
Design and Implementation of Support System for Network Testing
with Whitebox Switches

Megumi Shibuya†, Hidehiko Kawakami†, Teruyuki Hasegawa† and Hirozumi Yamaguchi‡

†KDDI Research, Inc. ‡Osaka University
Saitama, JAPAN Osaka, JAPAN

e-mail: {shibuya, hi-kawakami, teru}@kddi-research.jp e-mail: h-yamagu@ist.osaka-u.ac.jp

Abstract—In this paper, we design and implement an
automated network testing system that enables network testing
operators to observe the behavior of networks under a variety
of failures. We aim at automating the network failure testing of
commercial networks, which is often time consuming since
much effort is needed for network configuration, test scenario
execution, evaluation report creation, and cause analysis of
erroneous behavior. Moreover, we consider such an
environment where whitebox switches and legacy switches co-
exist. Whitebox switches are composed of commodity-based
hardware components where Open Source Software (OSS),
such as Chef can be used to manage them, while legacy
switches are usually operated by vendor-dependent tools. Our
system hides such difference and provides a seamless and
automated management scheme in such heterogeneous
environment. We have implemented the proposed system to
confirm its effectiveness and feasibility.

Keywords – Whitebox Switch; Chef; Automated Verification;
OSS; DevOps

I. INTRODUCTION

Network providers need to assure a certain level of
services in providing commercial networks. Such assurance
would be necessary every time their elements (e.g., links and
routers) are added, removed, updated, or replaced. As testing
methodologies for IP networks, interconnect testing, stress
testing, and failure testing are well-known and have been
utilized. Those testing procedures contain test scenario
generation, network testing environment preparation, test
result analysis, and many other tasks.

In particular, failure testing is significant as a failure of
network component often occurs. However, failure testing
for commercial networks has several issues to be addressed.
Firstly, it requires a large amount of time and efforts that
should be dedicated to network equipment preparation,
network cabling, network configuration including
connectivity assessment, execution of a huge number of
testing items, and analysis of the evaluation results.
Furthermore, with increased size and complexity of
commercial networks in recent years, cabling and setting
errors are prone to occur when the network to be tested is
constructed. This is because the man-hours for the testing has
increased and testing is often manually undertaken by
operators. Consequently, there are many cases in which a
few months’ work is required until they become ready for
use [1][2]. This might be an obstacle to rapid deployment of
the services.

In order to support network testing operators engaged in
such time- and effort-consuming tasks of network failure
testing, many network testers [3][4] and network simulators
[5]-[7], which serve as automated network testing tools, have
been manufactured. However, they are very costly and
operations differ from each other. Thus, efficiency depends
on the network testing environment of network equipment.

Recently, in contrast to legacy switches (denoted by
Legacy-SW) where hardware and network OS are
manufactured by conventional network equipment vendors,
whitebox switches (denoted by WB-SW), which are
composed of commodity-based hardware components and
selectable network OSs, are becoming increasingly
widespread [8]-[10]. As these network OSs are generally
based on Linux OS, various testing processes can be
automated by utilizing Open Source Software (OSS), such as
Chef [11]. DevOps [12]-[15] is an emerging paradigm for
fostering collaboration among system development and
operations and it can improve the life cycle of software
deployment and management processes. Besides, Chef and
some other tools enable automated configuration of servers
and clouds.

From a standpoint of network providers focusing on
carrier-grade networks, we expect that Linux-based
innovative WB-SWs will co-exist with Legacy-SWs in
commercial networks. However, as the network OS of
Legacy-SWs is not usually Linux-based, different
automation techniques are necessary if these different SWs
are co-used. Even in such heterogeneous environment
containing both WB-SWs and Legacy-SWs, automation
should be available to mitigate the workload of networking
testing operators (operational workload).

