Systems and Applications

development projects, conflicts may also arise between
dependencies of different projects. Hence, previously
deployed Ionic projects should be removed from the test
device to prevent side effects during testing. As a
prerequisite to start and develop Ionic applications only
knowledge in the typical Web development stack (HTML,
JavaScript and CSS) is required. TypeScript as an extension
of JavaScript and thus is easy to learn if JavaScript is already
known. TypeScript provides additional benefits compared to
JavaScript (especially type safety) – some extension have
been adopted into ECMAScript-6 (such as classes,
inheritance or generics) [24].

In addition, Ionic reuses Angular, which makes it easier
to keep the code clean, separate concerns and speed up
development of the application itself. The project structure in
Ionic is logically well structured according to Web
component architecture. Since Ionic relies on Web
technologies, the user is free to choose the development
environment [16]. The use of Cordova is another advantage,
especially because it enables access to system specific
functionality and device sensors. Furthermore, Cordova
improves re-use of application components, since a single
code base can be utilized for all platforms. However, since
Ionic is based on Web-technologies and packaged into native
wrapper applications, the performance is behind native
applications. Former evaluations also indicated that the
performance is behind Xamarin and React Native, especially
for larger applications [20].

B. Xamarin
Xamarin projects can be set up in Visual Studio. With the

use of C#, Xamarin is the best choice for developers, who
also work conventionally with C#. Another advantage is the
native UI [18]. Users will not recognize any difference to
native applications. Xamarin offers to share a single code
base between platforms, to develop application logic.
Platform specific extensions may be integrated with a
subproject feature of Xamarin. As for all cross-platform
frameworks, problems may arise with third-party plugins
(installed via NuGet). We recognized several issues with
outdated plug-ins. In general, our experience has shown that
new device and operating features of mobile devices had
been adopted very fast by Xamarin. Hence, in most cases it
framework based services can be used instead of third-party
plugins. Regarding testing and debugging applications, the
developers stated, that Xamarin would be the most
convenient framework to use. This may be the case because
of extended possibilities instantly provided by Visual Studio.

C. React Native
React Native is easy to set up as well. React Native is

built upon React, and is also based on JavaScript.
Applications developed in React Native interpreted directly
and the design appears near to native. Interesting features
include a well-designed live debugging. With Expo, React
Native offers an open source toolchain to simplify
deployment on test devices. Although this may result in
some benefits, we observed that the apps that are generated
by the Expo are structured differently than those set up by

the console. Additionally, these apps have different access to
native functions. Another disadvantage compared to the
other frameworks is interface development. React utilizes a
lot of specific HTML-Tags which we recognized as
somewhat difficult to use and configure. This makes it more
difficult to get started than with other frameworks, even if
experience in Web technologies is preexistent.

D. Comparative Evaluation
To evaluate all frameworks comparatively and in an

objective manner, we implemented a test application
according the reference architecture (as defined in Section
3). In a second step, we measured the criteria defined at the
beginning of Section 4, to reason about benefits and
limitations of all frameworks.

Supported platforms: Ionic officially supports Android,
iOS and since 2016 also UWP development, although the
documentation is still very limited here. Xamarin offers full
support for Android, iOS and UWP. Limited support is
provided for MacOS. React Native supports iOS, Android
and with a little extra effort also UWP applications.
Supported development environment: Ionic applications
can be developed on Windows, macOS and Linux. The
development platform for Xamarin is Visual Studio for
Windows and Xamarin Studio for macOS. React Native
supports Windows, macOS and Linux. Access to platform-
specific functions: Ionic provides access to iOS, Android,
Microsoft and browser-based features. Platform-specific
functions can be used via various Cordova plugins. With
Xamarin, all platform-specific functions can be used in a
similar fashion. However, Xamarin offers different
possibilities to access platform specific functions. The fastest
possibility is to install corresponding NuGet packages. A
second option would be the definition of interfaces with
platform or devices specific implementations and expose this
shared code via the dependency service. Then there is also
the possibility to use native libraries, for example written in
pure Java for Android, via binding. While React-Native is
JavaScript-based and many native functions are not
supported, it is possible to include native SDKs and libraries.
However, this requires specific code for Android (in Java)
and for iOS (in Swift) which results in higher development
efforts. In addition, these features are currently not mature
enough.

