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Abstract—In this paper, we design and implement an 
automated network testing system that enables network testing 
operators to observe the behavior of networks under a variety 
of failures. We aim at automating the network failure testing of 
commercial networks, which is often time consuming since 
much effort is needed for network configuration, test scenario 
execution, evaluation report creation, and cause analysis of 
erroneous behavior. Moreover, we consider such an 
environment where whitebox switches and legacy switches co-
exist. Whitebox switches are composed of commodity-based 
hardware components where Open Source Software (OSS),
such as Chef can be used to manage them, while legacy 
switches are usually operated by vendor-dependent tools. Our 
system hides such difference and provides a seamless and 
automated management scheme in such heterogeneous 
environment. We have implemented the proposed system to 
confirm its effectiveness and feasibility.

Keywords – Whitebox Switch; Chef; Automated Verification;
OSS; DevOps

I. INTRODUCTION

Network providers need to assure a certain level of 
services in providing commercial networks. Such assurance 
would be necessary every time their elements (e.g., links and 
routers) are added, removed, updated, or replaced. As testing 
methodologies for IP networks, interconnect testing, stress 
testing, and failure testing are well-known and have been 
utilized. Those testing procedures contain test scenario
generation, network testing environment preparation, test 
result analysis, and many other tasks.

In particular, failure testing is significant as a failure of 
network component often occurs. However, failure testing 
for commercial networks has several issues to be addressed.
Firstly, it requires a large amount of time and efforts that 
should be dedicated to network equipment preparation, 
network cabling, network configuration including
connectivity assessment, execution of a huge number of 
testing items, and analysis of the evaluation results. 
Furthermore, with increased size and complexity of 
commercial networks in recent years, cabling and setting
errors are prone to occur when the network to be tested is 
constructed. This is because the man-hours for the testing has
increased and testing is often manually undertaken by 
operators. Consequently, there are many cases in which a 
few months’ work is required until they become ready for 
use [1][2]. This might be an obstacle to rapid deployment of 
the services.

In order to support network testing operators engaged in 
such time- and effort-consuming tasks of network failure 
testing, many network testers [3][4] and network simulators 
[5]-[7], which serve as automated network testing tools, have 
been manufactured. However, they are very costly and 
operations differ from each other. Thus, efficiency depends 
on the network testing environment of network equipment.

Recently, in contrast to legacy switches (denoted by
Legacy-SW) where hardware and network OS are 
manufactured by conventional network equipment vendors, 
whitebox switches (denoted by WB-SW), which are 
composed of commodity-based hardware components and 
selectable network OSs, are becoming increasingly 
widespread [8]-[10]. As these network OSs are generally 
based on Linux OS, various testing processes can be 
automated by utilizing Open Source Software (OSS), such as 
Chef [11]. DevOps [12]-[15] is an emerging paradigm for 
fostering collaboration among system development and 
operations and it can improve the life cycle of software 
deployment and management processes. Besides, Chef and
some other tools enable automated configuration of servers 
and clouds.

From a standpoint of network providers focusing on 
carrier-grade networks, we expect that Linux-based 
innovative WB-SWs will co-exist with Legacy-SWs in 
commercial networks. However, as the network OS of 
Legacy-SWs is not usually Linux-based, different 
automation techniques are necessary if these different SWs
are co-used. Even in such heterogeneous environment 
containing both WB-SWs and Legacy-SWs, automation 
should be available to mitigate the workload of networking 
testing operators (operational workload).

In this paper, we assume future-generation commercial 
networks where Linux-based WB-SWs and Legacy-SWs co-
exist. Then, we design an automated network testing system. 
The system is able to observe the behavior of the networks to 
be tested under given intended failures, collect testing results,
and analyze them automatically. Heterogeneity due to 
different types of SWs is completely hidden and seamless 
testing operations are provided. The designed system has 
been implemented to confirm its effectiveness and feasibility.
Specifically, we have implemented the automated network
testing system that can automatically construct and configure 
the test target network containing both WB-SWs and
Legacy-SWs, and have observed how the target network 
behaves in failure scenarios.
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Since Legacy-SWs do not allow execution of OSS, a 
proxy to translate the Chef commands into Legacy-SW’s is 
newly introduced. The proposed system automatically
executes the testing procedure to confirm the influence of 
link failure and path switching on end-to-end
communications. In addition, the system has a function to 
apply randomly-generated failures that occur in different 
times and locations. The results of such random tests are
informative to find potential risks that may violate the fault 
tolerance of the target networks.