In this paper, we assume future-generation commercial
networks where Linux-based WB-SWs and Legacy-SWs co-
exist. Then, we design an automated network testing system.
The system is able to observe the behavior of the networks to
be tested under given intended failures, collect testing results,
and analyze them automatically. Heterogeneity due to
different types of SWs is completely hidden and seamless
testing operations are provided. The designed system has
been implemented to confirm its effectiveness and feasibility.
Specifically, we have implemented the automated network
testing system that can automatically construct and configure
the test target network containing both WB-SWs and
Legacy-SWs, and have observed how the target network
behaves in failure scenarios.

39Copyright (c) IARIA, 2016. ISBN: 978-1-61208-517-3

COLLA 2016 : The Sixth International Conference on Advanced Collaborative Networks, Systems and Applications

Since Legacy-SWs do not allow execution of OSS, a
proxy to translate the Chef commands into Legacy-SW’s is
newly introduced. The proposed system automatically
executes the testing procedure to confirm the influence of
link failure and path switching on end-to-end
communications. In addition, the system has a function to
apply randomly-generated failures that occur in different
times and locations. The results of such random tests are
informative to find potential risks that may violate the fault
tolerance of the target networks.

The contributions of this work are two-fold. Firstly, our
system can deal with such an environment that contains both
WB-SWs and Legacy-SWs. Although this is considerably
important in assuring robustness and trustworthiness of
carrier-grade commercial networks with lesser amount of
human effort, no existing approach has explicitly and
formally addressed this issue. Secondly, we show the
effectiveness and feasibility of such a system by real
implementation.

This paper is organized as follows. Section II
summarizes related works and Section III explains the
proposed automated network testing system. Section IV
presents the experimental results of the proposed system. We
conclude this work in Section V.

II. RELATED WORK

Recently, the concept of DevOps, which is an emerging
paradigm to actively foster collaboration between system
development and operations, is becoming popular. In order
to speed up the improvement in the development quality,
some automated tools, such as Chef, Puppet [16], and
Ansible [17], have emerged for realizing DevOps, which are
able to construct a server- and/or cloud-based infrastructure
environment [2][12][13]. Using these tools, a testing
environment is constructed automatically, which saves time
and effort for testing operations.

As related work of automated network testing, the L1
patch [18], where whole OpenFlow switches are virtually
seen as a single L1 patch panel using an OpenFlow
technique [19], is proposed. By combining this approach
with Mininet [20], an OSS-based network testing tool, the
operational workload was mitigated and the dedicated time
was just a few minutes per operator, while a half or an hour
by two operators was necessary in the conventional work
procedure. Reference [18] also reports that the number of test
types was increased to 194, which had been just 90 in the
conventional approach. Reference [21] proposes a method
of constructing an automated test platform for Virtual
Network Functions (VNF). In such an environment where
virtual machines from different vendors are controlled by
different virtual infrastructure managers, such as OpenStack
and VMware Esxi, a network testing tool that automatically
performs a series of tasks, such as test scenario selection and
verification testing, is implemented using the commercial
products CloudShell and TestShell [22]. Such
comprehensive tests, which had required a lot of manual
operations so far, can be automatically performed by using
the tool, and 2,736 types of tests can be completed in 40
hours. However, this approach does not support Legacy-SWs,

and thus applicability is rather limited until the ISP
completely migrates into the NFV environment as described
above.

WB-SWs have recently become increasingly prominent,
and they are less expensive than Legacy-SWs. In addition,
unlike the software-based virtual SWs, WB-SWs are
generally implemented with ASICs in order to transfer the
packets at high speed. Since most of the network OSs [8][23]
for WB-SWs are based on Linux, it is expected that various
types of tasks are automated using OSS. For example, Chef
can be used to construct the environment automatically. In
addition, Zabbix [24] and iperf [25] are known as a network
monitoring tool and a traffic generator, respectively.
However, considering such a situation where WB-SWs and
Legacy-SWs co-exist, we also need to support Legacy-SWs
that cannot execute OSS. Therefore, it is crucial that WB-
SWs and Legacy-SWs can be operated seamlessly.