Application look and feel: Ionic offers its own widgets
for the UI. Navigation elements (e.g. back button) are
provided in platform-specific style, so the differences to
native apps are small. As already described in Section 3, the
use of a GridView in Ionic is very simple. Xamarin creates
completely native UI, thus the interface is familiar to the
user. Xamarin also supports styling with themes and the
interface is not different to native apps. Xamarin Android
also supports material design. React Native uses specialized
widgets. Setting up a GridView it is not as easy as in Ionic or
Xamarin, CSS has to be used to achieve this layout. In
general, Ionic and React Native ignore style guidelines of
platforms partially and some widgets break them explicitly.
For example, tabs in Android are at the top of the screen in
native apps, while this is not the case in apps developed with

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-645-3

COLLA 2018 : The Eighth International Conference on Advanced Collaborative Networks, Systems and Applications

Ionic or React Native. Xamarin, in contrast, uses tabs as
expected.

Application portability: Since Ionic represents a hybrid
approach, portability of the source code is given and further
supported through Cordova. Since Ionic modules are well-
structured and based on Web technologies, they can be
transferred to other Web frameworks. However, as many
other frameworks, Ionic uses specific HTML tags that may
not be supported in other frameworks, thus there is limited
transferability of this module part. Since Xamarin separates
application logic and UI related code, it offers the best
portability and reuse of the logic. Furthermore, Visual Studio
offers a portability analyzer to transfer the UI related parts as
well. Of course, it has to be said that this is restricted to .Net
and mono frameworks. The UI (defined by eXtended
Application Markup Language (XAML)), could in principle
be transformed into HTML or similar languages, which,
however, requires further manual efforts in a second step.
Similarly, React Native offers portability to different
platforms. React-Native code is relatively easy to transfer to
other frameworks that use JavaScript, HTML, and CSS.
Comparable to Ionic, specialized HTML tags have to be
XAML handled manually. However, since as React Native
Logic, UI and CSS are typically implemented in a single file,
this tends to be tedious.

Simplicity of development: Through a lot of
documentation (tutorials, community discussion, API
documentation, quick start and programming templates) a
quick and efficient start in development of Ionic Apps is
possible. Because of the short development lifecycle,
confusion may occur through different version documents
and some outdated plugins. Occasionally, the framework
reveals unexpected behavior (some builds end up with
broken apps, while a rebuild without code change is
successful). We intend to examine this further. Currently we
believe that this is related to generator issues. In principle,
the development with Xamarin is fast as well, since the
framework also possesses a very good documentation
(tutorials, sample projects and a very precise API
documentation). The programming language underneath
(C#) also is very sophisticated and in our opinion much
better then JavaScript. In terms of simplicity, Visual Studio
or NuGet may pose a certain barrier for developers not used
to it in the beginning. The entry into the development with
React Native is comparable to Ionic. The use of the
framework-specific UI elements is different from the other
frameworks but does not impose an obstacle. The ability to
see and debug all changes in real-time eases troubleshooting.
A larger issue is related to external libraries and modules.
Since many of these modules and libraries are not officially
supported, regular maintenance and support is not
guaranteed. In addition, we observed that the installation of
node modules consumes much more time compared to Ionic.

Application performance: (100 test runs of the test app,
with three test devices) The required start time of the Ionic
test app is between 2s and 2.5s, while Xamarin requires 3 to
3.5s, and React Native 4 to 5s. The size of the Ionic app is 10
MB, while Xamarin requires 24 MB and React Native
requires 11 MB. The time the Ionic app takes to retrieve the

current location (with high signal strength of GPS) is
approximately 0.2s, while Xamarin needs 3.2s and React
Native 0.5s. Based on upon the evaluation criteria presented
and measured above, the overall results are summarized in
Table 1 (“++”=very good , “+”=good, “0”=neutral, “-“=poor,
“--"=very poor).

