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Abstract — The development of new mobility services has 

progressed rapidly in recent years. Nowadays, users can choose 

from a variety of different mobility services and constantly 

new options become available. In this paper, we present the 

development of a new mobility assistance system that provides 

decision support for the user in order to facilitate selection of 

the best suiting means of transportation. Moreover, the impact 

of new mobility services on the user’s individual travel 

behavior as well as the impact on the transport network in 

general are elaborated in this paper. The mobility assistance is 

a distributed system that collects and aggregates data from 

different providers to offer relevant, context-sensitive 

information for the user’s current situation. Information, such 

as timetables of public transportation, real time data on delays, 

availability of car sharing vehicles or traffic congestions are 

aggregated, refined and then presented to the user. The 

mobility assistance supports the user regarding route selection, 

as well as scheduling of activities that are managed within the 

users’ calendar with consideration of different starting times. 

Moreover, the mobility assistance implements optimization 

strategies to improve the user’s travel needs according to his 

personal preferences. Activities as well as associated trips 

during a week can be optimally combined and rescheduled in 

order to achieve a lower overall travel time or low cost of 

mobility.  

Keywords: mobility patterns; activity generation; mobility 

assistance; new mobility services. 

I.  INTRODUCTION  

Technical developments, such as the Internet of Things 
(IoT) offer the possibility to develop new innovative services 
for the user [1]. This also applies for the development of new 
information services in the field of mobility. New mobility 
services and mobility management systems are becoming 
increasingly important. Nowadays, users have the possibility 
to choose from a variety of mobility options for their daily 
trips [2]. Due to more flexible working arrangements and 
changing user preferences regarding modes of transportation, 
new activity patterns can be observed [3]. The variety of 
mobility options leads to a greater complexity in decision 
management. Several mobility options can be used in 
combination and require the users to compare complex 
alternatives. Hence, customer-oriented services can help 
users to find optimal solutions regarding trip and schedule 
planning in consideration of personal preferences. In this 

paper, we present the development of customer-oriented 
mobility services and their impact on the users’ travel 
behavior. 

As part of the BMBF-funded research project BiE 
(Evaluation of integrated Electric Mobility), several project 
partners are involved in the development of new mobility 
management services to promote the integration and 
acceptance of electric mobility. Therefore, electric mobility 
solutions have to be easily available and integrated in 
everyday life. In addition, they should support the user in the 
selection and comparison of mobility services and options. 
The personal mobility assistance system, which offers the 
user the best possible support to carry out his daily trips is 
currently under development. It integrates decision support, 
especially for complex combination of mobility options and 
scheduling of activities. The information provided comprises 
data on travel modes, possible routes and starting times of 
trips. Furthermore, the mobility assistance system 
reschedules the user’s activities of one week to create trip 
chains that optimize the user’s schedule according to 
individual preferences, generally to minimize travel times, 
travel costs or environmental pollution. 

In this paper, the architecture and functionality of the 
mobility assistance system are presented and effects on travel 
behavior are analyzed. Since the mobility assistance can 
have an impact on the daily mobility (e.g., changing the 
sequence of activities due to shorter travel times or the 
combination of several activities into trip chains), there 
potentially are more effects on individual travel demand or 
the transport network. To investigate the reorganization of 
activity patterns in use of such mobility assistance systems a 
microscopic multi-agent traffic demand model has been 
extended with a module for synthetic generation of activities. 
The traffic demand model thus allows the quantification of 
the mobility assistance’s impact on daily mobility.  

The rest of the paper is structured as follows. Section II 
describes the mobility assistance. Therefore, Section II.A 
provides an introduction into distributed systems and 
microservice architectures. Then Section II.B discusses the 
mobility assistances architecture and subsequently, Section 
II.C goes into finer details with respect to the selected 
optimization approach. Section III describes how the 
mobility assistance could impact on travel behavior. Finally, 
the conclusion and acknowledgements close the paper. 

49Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-517-3

COLLA 2016 : The Sixth International Conference on Advanced Collaborative Networks, Systems and Applications



II. MOBILITY ASSISTANCE 

The mobility assistance is implemented as distributed 
system. The system comprises many components that act 
independently, but co-ordinate their actions in order to 
provide the required functionality. The coordination is 
technically based on the exchange of messages over the 
Internet. For the individual user of the mobility assistance, a 
mobile application (smartphone app) is provided as a user 
interface to optimize his personal travel behavior. The 
optimization is calculated by mobility assistance based on 
information received from various services (message 
exchange). These services include real-time information 
regarding different transportation alternatives, such as the 
availability of car-sharing vehicles, public transportation, 
possible delays or traffic congestions. In order to control the 
system’s complexity, the user is only presented with 
information that is relevant for the current situation and 
scheduling of future activities. Moreover, the user will 
receive notifications regarding possible optimizations of his 
schedule according to his personal preferences. For this 
purpose, the system monitors the user’s calendar and reacts 
to new events. In addition to the presentation of context 
related information, the system proposes alternative routes 
and modes of transportation. This optimization is based on 
individual user preferences (e.g., minimizing travel time, 
minimizing travel costs, selection or deselection of certain 
modes of transportation). 

A. Distributed Systems and Microservice Architectures 

In order to calculate optimal results for each individual 
user based on distributed heterogeneous data, a complex 
network of different subsystems is essential. In this 
connection, two principles of information processing are 
important: first, the optimization can only be provided by 
distributed systems and secondly, the state of an information 
object is subject to a certain degree of uncertainty during the 
optimization process. The latter is due to CAP theorem 
known in IT: In distributed systems, where loss of single 
messages (partition tolerance) can always occur due to 
network failures, it is not possible to ensure that a 
changeable data object is available (availability) and that 
each participant of the distributed system has a consistent 
(consistency) view on this respective object [4]. 

Therefore, a distributed system (running the mobility 
assistance) that relies on distributed data has to provide 
algorithms that can cope with this degree of uncertainty. For 
the design of an appropriate software architecture, the most 
important requirements are extracted: a) real time: the 
mobility assistance should calculate and present the results 
(schedule optimization) in (almost) real-time for each user. 
b) sub-optimal results are acceptable: it is more important to 
display an improvement than to calculate the absolute 
optimum. c) scalability: the system must remain functional 
even with an increasing number of users and data (high 
load). 

Given these requirements, BiE project partners have 
selected a software architecture that is suitable for a high 
load and provides a good flexibility regarding future 
development at the same time. The latter is particularly 

important because the partners involved in the project focus 
on different aspects of the mobility assistance. The 
architecture should support a partner-independent 
implementation of services. This idea is rooted in the 
paradigm of service-oriented architecture (SOA). However, 
SOA is currently subject to an ongoing discussions regarding 
future development and application, where the concept of 
microservices attracts a lot of attention [5]. Microservices 
can be seen as an architectural pattern for the design of 
distributed software systems. Briefly: microservices are an 
approach to implement a system based on a large number of 
small services. This is similar to the primary principle of 
SOA. However, some more stringent requirements are 
generally associated with microservices. Within the concept 
of microservices each service should be carried out 
independently from other services (own process space), use 
its own data (database) and offer lightweight communication 
mechanisms (often REST) to other services. With regard to 
the size of a service, it is intended to bundle only 
functionalities within the service, which serve a single 
business capability. Hence, the scope of a single 
microservice is very limited, thereby reinforcing basic 
principles of service-oriented architectures. In particular, 
loose coupling and separation of concerns can be easily 
achieved this way. Additionally, microservices strengthen 
the following principles: intelligent services and basic 
communication (smart endpoints & dumb pipes), 
evolutionary design, strict encapsulation (shared nothing), 
decentralized governance, distributed data storage and 
automation of infrastructure (build, test and deployment 
processes). 