For these reasons, we assume that Legacy-SWs are still
used with WB-SWs during the migration period. We also
assume that there is a growing demand for automated
network testing to mitigate management costs. Therefore, we
design the automated network testing system enabling
seamless operations with heterogeneous SWs. The system
can create the network to be tested (denoted as NtbT
hereinafter) and execute the failure scenarios automatically.
In addition, as the size of the networks is still growing and
configurations are becoming more complicated,
comprehensive failure testing should also be supported
where network problems are found by random failure
generations with testing.

III. AUTOMATED NETWORK TESTING SYSTEM

In this section, we explain how our proposed automated
network testing system is designed for commercial networks
with WB-SWs and Legacy-SWs.

A. Design Principle
In general, a conventional test procedure consists of four

steps as shown in Fig. 1 (a); create test items, construct NtbT,
conduct tests, and confirm test results. Here, in order to
reduce the operational workload, our proposed system
automatically executes the following steps as shown in Fig. 1
(b); construct NtbT other than physical network cabling as
step 2-2), conduct tests as step 3), and collect and analyze the
results as step 4-1).

Figure 1. Comparative defintions of network testing procedures.

Step
Workflow Oper

ation
Step

Workflow Oper
ation

1 Create test items 1 -Select NtbT and scenarios
-Schedule execution time

2 Construct NtbT
2-1 -Physical NW cabling

2-2
-Construct (include logical NW cabling)
-Initialize
-Collect NW info.
-Confirm connectivity

Auto.

3 Conduct test 3
-Execute test scenarios
-Collect NW info.
-Confirm reachability

Auto.

4 Confirm results
4-1 -Collect logs and routing info.

-Visualize results Auto.

4-2 -Analyze results
(b) Network testing by automated

network testing system.
(a) Conventional
network testing.

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-517-3

COLLA 2016 : The Sixth International Conference on Advanced Collaborative Networks, Systems and Applications

Figure 2 shows our proposed automated network testing
system that consists of (1) NtbT with network equipment
(WB-SWs (physical and/or virtual), Legacy-SWs, and hosts),
and (2) a network testing control server (NW-CS) that sends
to NtbT instructions, such as “construct NtbT” and
“occurrence of failure”. NtbT and NW-CS are connected via
Control Plane (C-Plane), and SWs and hosts forward the
traffic via Data Plane (D-Plane).

Figure 2. Automated network testing system.

We describe the design principles for each function
below.
1) Automatic Construction of NtbT (for Step 2-2)

In order to construct NtbT automatically, Chef, which is
an OSS infrastructure environment construction tool, is used.
After completing the physical network cabling on NtbT, the
Chef server instructs the Chef clients (i) to create the virtual
WB-SWs (vWB-SWs) if necessary, (ii) to initialize and
configure NtbT, and (iii) to start the routing protocol. This
instruction is called NtbT construction scenario. To confirm
the connectivity of the constructed NtbT, the Chef server
conducts bidirectional reachability assessment on every link
and between every host pair using ping.
2) Automatic failure occurrence (for Step 3)

The failure scenario specifies a series of failures in
network testing. More concretely, the failure scenario
consists of multiple failure recipes. A failure recipe
corresponds to failure occurrence (e.g., link down and/or up).
The location of failure in a recipe can be specified by the
network testing operator (e.g., failures occur at SW#1) or can
be randomly chosen. Then, the failure scenario specifies the
execution ordering of those recipes. Network testing can be
conducted repeatedly according to this failure scenario with
the NtbT construction scenario. Both scenarios are stored in
the database (DB). This is called testing scenario, which is
explained in Section III-B. Furthermore, by the scheduling
function, the testing scenario is executed at a specified time
and date. Hence, it can be executed automatically at any time
(e.g., nighttime or holidays).
3) Provisioning seamless operation of WB-SWs and
Legacy-SWs (for Steps 1, 2-2 and 3)

To avoid complicated settings and operations due to
coexistence of WB-SWs and Legacy-SWs, the settings and
executing commands are made uniform for both types of
SWs. However, Legacy-SWs cannot execute the Chef client
because the network OS for Legacy-SWs is not Linux-based.