TABLE 1: EVALUATION OF CROSS-PLATFORM FRAMEWORKS

Evaluation Criteria Ionic Xamarin React
Native

Supported platforms + ++ +
Supported development
platforms ++

0
++

Access to platform-specific
functions + ++ 0

Application Look & Feel + ++ +
Application Portability 0 0 0
Simplicity of development ++ + 0
Application performance ++ + 0

V. CONCLUSION AND OUTLOOK
Development of cross-platform applications is supported

by different approaches: native development, transformation-
or generator-based and interpreted. With the exception of
native development, all approaches share in common that
some layer of abstraction is introduced to encapsulate
platform specific details. The latter enables platform-
independent development in combination with platform-
dependent deployment. In our case study, we examined three
frameworks (Ionic, Xamarin and React-Native) in depth. In
general, the performance of Ionic was reported to be the
slowest of these three frameworks, with our test applications
However, we measured Ionic to be the fastest of all three.
Compared to other studies [4], we also observed
performance enhancements of all evaluated cross-platform
frameworks. This holds true for response and processing
times as well as sensor access. The latter may be a result of
framework improvements within the latest versions as well
as improvements of the mobile device platforms. From a
user perspective, there are no performance issues
recognizable compared to native apps. All evaluated
frameworks provide full access to system functionalities and
sensors. Although new releases of operating systems provide
new functionalities and sometimes also completely different
API, the rate and speed of adoption in cross platform
frameworks is quite high [25]. All cross-platform
frameworks allow generic development for different
operating systems, although there still exist limitations. As
we discovered in the reference-app, sometimes apps are not
completely portable, and still require platform specific
adjustments. Furthermore, the re-use of components between
different mobile applications is not yet supported. However,
Ionic promises to allow the use of other components written
in React, Vue and Angular in its next version [16].

Furthermore, long-term support is essential to reach a
broad range of users and to enact support of up to date
applications. With recent releases of the examined
frameworks it could be observed, that backward
compatibility to APIs of former releases was not given (e.g.,
between Angular1 to Angular2). This may be repeated with

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-645-3

COLLA 2018 : The Eighth International Conference on Advanced Collaborative Networks, Systems and Applications

new releases in the future. Thus, for mobile software
engineering, it is questionable if standardized component
development (e.g. Web component architecture) will be
adopted and foster framework consolidation or if the
proliferation of new programming languages and techniques
will continue to split the market. Similar reasoning applies to
backward compatibility of API. Consequently, further
research questions regarding API issues arise. A major
question will be, if it is possible to transfer code from current
framework applications to new releases and preserve its
functionality (even if the API changes). Therefore, as a next
step, we intend to define a model-driven approach that
tackles this issue. In this context, we plan to compare parser-
based methods to transformation-based cross-platform
approaches and derive API mappings.

REFERENCES
[1] Statista, “Internet of Things, Forecast, Number of networked

devices worldwide by 2020,” Statista. [Online]. Available:
https://de.statista.com/statistik/daten/studie/537093/umfrage/
anzahl-der-vernetzten-geraete-im-internet-der-dinge-iot-
weltweit/. [Accessed: 07-Mar-2018].

[2] Statista, “Number of smartphone users worldwide 2014-
2020.” [Online]. Available:
https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/. [Accessed: 15-May-2018].

[3] L. Corral, A. Janes, and T. Remencius, “Potential advantages
and disadvantages of multiplatform development
frameworks–a vision on mobile environments,” Procedia
Comput. Sci., vol. 10, pp. 1202–1207, 2012.

[4] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M.
Wahba, “Taxonomy of Cross-Platform Mobile Applications
Development Approaches,” Ain Shams Eng. J., vol. 8, no. 2,
pp. 163–190, Jun. 2017.

[5] Statista, “Android - Proportion of versions, Statistics,”
Statista, Feb-2018. [Online]. Available:
https://de.statista.com/statistik/daten/studie/180113/umfrage/
anteil-der-verschiedenen-android-versionen-auf-geraeten-
mit-android-os/. [Accessed: 07-Mar-2018].

[6] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein,
“Survey, comparison and evaluation of cross platform
mobile application development tools,” in Wireless
Communications and Mobile Computing Conference
(IWCMC), 2013 9th International, 2013, pp. 323–328.

[7] M. Lachgar and A. Abdali, “Decision Framework for Mobile
Development Methods,” Int. J. Adv. Comput. Sci. Appl.
IJACSA, vol. 8, no. 2, 2017.