The contributions of this work are two-fold. Firstly, our 
system can deal with such an environment that contains both 
WB-SWs and Legacy-SWs. Although this is considerably 
important in assuring robustness and trustworthiness of 
carrier-grade commercial networks with lesser amount of 
human effort, no existing approach has explicitly and 
formally addressed this issue. Secondly, we show the 
effectiveness and feasibility of such a system by real 
implementation.

This paper is organized as follows. Section II 
summarizes related works and Section III explains the 
proposed automated network testing system. Section IV 
presents the experimental results of the proposed system. We
conclude this work in Section V. 

II. RELATED WORK

Recently, the concept of DevOps, which is an emerging 
paradigm to actively foster collaboration between system 
development and operations, is becoming popular. In order
to speed up the improvement in the development quality, 
some automated tools, such as Chef, Puppet [16], and 
Ansible [17], have emerged for realizing DevOps, which are 
able to construct a server- and/or cloud-based infrastructure 
environment [2][12][13]. Using these tools, a testing
environment is constructed automatically, which saves time 
and effort for testing operations.

As related work of automated network testing, the L1 
patch [18], where whole OpenFlow switches are virtually
seen as a single L1 patch panel using an OpenFlow 
technique [19], is proposed. By combining this approach 
with Mininet [20], an OSS-based network testing tool, the 
operational workload was mitigated and the dedicated time 
was just a few minutes per operator, while a half or an hour 
by two operators was necessary in the conventional work 
procedure. Reference [18] also reports that the number of test 
types was increased to 194, which had been just 90 in the 
conventional approach. Reference [21] proposes a method 
of constructing an automated test platform for Virtual 
Network Functions (VNF). In such an environment where 
virtual machines from different vendors are controlled by
different virtual infrastructure managers, such as OpenStack 
and VMware Esxi, a network testing tool that automatically 
performs a series of tasks, such as test scenario selection and 
verification testing, is implemented using the commercial 
products CloudShell and TestShell [22]. Such 
comprehensive tests, which had required a lot of manual
operations so far, can be automatically performed by using 
the tool, and 2,736 types of tests can be completed in 40 
hours. However, this approach does not support Legacy-SWs,

and thus applicability is rather limited until the ISP 
completely migrates into the NFV environment as described 
above.

WB-SWs have recently become increasingly prominent,
and they are less expensive than Legacy-SWs. In addition, 
unlike the software-based virtual SWs, WB-SWs are
generally implemented with ASICs in order to transfer the 
packets at high speed. Since most of the network OSs [8][23]
for WB-SWs are based on Linux, it is expected that various
types of tasks are automated using OSS. For example, Chef
can be used to construct the environment automatically. In 
addition, Zabbix [24] and iperf [25] are known as a network 
monitoring tool and a traffic generator, respectively.
However, considering such a situation where WB-SWs and 
Legacy-SWs co-exist, we also need to support Legacy-SWs 
that cannot execute OSS. Therefore, it is crucial that WB-
SWs and Legacy-SWs can be operated seamlessly.

For these reasons, we assume that Legacy-SWs are still 
used with WB-SWs during the migration period. We also 
assume that there is a growing demand for automated 
network testing to mitigate management costs. Therefore, we 
design the automated network testing system enabling 
seamless operations with heterogeneous SWs. The system 
can create the network to be tested (denoted as NtbT
hereinafter) and execute the failure scenarios automatically.
In addition, as the size of the networks is still growing and 
configurations are becoming more complicated,
comprehensive failure testing should also be supported 
where network problems are found by random failure 
generations with testing.

III. AUTOMATED NETWORK TESTING SYSTEM

In this section, we explain how our proposed automated 
network testing system is designed for commercial networks
with WB-SWs and Legacy-SWs.

A. Design Principle
In general, a conventional test procedure consists of four 

steps as shown in Fig. 1 (a); create test items, construct NtbT,
conduct tests, and confirm test results. Here, in order to 
reduce the operational workload, our proposed system 
automatically executes the following steps as shown in Fig. 1
(b); construct NtbT other than physical network cabling as 
step 2-2), conduct tests as step 3), and collect and analyze the 
results as step 4-1).

Figure 1. Comparative defintions of network testing procedures.