Therefore, the proxy to translate the Chef commands to
Legacy-SW’s is prepared. We describe this in detail in
Section III-C.
4) Network connectivity assessment (for Steps 2-2, 3 and
4-1)

In order to confirm bidirectional connectivity between
adjacent equipment pair (via a certain link), Link Layer
Discovery Protocol (LLDP) is used to collect the address
information of the equipment pair, such as IP and MAC
addresses. If LLDP is not applied to the target network,
Address Resolution Protocol (ARP) is used instead.
5) Visualization of network behavior during and after
network testing (for Steps 3 and 4-1)

To simplify the confirmation, the network behavior
during network testing can be visualized in a real-time
manner with network information in the above 4). Moreover,
in order to confirm it after network testing, this network
behavior can be replayed visually.
6) Assessment of failure influence on end-to-end
communication (for Step 3)

During network testing, each host continuously sends
packets to other hosts by iperf to confirm the connectivity
between any pair of hosts. This is significant to observe the
capability of the network to guarantee a certain level of
service quality even when failures occur.
7) Automatic log collection and analysis (for Step 4-1)

Statistical log information, such as the traffic volume and
CPU utilization, is collected by Chef and Zabbix. This log
information is then analyzed and the results are shown in
lists and/or plots on graphs.
8) Detection of uncovered failures (for Step 3)

Chaos Monkey [26][27] provides a function to generate
failures randomly at any testing point. This often helps to
find system errors and faults that have not yet been found in
the system. Focusing on this feature, we integrate this
function into our network testing system, i.e., failures
occurrence order and/or locations that are randomly chosen.
Concretely, failure candidates are categorized into some
groups, such as links accommodated in the same switch and
routers in the same OSPF area. The system must choose a
candidate within the same group, which makes this random
choice much more effective.

B. Testing Scenario
As we introduced earlier, a testing scenario consists of an

NtbT construction scenario and a failure scenario. It is a
testing procedure that is composed of seven scenario recipes
as shown in Table I. This testing scenario is created by the
network testing operator.

Again, the failure scenario consists of one or more failure
recipes. We may select recipes from DB and some examples
of those recipes are; (a) traffic sending/receiving with start
and end time, (b) failure occurrence/recovery, such as
interface (IF) down/up, (c) latency test, (d) load test, and (e)
end-to-end quality measurement. The testing scenario is
stored as the NtbT construction scenario and the failure
scenario. After creating the testing scenario, the execution

WB-SW

C-Plane

D-Plane

Logs, Scenarios,
Config. Info.,

W
Legacy-SW

DB
OSS

(Chef, Zabbix)

(1) NtbT

(2) NW-CS

vWB-SW

NW Testing Operator

-Set equipment seamlessly
-Collect logs automatically

-Create test scenarios
-Confirm NW behavior

-Failure occurence
-Confirm E2E effective
-Detect uncovered failures
-Construct NtbT
-Confirm NW statusDDDDDDDDDDD

hef,,,,,,, ZZ

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-517-3

COLLA 2016 : The Sixth International Conference on Advanced Collaborative Networks, Systems and Applications

time is scheduled at the scheduler. The execution is started
automatically at the specified time and stopped when the
failure scenario is completed.

TABLE I. SCENARIO RECIPES IN THE TESTING SCENARIO

Testing
Scenario

No. Scenario Recipes

NtbT
construction

scenario

1 Selection of NtbT topology
2 Reconstruction of NtbT (Yes/No)
3 Initialization of network equipment (WB-SWs, Legacy-

SWs, hosts) (Yes/No)
4 Confirmation of connectivity (Yes/No)
5 Execution schedule (date and time, or at specific

execution time)
6 Collection of interval time of the network information and

logs
Failure
scenario 7 Failure recipes

C. System Implementation
Figure 3 shows the implementation of the automated

network testing system. NW-CS consists of a Web server,
databases that store logs, scenarios and configurations of
NtbT topologies, a Chef server, and a Zabbix server on a PC.
NtbT consists of an NtbT PC with vWB-SWs and virtual
hosts (vhosts), physical WB-SWs, and Legacy-SWs. Chef
clients run on the NtbT PC.