Unlike traditional SOA, the microservice approach is 
based on simple communication mechanisms. Instead of a 
sophisticated Enterprise Service Bus (ESB) microservices 
rely on the architectural pattern pipes and filters. The 
intelligent processing of messages takes place within the 
services (smart endpoint) while the communication is 
implemented using simple mechanisms like REST or 
asynchronous messaging. Hence, microservices can be easily 
replaced by new implementations, thereby following the 
principle of evolutionary design. Strict encapsulation in turn 
is an important prerequisite to enable evolutionary design. 

These principles allow each project partner to develop 
functionality independently of other partners. Within the 
project this enables partners to yield their specialized know-
how in the best possible way and allow for algorithms and 
functions that can be independently developed and deployed. 
The microservice approach thus enables the implementation 
of the mobility assistance as distributed system that is 
capable of performing real-time traffic analysis even under 
heavy load (number of users). The system is based on so-
called reactive microservices adopting the Vert.x framework. 
The individual services are implemented as verticles in 
Vert.x. The architecture of Vert.x contributes to a high 
modularity of the system and facilitates the integration of 
new services.   
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Figure 1. Mobility Assistance Architecture (Overview) 

Vert.x itself is a lightweight, event based framework that 
supports the development of distributed systems. Different 
programming languages can be used to implement the 
services as verticle, thereby strengthening the independence 
of the development team. Each verticle comprises some 
aspects of the actual application logic of the mobility 
assistance system. In general, a verticle will respond to an 
event or create a new event. Communication between the 
verticles is established via an integrated and distributed bus. 
Communication takes place through the typical messaging 
patterns (publish-subscribe or point-to-point).  

B. Architecture of new Mobility Assistance 

The mobility assistance is a complex network of 
distributed systems and leverages a microservice-based 
architecture as discussed in Section II.A. In order to provide 
the required functionality, the mobility assistance makes use 
different interconnected components/subsystems that have 
been implemented as microservice (in this context also 
known as verticle). The components can be classified as 
follows (see Fig. 1): external data or service provider 
(white), Vert.x Event Bus (green), services / verticles (blue) 
and mobile application (yellow). 

Moreover, each component illustrated in Fig. 1 can be 
assigned to specific domain, i.e., a) the mobility assistance 
domain, b) the mobility data and mobility provider domain 
and c) the calendar domain. Components within the mobility 
assistance domain implement the core functionality as well 
as the communication between different components and the 
mobile application. The remaining (non-colored) 
components comprise external domains that provide 
supporting calendar as well as mobility-related data and 
functions that are used by the mobility assistance. 

C. Optimization within the Organizer Verticle  

Within the organizer verticle, we developed a service 
called calendar optimization service. Its purpose is to 
optimize the whole week’s schedule of a given user. Before 
the optimization process itself is presented, the different 
sources that induce travel demands are discussed.  

Travel demands are not solely generated when a user 
searches actively for a route from point A to point B. More 
likely, the need for mobility is generated when the user is 
invited to an appointment and accepts the invitation in the 
first place. Therefore, the optimization of the user’s travel 
demand doesn’t start with the optimization of the routes 
between his appointments, but rather with optimizing his 
appointments themselves. Furthermore, there are not only 
appointments which generate travel demand. Thus, for the 
sake of simplicity, we will call all schedule elements of the 
user’s week-schedule – regardless of whether they generate 
travel demand or not – activities. 

Keeping this in mind, we divided the users’ appointments 
into two different classes. The first class is the class of 
activities which cannot be moved in any way, e.g. 
appointments which involve more than one people or 
conference calls. The other class is called free activities and 
contains all other schedule elements that are more or less 
freely moveable within the week. There are two different 
subclasses within the free activities. First, there are free 
activities which have to take place within a certain time 
frame on a certain day, e.g., from 8am to 3pm on Monday. 
The second subclass contains free activities which have 
larger time frames, i.e., they last more than one day. 
Generally speaking, optimization is achieved when the free 
activities are arranged optimally around the fixed activities, 
which – by definition – cannot be moved. During the 
optimization process it must be guaranteed, that every 
activity can be reached within the defined time frame.  