Step
# Workflow Oper

ation
Step

# Workflow Oper
ation

1 Create test items 1 -Select NtbT and scenarios
-Schedule execution time

2 Construct NtbT
2-1 -Physical NW cabling

2-2
-Construct (include logical NW cabling)
-Initialize
-Collect NW info.
-Confirm connectivity

Auto.

3 Conduct  test 3
-Execute test scenarios
-Collect NW info.
-Confirm reachability

Auto.

4 Confirm results
4-1 -Collect logs and routing info.

-Visualize results Auto.

4-2 -Analyze results
(b) Network testing by automated 

network testing system.
(a) Conventional 
network testing.
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Figure 2 shows our proposed automated network testing 
system that consists of (1) NtbT with network equipment
(WB-SWs (physical and/or virtual), Legacy-SWs, and hosts),
and (2) a network testing control server (NW-CS) that sends 
to NtbT instructions, such as “construct NtbT” and 
“occurrence of failure”. NtbT and NW-CS are connected via
Control Plane (C-Plane), and SWs and hosts forward the 
traffic via Data Plane (D-Plane).  

Figure 2. Automated network testing system.

We describe the design principles for each function
below.
1) Automatic Construction of NtbT (for Step 2-2)

In order to construct NtbT automatically, Chef, which is 
an OSS infrastructure environment construction tool, is used.
After completing the physical network cabling on NtbT, the
Chef server instructs the Chef clients (i) to create the virtual 
WB-SWs (vWB-SWs) if necessary, (ii) to initialize and 
configure NtbT, and (iii) to start the routing protocol. This 
instruction is called NtbT construction scenario. To confirm 
the connectivity of the constructed NtbT, the Chef server 
conducts bidirectional reachability assessment on every link
and between every host pair using ping.
2) Automatic failure occurrence (for Step 3)

The failure scenario specifies a series of failures in 
network testing. More concretely, the failure scenario 
consists of multiple failure recipes. A failure recipe 
corresponds to failure occurrence (e.g., link down and/or up).
The location of failure in a recipe can be specified by the 
network testing operator (e.g., failures occur at SW#1) or can 
be randomly chosen. Then, the failure scenario specifies the 
execution ordering of those recipes. Network testing can be 
conducted repeatedly according to this failure scenario with 
the NtbT construction scenario. Both scenarios are stored in 
the database (DB). This is called testing scenario, which is 
explained in Section III-B. Furthermore, by the scheduling
function, the testing scenario is executed at a specified time
and date. Hence, it can be executed automatically at any time 
(e.g., nighttime or holidays).
3) Provisioning seamless operation of WB-SWs and 
Legacy-SWs (for Steps 1, 2-2 and 3)

To avoid complicated settings and operations due to 
coexistence of WB-SWs and Legacy-SWs, the settings and 
executing commands are made uniform for both types of 
SWs. However, Legacy-SWs cannot execute the Chef client
because the network OS for Legacy-SWs is not Linux-based.

Therefore, the proxy to translate the Chef commands to 
Legacy-SW’s is prepared. We describe this in detail in 
Section III-C.
4) Network connectivity assessment (for Steps 2-2, 3 and 
4-1)

In order to confirm bidirectional connectivity between
adjacent equipment pair (via a certain link), Link Layer 
Discovery Protocol (LLDP) is used to collect the address 
information of the equipment pair, such as IP and MAC
addresses. If LLDP is not applied to the target network, 
Address Resolution Protocol (ARP) is used instead.
5) Visualization of network behavior during and after
network testing (for Steps 3 and 4-1)

To simplify the confirmation, the network behavior 
during network testing can be visualized in a real-time 
manner with network information in the above 4). Moreover, 
in order to confirm it after network testing, this network 
behavior can be replayed visually.
6) Assessment of failure influence on end-to-end
communication (for Step 3)

During network testing, each host continuously sends 
packets to other hosts by iperf to confirm the connectivity 
between any pair of hosts. This is significant to observe the 
capability of the network to guarantee a certain level of 
service quality even when failures occur.
7) Automatic log collection and analysis (for Step 4-1)

Statistical log information, such as the traffic volume and 
CPU utilization, is collected by Chef and Zabbix. This log
information is then analyzed and the results are shown in 
lists and/or plots on graphs.
8) Detection of uncovered failures (for Step 3)

Chaos Monkey [26][27] provides a function to generate 
failures randomly at any testing point. This often helps to 
find system errors and faults that have not yet been found in
the system. Focusing on this feature, we integrate this 
function into our network testing system, i.e., failures 
occurrence order and/or locations that are randomly chosen. 
Concretely, failure candidates are categorized into some 
groups, such as links accommodated in the same switch and 
routers in the same OSPF area. The system must choose a 
candidate within the same group, which makes this random 
choice much more effective.