[8] V. Ahti, S. Hyrynsalmi, and O. Nevalainen, “An Evaluation
Framework for Cross-Platform Mobile App Development
Tools: A case analysis of Adobe PhoneGap framework,”
2016.

[9] P. Smutný, “Mobile development tools and cross-platform
solutions,” in Proceedings of the 2012 13th International
Carpathian Control Conference, ICCC 2012, 2012.

[10] J. Perchat, M. Desertot, and S. Lecomte, “Component based
framework to create mobile cross-platform applications,”
Procedia Comput. Sci., vol. 19, pp. 1004–1011, 2013.

[11] M. E. Joorabchi, M. Ali, and A. Mesbah, “Detecting
inconsistencies in multi-platform mobile apps,” in Software
Reliability Engineering (ISSRE), 2015 IEEE 26th
International Symposium on, 2015, pp. 450–460.

[12] R. Acerbis, A. Bongio, M. Brambilla, and S. Butti, “Model-
Driven Development Based on OMG’s IFML with
WebRatio Web and Mobile Platform,” in Engineering the
Web in the Big Data Era, 2015, pp. 605–608.

[13] A. Holzinger, P. Treitler, and W. Slany, “Making Apps
Useable on Multiple Different Mobile Platforms: On
Interoperability for Business Application Development on
Smartphones,” in Multidisciplinary Research and Practice for
Information Systems, 2012, pp. 176–189.

[14] “Ionic vs React Native vs Xamarin 2018 Comparison |
StackShare.” [Online]. Available:
https://stackshare.io/stackups/ionic-vs-react-native-vs-
xamarin. [Accessed: 07-Mar-2018].

[15] M. Ramos, M. T. Valente, R. Terra, and G. Santos,
“AngularJS in the wild: A survey with 460 developers,” in
Proceedings of the 7th International Workshop on Evaluation
and Usability of Programming Languages and Tools, 2016,
pp. 9–16.

[16] Ionic, “Build Amazing Native Apps and Progressive Web
Apps with Ionic Framework and Angular,” Ionic Framework.
[Online]. Available: https://ionicframework.com/. [Accessed:
07-Mar-2018].

[17] Apache Cordova, “Architectural overview of Cordova
platform.” [Online]. Available:
https://cordova.apache.org/docs/en/7.x/guide/overview/index
.html. [Accessed: 09-Mar-2018].

[18] “Developer Center - Xamarin.” [Online]. Available:
https://developer.xamarin.com/. [Accessed: 07-Mar-2018].

[19] Facebook, “React Native · A framework for building native
apps using React.” [Online]. Available:
https://facebook.github.io/react-native/index.html.
[Accessed: 09-Mar-2018].

[20] A. Hevner and S. Chatterjee, “Design science research in
information systems,” in Design research in information
systems, Springer, 2010, pp. 9–22.

[21] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real
challenges in mobile app development,” in Empirical
Software Engineering and Measurement, 2013 ACM/IEEE
International Symposium on, 2013, pp. 15–24.

[22] M. Willocx, J. Vossaert, and V. Naessens, “A Quantitative
Assessment of Performance in Mobile App Development
Tools,” in 2015 IEEE International Conference on Mobile
Services, 2015, pp. 454–461.

[23] C. Rieger and T. A. Majchrzak, “Weighted Evaluation
Framework for Cross-Platform App Development
Approaches,” 2016, pp. 18–39.

[24] Microsoft, “TypeScript is a superset of JavaScript that
compiles to clean JavaScript output,” 07-Jun-2018. [Online].
Available: https://github.com/Microsoft/TypeScript.
[Accessed: 07-Mar-2018].

[25] M. Martinez and S. Lecomte, “Towards the quality
improvement of cross-platform mobile applications,”
ArXiv170106767 Cs, Jan. 2017.

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-645-3

COLLA 2018 : The Eighth International Conference on Advanced Collaborative Networks, Systems and Applications

	I. Introduction
	II. Related Work
	A. Cross-Platform Development
	B. Cross-Platform Frameworks

	III. Reference Architecture and Implementation
	A. Ionic
	B. Xamarin
	C. React Native

	IV. Evalution
	A. Ionic
	B. Xamarin
	C. React Native
	D. Comparative Evaluation

	V. Conclusion and Outlook
	References