Figure 3. Implementation of automated network testing system.

When NtbT is reconstructed (if a recipe of
“Reconstruction of NtbT” is “Yes”), vWB-SWs are
constructed automatically in accordance with the selected
NtbT. Furthermore, every adjacent SW (or host) pair is
connected with a virtual link through a different bridge as
logical NW cabling. The physical SW and virtual SW are
also connected in the same way.

At the specified execution time, the Chef clients on each
SW download the corresponding recipes from the Chef
server via C-Plane. Then, the various settings are executed
automatically based on the downloaded recipes. Furthermore,
logs and routing tables of network equipment during the
testing are collected automatically and stored in DB.

In order to separate C-Plane and D-Plane strictly where
the packets in C-Plane must not leak into D-Plane and vice
versa, each WB-SW arranges interfaces (IFs) and routing
tables dedicated to C-Plane separated from those for D-Plane,
by using two independent namespaces mgmt (for C-Plane)
and default (for D-Plane) inside WB-SW [28]. Consequently,
the Zabbix server collects the D-Plane information, such as
routing tables of network equipment through mgmt.

To use uniform descriptions of the setting commands and
method, it would be better that both WB-SWs and Legacy-
SWs could be controlled according to the framework of Chef.
Since the Chef client cannot be executed on Legacy-SW, a
proxy that translates the Chef commands into the Legacy-
SW commands and executes it automatically is created
(called Legacy-SW proxy).

IV. EXPERIMENTAL EVALUATION

This section presents the evaluation results of the
proposed system expressed in Section III.

A. Experimental Setup
In order to validate the effectiveness of our system

implementation, we constructed NW-CS and NtbT on
different PCs as shown in Fig. 3. The Chef server, Zabbix
server, DB stored logs, and scenarios are implemented on
NW-CS. We arranged three types of VMs as stand-alone on
KVM [29] for vWB-SWs, the vhosts, and the Legacy-SW
proxy composing NtbT. One WB-SW (DELL S4048-on, OS:
Cumulus Linux) and one Legacy-SW (Catalyst 3750-24TS-
E) also participate in NtbT via a physical interface. TABLE
II summarizes the specifications of PCs for NW-CS and
NtbT.

TABLE II. PARAMETERS OF THE AUTOMATED NETWORK TESTING
SYSTEM

Parameter NW-CS PC NtbT PC
OS Ubuntu 14.04 64bit

Memory 64GB
CPU Intel® Xeon® CPU E5-2650+ v3@1.80GHz
Chef Server 12.4.0 Client 12.5.1

Zabbix 2.2.2(server) 2.2.2 (agent)
SW - Cumulus VX 2.5.6

Traffic generator - iperf
Routing software - quagga(ospf)

TABLE III. CONFIGURATION OF TESTING NETWORKS

NW No. Network equipment (#equipment) #Links Failure recipes
1 vWB-SW(4), vhost(2) 7 IF down

2 vWB-SW(13), Catalyst(1), vhost(5) 25 1) IFdown
2) Silent failure

3 vWB-SW(13), DELL(1), vhost(5) 25 IF down

4 vWB-SW(12), Catalyst(1), DELL(1),
vhost(5) 26 Change

OSPF cost

TABLE IV. TESTING SCENARIO (NW NO. 2)
Testing
Scenario

Recipe
No.(Rcp#) Scenario Recipes T

[sec]
NtbT

construction
scenario

1 Reconstruction of NtbT (Yes) 0
2 Initialization of network equipment (Yes) 0
3 Confirmation of connectivity (Yes) 0

Failure
scenario

4 Start traffic send/receive 0
5 Failure1 occurrence: wbs-core01 swp1 down 30
6 Failure1 restoration: wbs-core01 swp1 up 30
7 Failure2 occurrence: cat-agg20

FastEthernet1/0/2 down 30

8 Failure2 restoration: cat-agg20
FastEthernet1/0/2 up 30

9 End traffic send/receive 30
10 Collection and analysis of logs 0

T: waiting time after completion of previous recipe.