Within the time frames, activities can be attended by 
using various means of transport. The means of 
transportation may differ in departure time, which implies 
that they can only be used according to their departure time. 
Aside from this effect, traffic congestions in the morning or 
evening rush-hours may increase travel times as well as 
costs. To depict this behavior, we modelled the activities 
according to the asymmetric time-dependent travelling 
salesman problem with time windows (TDATSP-TW) as 
proposed by Albiach, Sanchis and Soler [6] and designed the 
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transformation in accordance with a generalized ATSP 
(GATSP) presented also in this paper.  

Other than Albiach et al. we had no access to CPLEX or 
other fast solvers for NP-hard problems. Instead of 
transforming the GATSP into an ATSP like Albiach et al. 
did, we developed an algorithm to solve the resulting 
GATSP while leveraging some of the GATSP’s 
characteristics to solve the problem instances.  

In order to design the algorithm, the Nearest-Neighbor-
Heuristic has been adopted. If a path is found by the heuristic 
in the reduced GATSP within the reduction presented by 
Albiach et al., we initialize our algorithm with this path and 
try to optimize it. Since there might occur many dead ends 
while cutting out the clusters, the heuristic stops if it leads to 
a dead end to avoid a brute force solution when there is, e.g., 
only one feasible path within the graph. After the opening 
procedure, we try to optimize the initial tour in our algorithm 
in case an initial tour has been found. In case no initial tour 
has been found, we compute all feasible solutions otherwise. 
Therefore, we start with all possible paths from the depot to 
all of the reachable nodes. For any reachable node, we 
compute recursively all nodes, which are reachable from this 
node, and build the paths piece by piece. The termination 
criterion for the recursion is either reached if the computed 
path is feasible (i.e., a Hamiltonian Cycle in the GATSP-
Graph) and cheaper as the cheapest path found so far, or if 
the path is infeasible and more expensive than the cheapest 
feasible path found so far. Within this process, there may 
occur problems without feasible solutions in the event that 
the combination of activities consumes more time within one 
day than the user can afford. 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

ID 11 ID 1200 ID 1300

ID 1100 ID 1400

ID 1101 ID 1500

ID 1102 ID 1201

ID 1301 ID 1600

ID 12 ID 1501

ID 1302

ID 1103

ID 13 ID 1202 ID 1401

ID 1601

ID 14 ID 1303

ID 1402

14:00

15:00

16:00

17:00

18:00

19:00

13:00

08:00

09:00

10:00

11:00

12:00

 

Figure 2. Initial week-schedule 

To improve the runtime of the algorithm, we split the 
problem into various sub-problems, which can be solved on 
different distributed nodes. Therefore, we build the 
TDATSP-TW instances by computing all possible 
combinations of fixed and free activities for a given day. Our 
algorithm is then applied to each combination and returns a 

feasible and optimal solution – provided a solution exists – 
for the combination. Subsequently, the best option within all 
of the distributed computed solutions we’ve collected, is 
selected. The best option contains all activities, violates none 
of the user’s preferences and has, according to the objective 
function, the lowest value. This solution solves the 
mentioned optimization problem best and thus is presented 
to the user.  

To demonstrate the power of our solution, we provide the 
following case study: Since the routing service is needed to 
compute the edges of our GATSP and the fixed activities are 
always the same for each combination, we added a cache to 
this instance. This way, we can save many expensive 
requests over the network. Furthermore, network accesses, 
e.g., over HTTP may be slow. Thus, our algorithm was 
applied two times to the provided example instance. Firstly, 
with a cold, and then with a hot cache, to show the effect of 
the travel planning instance in computation time. As travel 
planning instance, we used Google’s Distance-Matrix API 
[7]. The algorithm was executed on a desktop computer with 
an Intel i7 4770K CPU and 32GB DDR3 memory.  