B. Testing Scenario
As we introduced earlier, a testing scenario consists of an 

NtbT construction scenario and a failure scenario. It is a 
testing procedure that is composed of seven scenario recipes 
as shown in Table I. This testing scenario is created by the 
network testing operator.

Again, the failure scenario consists of one or more failure 
recipes. We may select recipes from DB and some examples 
of those recipes are; (a) traffic sending/receiving with start
and end time, (b) failure occurrence/recovery, such as 
interface (IF) down/up, (c) latency test, (d) load test, and (e) 
end-to-end quality measurement. The testing scenario is 
stored as the NtbT construction scenario and the failure 
scenario. After creating the testing scenario, the execution 

WB-SW

C-Plane

D-Plane

Logs, Scenarios,
Config. Info.,

W
Legacy-SW

DB
OSS 

(Chef, Zabbix)

(1) NtbT

(2) NW-CS

vWB-SW

NW Testing Operator

-Set equipment seamlessly
-Collect logs automatically

-Create test scenarios
-Confirm NW behavior

-Failure occurence
-Confirm E2E effective
-Detect uncovered failures
-Construct NtbT
-Confirm NW statusDDDDDDDDDDD

hef,,,,,,, ZZ
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time is scheduled at the scheduler. The execution is started 
automatically at the specified time and stopped when the 
failure scenario is completed. 

TABLE I. SCENARIO RECIPES IN THE TESTING SCENARIO

Testing
Scenario

No. Scenario Recipes

NtbT
construction 

scenario

1 Selection of NtbT topology
2 Reconstruction of NtbT (Yes/No)
3 Initialization of network equipment (WB-SWs, Legacy-

SWs, hosts) (Yes/No)
4 Confirmation of connectivity (Yes/No)
5 Execution schedule (date and time, or at specific 

execution time)
6 Collection of interval time of the network information and 

logs
Failure 
scenario 7 Failure recipes

C. System Implementation
Figure 3 shows the implementation of the automated 

network testing system. NW-CS consists of a Web server, 
databases that store logs, scenarios and configurations of
NtbT topologies, a Chef server, and a Zabbix server on a PC.
NtbT consists of an NtbT PC with vWB-SWs and virtual 
hosts (vhosts), physical WB-SWs, and Legacy-SWs. Chef
clients run on the NtbT PC.

Figure 3. Implementation of automated network testing system.

When NtbT is reconstructed (if a recipe of 
“Reconstruction of NtbT” is “Yes”), vWB-SWs are 
constructed automatically in accordance with the selected 
NtbT. Furthermore, every adjacent SW (or host) pair is 
connected with a virtual link through a different bridge as 
logical NW cabling. The physical SW and virtual SW are 
also connected in the same way.

At the specified execution time, the Chef clients on each 
SW download the corresponding recipes from the Chef 
server via C-Plane. Then, the various settings are executed 
automatically based on the downloaded recipes. Furthermore, 
logs and routing tables of network equipment during the 
testing are collected automatically and stored in DB.

In order to separate C-Plane and D-Plane strictly where 
the packets in C-Plane must not leak into D-Plane and vice 
versa, each WB-SW arranges interfaces (IFs) and routing 
tables dedicated to C-Plane separated from those for D-Plane,
by using two independent namespaces mgmt (for C-Plane) 
and default (for D-Plane) inside WB-SW [28]. Consequently,
the Zabbix server collects the D-Plane information, such as 
routing tables of network equipment through mgmt.

To use uniform descriptions of the setting commands and 
method, it would be better that both WB-SWs and Legacy-
SWs could be controlled according to the framework of Chef. 
Since the Chef client cannot be executed on Legacy-SW, a
proxy that translates the Chef commands into the Legacy-
SW commands and executes it automatically is created 
(called Legacy-SW proxy).

IV. EXPERIMENTAL EVALUATION

This section presents the evaluation results of the 
proposed system expressed in Section III.