NtbT PC

Chef server Zabbix server

vWB-SW vhost

C-Plane

D-Plane
, : bridge

KVMKVMKVM
Legacy-SW

proxyvWB-SWv
D-PlaneD PlPlane

vWB-SW

Web server DB (logs, scenarios,
NtbT topology config.)

Schedulerknife

Legacy-SW

Lvhost

WB-SW
: Chef client

N
tbT

Physical
SWs

web applicationNW-CS PC

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-517-3

COLLA 2016 : The Sixth International Conference on Advanced Collaborative Networks, Systems and Applications

To evaluate our proposed system, we created the four
types of experimental networks shown in TABLE III where
NtbT is constructed automatically and all hosts generated
traffic by iperf between every host pair. We then conducted
each scenario 10 times. Note that physical SWs are cabled by
hand preliminarily.

As an example, the testing scenario of NW No. 2 is
shown in TABLE IV.

B. Verification of System Functions
Firstly, we verify that our proposed system can conduct

network testing automatically. In order to confirm it, we
executed network testing using four types of testing
networks and corresponding failure scenarios in TABLE III.
We verified that our proposed system can conduct all
scenarios, and every scenario was executed without error.
We validated that changing the routing paths when the link
failure occurs and the OSPF cost changes, the disconnect
time of end-to-end connections, the transition of the traffic
volume of each interface (IF) at SWs, and the transition of
the routing tables by visualization. Moreover, we verified
that the Legacy-SW proxy works correctly.

As an example, Fig. 4 shows our visualization of end-to-
end traffic paths before/after scenario recipe Rcp#5 of NW
No. 2 in the failure scenario. We can observe the network
behavior of path restoration using this visualization.

(a) Before failure (b) After failure
Figure 4. Example of routing path restoration after failure occurrence.

C. Performance Evaluation of Processsing Time
To evaluate the performance of our proposed system, we

evaluated the processing time of each scenario recipe in the
testing scenario during network testing. More concretely, the
time to process each recipe was collected and analyzed.

The processing time of each recipe using NW No. 2 is
shown in Fig. 5. The processing time differs according to the
scenario recipe. The processing time has a small variance
over recipes, and the maximum variance was 1.50 when the
scenario recipe is the confirmation of connectivity (Rcp#3).
The processing time of reconstruction (Rcp#1) was 110.0
seconds, while that of initialization (Rcp#2) was 138.1
seconds on average. The processing time of Rcp#1 was less
than that of Rcp#2. The processing time of a failure
occurrence / restoration recipe is the time by which the Chef
client is executed till completion of the executed failure
command at the corresponding SW.

Here, we consider two cases; Case #1 that consists of
Rcp#5 and Rcp#6, and Case #2 that consists of Rcp#7 and
Rcp#8. The processing time of Case #1 was 15.19 seconds
and 21.94 seconds in Case #2. These two cases are similar in
the sense that they have one failure and recovery, but the

time is different. Cases #1 and #2 are different since #1 is an
interface down failure and #2 is a “silent” failure that is
difficult to detect. As seen in these cases, the processing time
differs according to the failure recipe, but it is important to
know such processing time of each recipe to estimate the
time to conduct tests for large-scale networks. More detailed
analysis of execution time is necessary, which is part of our
future work.

Figure 5. Processing time of each recipe (Rcp#).

D. Performance Evaluation of NtbT Construction Time
As our proposed system constructs NtbT including the

construction and initialization of network equipment (SWs
and hosts) in NtbT, it is important to perceive the processing
performance of the construction NtbT for the number of SWs.

To evaluate it, we focused on the SWs because the
construction time of SWs is longer than that of the hosts. In
the evaluated network, vWB-SWs are connected in series on
NtbT and hosts are connected to the edge of a path. Varying
the number N of SWs from 5 to 60 units, we measured the
processing time for constructing N vWB-SWs 10 times in
each case.