TABLE I: ACTIVITY SCHEDULING AFTER OPTIMIZATION 

Activity ID Departure Arrival Distance (km) Costs

Monday 11 08:10 08:20 1,74 2,914

12 10:00 10:10 2,45 3,582

13 14:00 14:10 2,32 3,269

14 15:10 15:30 3,23 4,712

0 18:30 18:50 4,53 5,944

Tuesday 1100 08:10 08:20 1,75 2,85

1102 09:30 09:40 0 0,092

1103 12:00 12:10 0 0,081

0 16:30 16:40 1,17 2,111

Wednesday 1200 09:40 09:50 1,91 2,671

1202 10:50 11:10 6,33 6,102

1101 19:00 19:20 4,26 5,039

0 19:30 19:40 0,08 0,159

Thursday 1300 08:00 08:20 6,28 7,444

1301 10:00 10:20 4,55 6,146

1201 12:30 12:40 2,72 4,033

1302 12:50 12:50 0 0

1303 15:30 15:40 2,34 3,653

0 19:30 19:40 1,17 2,065

Friday 1400 08:40 09:00 6,3 6,166

1401 11:00 11:20 8 7,394

1402 17:00 17:20 4,78 5,927

0 18:50 19:00 0,46 1,004

Saturday 1500 08:00 20:00 26,16 15,673

1501 10:00 10:30 16,88 13,305

1600 16:00 16:30 24,74 17,387

0 18:00 18:10 1,72 2,794

Sunday 1601 08:20 08:30 1,77 2,99

0 18:30 18:40 1,77 2,5  

Fig. 2 shows the initial calendar of the week-schedule, 
the way any person would probably have planned it. This 
schedule was optimized using the calendar optimization 
service. We then optimized this schedule. The solution for 
the initial calendar was determined by using Google Maps. 
To compute the total solution, we chose the fastest route 
between the activities and the highest time value for the time 
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variations presented by Google Maps. The described 
behavior could also be the one of a real person. Based on the 
results, we computed the total costs by applying the objective 
function. This lead to total costs of 164.583. Our algorithm 
was applied and took 355 seconds with a cold and 6 seconds 
with a hot cache to perform the optimization. The result was 
a schedule with total costs of 138.007 thereby leading to cost 
savings of 26.57 euro. The detailed optimization result is 
presented in TABLE I. Our algorithm works without penalty 
costs for arriving too early at the location – which is 
particularly permitted. However, waiting after the activity 
has been finished, is strictly forbidden. As a result of our 
evaluation, one must add penalty costs for waiting in order to 
avoid arriving way too early. Furthermore, it may be useful 
to consider waiting after the activity. This way, it’s possible 
to wait, e.g., for an express train or plane, which could lead 
to a travel route, which is cheaper than all connections 
directly available. 

III. IMPACTS ON TRAVEL BEHAVIOR 

As shown above, the mobility assistance is capable – 
through their functionality – to influence people’s travel 
behavior. This results in adaptions concerning activity 
chains, as well as influences on destination or mode choice. 
To quantify the impacts of the assistance on individual travel 
behavior but also on the transport network we use the agent-
based travel demand modeling framework mobiTopp. It has 
been developed at the Institute for Transport Studies at 
Karlsruhe Institute of Technology (KIT). The framework 
simulates the travel demand (all trips within one week) for 
people – including activity, destination and mode choice – 
and explicitly takes into account behavioral stability and 
variability of peoples’ travel behavior [8][9]. Within the last 
years it has been further developed to model also the impacts 
of new aspects like car sharing or electric vehicles [10][11]. 
For this work, we are using the mobiTopp framework to 
simulate the travel demand for the Greater Stuttgart Region 
in Germany with 2.7 million inhabitants. 

To depict the impacts of the mobility assistance, the 
activity generation part of the model has been enhanced. 
Using this new module, it is possible to generate week 
activity schedules synthetically (which person makes what 
kind of activity how long and at which time). The advantage 
of the synthetic generation of these schedules is the 

modelling flexibility. Impacts of the assistance can be 
mapped directly into the simulation. Impacts of the 
assistance can also be mapped only to certain user groups 
and hence to investigate effects on different scenarios.  

Fig. 3 shows the interaction between the mobility 
assistance (right side) and mobiTopp (left side) within the 
BiE-project. Week activity schedules are generated (see step 
1) and then handed over as input to the mobility assistance. 
These schedules are optimized by the assistance (see step 3 
in Fig. 3 or Section II in this paper) given different criteria. 
Following, adapted schedules feed back to mobiTopp in 
which they are analyzed concerning the impacts on travel 
behavior. 