A. Experimental Setup
In order to validate the effectiveness of our system

implementation, we constructed NW-CS and NtbT on 
different PCs as shown in Fig. 3. The Chef server, Zabbix 
server, DB stored logs, and scenarios are implemented on 
NW-CS. We arranged three types of VMs as stand-alone on 
KVM [29] for vWB-SWs, the vhosts, and the Legacy-SW
proxy composing NtbT. One WB-SW (DELL S4048-on, OS: 
Cumulus Linux) and one Legacy-SW (Catalyst 3750-24TS-
E) also participate in NtbT via a physical interface. TABLE 
II summarizes the specifications of PCs for NW-CS and 
NtbT.

TABLE II. PARAMETERS OF THE AUTOMATED NETWORK TESTING 
SYSTEM

Parameter NW-CS PC NtbT PC
OS Ubuntu 14.04 64bit

Memory 64GB
CPU Intel® Xeon® CPU E5-2650+ v3@1.80GHz
Chef Server 12.4.0 Client 12.5.1

Zabbix 2.2.2(server) 2.2.2 (agent)
SW - Cumulus VX 2.5.6

Traffic generator - iperf
Routing software - quagga(ospf)

TABLE III. CONFIGURATION OF TESTING NETWORKS

NW No. Network equipment (#equipment)       #Links Failure recipes
1 vWB-SW(4), vhost(2) 7 IF down

2 vWB-SW(13), Catalyst(1), vhost(5) 25 1) IFdown
2) Silent failure

3 vWB-SW(13), DELL(1), vhost(5) 25 IF down

4 vWB-SW(12), Catalyst(1), DELL(1), 
vhost(5) 26 Change

OSPF cost

TABLE IV. TESTING SCENARIO (NW NO. 2)
Testing
Scenario

Recipe 
No.(Rcp#) Scenario Recipes T

[sec]
NtbT 

construction
scenario

1 Reconstruction of NtbT (Yes) 0
2 Initialization of network equipment (Yes) 0
3 Confirmation of connectivity (Yes) 0

Failure 
scenario

4 Start traffic send/receive 0
5 Failure1 occurrence: wbs-core01 swp1 down 30
6 Failure1 restoration: wbs-core01 swp1 up  30
7 Failure2 occurrence: cat-agg20 

FastEthernet1/0/2 down 30

8 Failure2 restoration: cat-agg20
FastEthernet1/0/2 up 30

9 End traffic send/receive 30
10 Collection and analysis of logs 0

T: waiting time after completion of previous recipe.

NtbT PC

Chef server Zabbix server

vWB-SW vhost

C-Plane

D-Plane
, : bridge

KVMKVMKVM
Legacy-SW

proxyvWB-SWv
D-PlaneD PlPlane

vWB-SW

Web server DB (logs, scenarios,
NtbT topology config.)

Schedulerknife

Legacy-SW

Lvhost

WB-SW
: Chef client

N
tbT

Physical 
SWs

web applicationNW-CS PC
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To evaluate our proposed system, we created the four 
types of experimental networks shown in TABLE III where 
NtbT is constructed automatically and all hosts generated
traffic by iperf between every host pair. We then conducted 
each scenario 10 times. Note that physical SWs are cabled by 
hand preliminarily.

As an example, the testing scenario of NW No. 2 is 
shown in TABLE IV.

B. Verification of System Functions
Firstly, we verify that our proposed system can conduct 

network testing automatically. In order to confirm it, we 
executed network testing using four types of testing 
networks and corresponding failure scenarios in TABLE III.
We verified that our proposed system can conduct all 
scenarios, and every scenario was executed without error.
We validated that changing the routing paths when the link 
failure occurs and the OSPF cost changes, the disconnect 
time of end-to-end connections, the transition of the traffic 
volume of each interface (IF) at SWs, and the transition of 
the routing tables by visualization. Moreover, we verified 
that the Legacy-SW proxy works correctly.

As an example, Fig. 4 shows our visualization of end-to-
end traffic paths before/after scenario recipe Rcp#5 of NW 
No. 2 in the failure scenario. We can observe the network 
behavior of path restoration using this visualization.

(a) Before failure (b) After failure
Figure 4. Example of routing path restoration after failure occurrence.

C. Performance Evaluation of Processsing Time
To evaluate the performance of our proposed system, we 

evaluated the processing time of each scenario recipe in the 
testing scenario during network testing. More concretely, the 
time to process each recipe was collected and analyzed.