Figure 6 shows the construction time on average of each
recipe in the NtbT construction scenario. The processing
time of each event increases in proportion to N. When N was
60, the total time for constructing NtbT was 480.4 seconds
on average, and the processing time of construction
increased in the following order; initialization > construction
> connectivity. However, the increase rate of the processing
time of Rcp#1 was larger than that of Rcp#2. Therefore, we
estimate that when N is over 60, the processing time of
Rcp#1 exceeds that of Rcp#2.

Figure 6. Number of WB-SWs and NtbT configuration time.

The reconstruction of NtbT (Rcp#1) creates VMs of
vWB-SW only, while initialization of network equipment
(Rcp#2) installs some software, such as OSS. Furthermore,

Rcp#5 Failure1 occurrence (IF down)

1 2 3 5 6 7 8

Pr
oc

es
si

ng
 ti

m
e

[s
ec

]

0

50

100

150

Recipe No. (Rcp#)
NtbT construction

scenario Failure scenario

0

50

100

150

200

250

0 10 20 30 40 50 60

Pr
oc

es
si

ng
 ti

m
e

[s
ec

]

The number of SWs (N)

Rcp#1
Rcp#2
Rcp#3

Recipe

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-517-3

COLLA 2016 : The Sixth International Conference on Advanced Collaborative Networks, Systems and Applications

confirmation of connectivity (Rcp#3) is conducted via ping
between both interfaces (IFs) of a link for all links and all
hosts. Therefore, the processing time depends on the number
of links and hosts. In this topology, due to the fixed number
of hosts (=2), the processing time increases in proportion to
the number of SWs.

E. Effectiveness in Reducing Work Hours
To evaluate how our proposed system contributes to

reducing the operational workload, we observed the work
hours during the network testing process by comparing
manual and automated operations. Using NW No. 1, we
prepared the testing scenario where an interface (IF) is down
and then the routing path is switched, including network
cabling, initialization, and failure occurrence. In Case-A, this
scenario was conducted manually, and automatically
conducted by the proposed system in Case-B. We measured
them 3 times in each case.

The work hours were 16.03 and 7.37 minutes in Case-A
and Case-B, respectively. Namely, the work hours were
reduced by 54.1%. Note that each work hour includes 30-
second intervals of each recipe. From this result, we expect
more efficiency in large-scale networks, and we can say that
our proposed system can reduce the work hours.

V. CONCLUSION

In this paper, we assumed future-generation commercial
networks where Linux-based WB-SWs and legacy-SW co-
exist. So, we proposed a method of designing and
implementing an automated network testing system. This
system is able to observe the behavior of the network to be
tested under given intended failures, collect testing results
and analyze them automatically. Heterogeneity due to
different SWs is completely hidden and seamless operations
are provided. We implemented the automated network
testing system that can automatically construct and configure
the test target network containing WB-SWs and Legacy-SWs,
and observed how target network performs in failure
scenarios. The experimental results show the effectiveness
and feasibility of the system. In particular, it is confirmed
that our implementation can automate failure testing on the
network with WB-SWs and Legacy-SWs and can reduce the
work hours by 54.1%. In future, we intend to verify the
effect of the work hours using larger networks and various
scenarios.

REFERENCES

[1] J. Kim, C. Meirosu, I. Papafili, R. Steinert, S. Sharma, F.
Westphal, M. Kind, A. Shukla, F. Nemeth, and A.
Manzalini, “Service Provider DevOps for Large Scale
Modern Network Services,” IFIP/IEEE IM 2015 Workshop:
10th International Workshop on Business-driven IT
Management (BDIM), pp.1391-1397, 2015.

[2] L. E. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja, H. H.
Olsson, and J. Bosch, “Towards DevOps in the Embedded
Systems Domain: Why is it so Hard?,” 2016 49th Hawaii
International Conference on System Sciences (HICSS),
pp.5437-5446, Jan. 2016.

[3] Spirent TestCenter,
http://www.spirent.com/Products/TestCenter, accessed Sep.
7, 2016.