Usually the assistance suggests different optimizations of 
the original activity schedules. Therefore, we analyze 
different scenarios: First, a scenario where only the cost-
minimized schedules are accepted by the agents; second a 
scenario where only the travel time-minimized plans are 
accepted and third a scenario where the agents randomly 
choose between the original schedules and the time- and 
cost-optimized schedule. Furthermore, we analyzed how the 
assistance impacts different user groups, e.g., commuters. 
The analysis of adapted schedules can evaluate changes in 
travel behavior: What kind of tours are adapted by the 
assistance? How are these tours changing? For every change 
in a schedule, the differences to the original schedules can be 
evaluated. This answers the following questions: How is the 
number of trips, the trip length and the travel time changing 
on individual level? How is the infrastructure load changing 
when a certain market penetration of the assistance is given? 
How is modal split changing within the system? Does the 
mobility assistance support sustainability? Does the 
assistance influence the infrastructure load in peak hours? 
How do changing trip lengths and modal splits influence the 
environment? After the implementation phase that is actually 
ongoing we will investigate these questions. 

Further research will be a deeper investigation of the 
user’s acceptance for the suggestions. Do people follow the 
suggestions of the assistance? Within the BiE-project we 
investigate only potentials of impacts on travel behavior and 
optimizations concerning travel times or costs. The travel 
demand model allows for a good scaling to simulate the 
usage of the assistance for different users and hence to 
investigate impacts for some given market penetration rates.  

  

Figure 3. Interaction between mobiTopp and the mobility assistance 
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IV. CONCLUSION AND OUTLOOK 

In recent years, a variety of new mobility services (e.g., 
multi- or inter-modal traffic management and information 
systems) have been created enabling users to choose from a 
wide range of different mobility services and options. To 
reduce the complexity of current mobility services the need 
for a customer-oriented assistance system is constantly 
getting more important. For this purpose, the presented 
mobility assistance system has been developed.  

The mobility assistance gathers and aggregates 
information from timetables and real time information 
systems in public transportation, accesses mobility services, 
such as car sharing as well as the user’s calendar and only 
presents selected information that is relevant in the current 
situation.  

The mobility assistant supports the user in his daily 
mobility by providing routing information as well as 
information on alternative modes of transportation and 
starting times for trips. Depending on the user’s individual 
preference, the mobility assistance may plan and reschedule 
activities as well as associated trips in the course of a week. 
To investigate the impact of mobility assistance systems on 
individual travel behavior, the travel demand model 
mobiTopp has been used. This allows for an estimation of 
effects at an individual level as well as network level (e.g., 
the shifts in the morning peak, when a certain number of 
people is using the mobility assistance). 

As a result, it is expected that users will get better and 
clearer proposals and adjust their travel behavior 
accordingly. The proposals regarding schedule optimization 
will be presented on a mobile device that acts as user 
interface for the mobility assistance. The effectiveness of 
such a decision support system can only be achieved on the 
basis of a decentralized system, which is able to take account 
of a) information on general traffic situation, b) storage 
individual user preferences and c) calculation of 
optimizations regarding scheduling and trip planning. All 
these functionalities are currently being developed in the 
research project BiE. 

Further research may relate to the development of 
assistance systems as well as to the analysis of simulated 
traffic behavior. In further steps for example, the acceptance 
of the calculated proposals from the mobility assistance 
system could be examined based on a user survey. In future 
development steps, the identification of further influencing 
factors (such as penalty costs for waiting times before and 
after activities) as well as the incorporation of these factors 
into the optimization routines could be addressed. Moreover, 
the current routines could be enhanced with adaptive 
algorithms (the procedure is adapted based on real-time 
information). Analysis results (see Section III) could be 
injected directly into the calculations of the organizer (see 
Section II.C) and thus improve the decision support offered 
by the mobility assistance. 
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