The processing time of each recipe using NW No. 2 is 
shown in Fig. 5. The processing time differs according to the
scenario recipe. The processing time has a small variance
over recipes, and the maximum variance was 1.50 when the 
scenario recipe is the confirmation of connectivity (Rcp#3).
The processing time of reconstruction (Rcp#1) was 110.0
seconds, while that of initialization (Rcp#2) was 138.1
seconds on average. The processing time of Rcp#1 was less
than that of Rcp#2. The processing time of a failure 
occurrence / restoration recipe is the time by which the Chef 
client is executed till completion of the executed failure 
command at the corresponding SW. 

Here, we consider two cases; Case #1 that consists of 
Rcp#5 and Rcp#6, and Case #2 that consists of Rcp#7 and 
Rcp#8. The processing time of Case #1 was 15.19 seconds 
and 21.94 seconds in Case #2. These two cases are similar in 
the sense that they have one failure and recovery, but the 

time is different. Cases #1 and #2 are different since #1 is an 
interface down failure and #2 is a “silent” failure that is 
difficult to detect. As seen in these cases, the processing time 
differs according to the failure recipe, but it is important to 
know such processing time of each recipe to estimate the 
time to conduct tests for large-scale networks. More detailed 
analysis of execution time is necessary, which is part of our 
future work.

Figure 5. Processing time of each recipe (Rcp#).

D. Performance Evaluation of NtbT Construction Time
As our proposed system constructs NtbT including the

construction and initialization of network equipment (SWs
and hosts) in NtbT, it is important to perceive the processing 
performance of the construction NtbT for the number of SWs.

To evaluate it, we focused on the SWs because the 
construction time of SWs is longer than that of the hosts. In 
the evaluated network, vWB-SWs are connected in series on 
NtbT and hosts are connected to the edge of a path. Varying 
the number N of SWs from 5 to 60 units, we measured the 
processing time for constructing N vWB-SWs 10 times in
each case.

Figure 6 shows the construction time on average of each 
recipe in the NtbT construction scenario. The processing 
time of each event increases in proportion to N. When N was 
60, the total time for constructing NtbT was 480.4 seconds
on average, and the processing time of construction 
increased in the following order; initialization > construction 
> connectivity. However, the increase rate of the processing 
time of Rcp#1 was larger than that of Rcp#2. Therefore, we 
estimate that when N is over 60, the processing time of 
Rcp#1 exceeds that of Rcp#2.

Figure 6. Number of WB-SWs and NtbT configuration time.

The reconstruction of NtbT (Rcp#1) creates VMs of 
vWB-SW only, while initialization of network equipment
(Rcp#2) installs some software, such as OSS. Furthermore, 
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confirmation of connectivity (Rcp#3) is conducted via ping 
between both interfaces (IFs) of a link for all links and all 
hosts. Therefore, the processing time depends on the number 
of links and hosts. In this topology, due to the fixed number 
of hosts (=2), the processing time increases in proportion to 
the number of SWs.

E. Effectiveness in Reducing Work Hours
To evaluate how our proposed system contributes to 

reducing the operational workload, we observed the work 
hours during the network testing process by comparing 
manual and automated operations. Using NW No. 1, we 
prepared the testing scenario where an interface (IF) is down 
and then the routing path is switched, including network 
cabling, initialization, and failure occurrence. In Case-A, this 
scenario was conducted manually, and automatically 
conducted by the proposed system in Case-B. We measured 
them 3 times in each case.

The work hours were 16.03 and 7.37 minutes in Case-A
and Case-B, respectively. Namely, the work hours were 
reduced by 54.1%. Note that each work hour includes 30-
second intervals of each recipe. From this result, we expect 
more efficiency in large-scale networks, and we can say that
our proposed system can reduce the work hours. 

V. CONCLUSION

In this paper, we assumed future-generation commercial
networks where Linux-based WB-SWs and legacy-SW co-
exist. So, we proposed a method of designing and 
implementing an automated network testing system. This 
system is able to observe the behavior of the network to be 
tested under given intended failures, collect testing results
and analyze them automatically. Heterogeneity due to 
different SWs is completely hidden and seamless operations 
are provided. We implemented the automated network 
testing system that can automatically construct and configure 
the test target network containing WB-SWs and Legacy-SWs, 
and observed how target network performs in failure 
scenarios. The experimental results show the effectiveness
and feasibility of the system. In particular, it is confirmed 
that our implementation can automate failure testing on the 
network with WB-SWs and Legacy-SWs and can reduce the 
work hours by 54.1%. In future, we intend to verify the 
effect of the work hours using larger networks and various 
scenarios.
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