[4] IXIA, https://www.ixiacom.com/, accessed Sep. 7, 2016.
[5] OPNET Modeler,

http://www.riverbed.com/products/steelcentral/opnet.html,
accessed Sep. 7, 2016.

[6] Cisco Modeling Labs,
http://www.cisco.com/c/en/us/products/cloud-systems-
management/modeling-labs/index.html, accessed Sep. 7,
2016.

[7] GNS3, https://www.gns3.com/, accessed Sep. 7, 2016.
[8] Cumulus, https://cumulusnetworks.com/, accessed Sep. 7,

2016.
[9] Quanta, http://www.networld.co.jp/product/quanta/,

accessed Sep. 7, 2016.
[10] DELL, http://www.dell.com/us/business/p/networking-s-

series-10gbe/pd, accessed Sep. 7, 2016.
[11] Chef, https://www.chef.io/chef/, accessed Sep. 7, 2016.
[12] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano,

“DevOps,” IEEE SOFTWARE, Vol 33. No.3, pp.94-100,
Apr., 2016.

[13] J. Allspaw and P. Hammond, “10+ Deploys Per Day: Dev
and Ops Cooperation at Flickr,” O’REILLY Velocity Web
Performance and Operations Conference (Velocity 2009),
Jun. 2016,
http://conferences.oreilly.com/velocity/velocity2009/,
accessed Sep. 7, 2016.

[14] J. Wettinger, V. Andrikopoulos, and F. Leymann,
“Automated Capturing and Systematic Usage of DevOps
Knowledge for Cloud Applications,” IEEE International
Conference on Cloud Engineering (IC2E), pp.60-65, Mar.
2015.

[15] A. Csaszar, W. John, M. Kind, C. Meirosu, G. Pongracz, D.
Staessens, A. Takacs, and F. Westphal, “Unifying Cloud
and Carrier Network EU FP7 Project UNIFY,” IEEE/ACM
6th International Conference on Utility and Cloud
Computing, pp.452-457, 2013.

[16] Puppet, https://puppet.com/, accessed Sep. 7, 2016.
[17] Ansible, https://www.ansible.com/, accessed Sep. 7, 2016.
[18] http://www.sdnjapan.org/2015/1411_torii.pdf (in Japanese),

accessed Sep. 7, 2016.
[19] OPEN NETWORKING FOUNDATION (ONF),

“OpenFlow,” https://www.opennetworking.org/sdn-
resources/openflow, accessed Sep. 7, 2016.

[20] Mininet, http://mininet.org/, accessed Sep. 7, 2016.
[21] http://www.okinawaopenlabs.org/wp/wp-

content/uploads/20160205_tanabe.pdf (in Japanese),
accessed Sep. 7, 2016.

[22] QualiSystems CloudShell / TestShell,
http://www.qualisystems.com/products/cloudshell-add-
ons/testshell-overview/, accessed Sep. 7, 2016.

[23] PicOS, http://www.pica8.com/products/picos, accessed Sep.
7, 2016.

[24] Zabbix, http://www.zabbix.com/, accessed Sep. 7, 2016.
[25] Iperf, https://iperf.fr/, accessed Sep. 7, 2016.
[26] NETFLIX, “Chaos Monkey Released Into The Wild,”

http://techblog.netflix.com/2012/07/chaos-monkey-
released-into-wild.html, accessed Sep. 7, 2016.

[27] A. Basiri, N. Behnam, R. Rooij, L. N. Hochstein, L.
Kosewski, J. Reynolds, and C. Rosenthal, “Chaos
Engineering,” IEEE SOFTWARE, May/Jun. 2016.

[28] Cumulus Networks, “Configuration Management
Namespace,” https://support.cumulusnetworks.com/hc/en-
us/articles/202325278-Configuring-a-Management-
Namespace, accessed Sep. 7, 2016.

[29] KVM, http://www.linux-kvm.org/page/Main_Page,
accessed Sep. 7, 2016.

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-517-3

COLLA 2016 : The Sixth International Conference on Advanced Collaborative Networks, Systems and Applications

