
CollabKit – A Multi-User Multicast Collaboration System based on VNC

Christian Beier Peter Ibach

Humboldt-Universität zu Berlin
Institut für Informatik

Lehrstuhl für Rechnerorganisation und Kommunikation
{beier,ibach}@informatik.hu-berlin.de

Abstract—Computer-supported real-time collaboration sys-
tems offer functionality to let two or more users work together
at the same time, allowing them to jointly create, modify
and exchange electronic documents, use applications, and share
information location-independently and in real-time. Commonly,
such collaboration systems are realised using remote desktop
technology or are implemented as web applications. However,
none of the examined existing solutions support concurrent multi-
user interaction in an application-independent manner. Further-
more, when used in low-throughput shared-medium computer
networks such as WLANs or cellular networks, most of the
investigated systems do not scale well with an increasing number
of users, making them unsuitable for multi-user collaboration
of a high number of participants. Therefore in this paper we
present a collaboration system that supports concurrent multi-
user interaction with standard desktop applications and is able
to serve a high number of users in low-throughput environments.
Our multi-user multicast collaboration system named CollabKit,
realised by integrating and extending existing technologies, was
compared against a conventional unicast remote desktop system
and found to significantly outperform it when several clients
needed to be served. CollabKit supports application-independent
concurrent operation by multiple users, per-user graphical an-
notations and window sharing and scales well with an increasing
number of users.

Index Terms—VNC; MPX; Multicast; Collaboration; CSCW

I. INTRODUCTION

Collaboration means working together. Computer-supported
real-time collaboration systems allow multiple users to simul-
taneously edit electronic documents, share multimedia content
or use interactive applications – remotely or locally. The real-
time properties of such systems enable users to concurrently
ask and answer questions, brainstorm, and thus to rapidly
draw, refuse, or accept conclusions. These characteristics make
computer-supported real-time collaboration systems very use-
ful in professional contexts – they enable knowledge workers
and scientists to exchange information and to jointly create,
share and modify electronic artifacts.

The first area in which common computer-supported real-
time collaboration systems are limited though is support of
fully concurrent multi-user interaction: Though there are cur-
rent collaboration systems that support fully concurrent multi-
user interaction, such systems are confined to one or a few
built-in applications specifically designed for that system with
multi-user support in mind, they do not allow users to interact
with unmodified standard desktop applications. On the other
hand, there is a second class of computer-supported real-time
collaboration systems that allow participants to use any kind

of desktop application, but they only support user interaction
in a turn-taking mode where only one user at a time can be
in control of the shared desktop and there is only sequential
but no concurrent interaction.

The second area in which existing systems have shortcom-
ings relates to scalability: when sharing applications or whole
desktops – especially on low-throughput computer networks
characterised by shared medium access such as wireless local
area networks – the user-perceived performance degrades with
an increasing number of connected users. This is because the
same data is sent to each and every user individually: the more
users are connected, the less throughput capacity is available
to each one.

In order to address the first problem – lack of fully con-
current multi-user operation in existing systems – a computer-
supported real-time collaboration system with support for fully
concurrent multi-user operation was developed, implemented
and tested. Our collaboration system dubbed CollabKit allows
its users to simultaneously operate several applications on
a shared desktop. To achieve this, existing technologies –
namely the X11 windowing system and the Remote Frame-
buffer Protocol RFB used by VNC – were integrated to form
a collaboration system with the desired features.

The second problem – bad scalability in low-throughput
networks – could not be solved by simply integrating ex-
isting technologies though. Instead, this required enhancing
the way data representing shared applications is delivered to
the system’s users. This meant designing and implementing
an extension to the existing VNC remote desktop technology
that would make data transmissions use the shared medium
more efficiently. The chosen approach to accomplish this was
to extend the RFB protocol with support for multicast data
transmission. This allows a high number of users to efficiently
use the created collaboration system on a low-throughput
shared-medium network.

Figure 1 gives an outline of the envisioned system.

II. RELATED WORK

During a detailed examination [8] of usable related work,
it was found that almost all of the considered collaboration
solutions support basic remote view and control features, but
it was also evident that support for fully concurrent multi-user
operation is relatively scarce: There are preceding works that
support semi-concurrent multi-user operation by essentially
time-sharing a single cursor between users [17], but MPX [12]

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Figure 1: CollabKit is a computer-supported real-time collab-
oration system that supports concurrent multi-user interaction
and transmits the shared desktop once to all clients using
multicast.

is the only software supporting fully concurrent multi-user
operation with mice and keyboards on a standard desktop.
Others are either turn-taking, i.e. only supporting sequential
operation [10, 13, 9], or confined to some special multi-user
applications [5, 16, 6].

Since it was decided within the requirements analysis that
fully concurrent multi-user support including cursors and
keyboard foci is needed, the use of MPX for further work
was considered somewhat mandatory. Although designed with
network-transparency in mind, the X Window System X11
which MPX is based on is not suited well for sharing ap-
plications to several users: Within X11, an application can
always just be connected to a single X server, without special
measures it is thus impossible to display and remote control an
application from two different remote computers. Then, X11’s
network protocol is a stateful one: If the connections fails, the
application loses its X server and terminates. Finally, the X11
network protocol involves many round trips, which hampers
performance on high-latency links [15].

Taking these findings about X11 into account, it was con-
cluded that combining MPX with another remote desktop tech-
nology would be a more promising approach. It was also clear
that for interfacing with MPX, this remote desktop software
would have to be modified to support multiple pointers. Thus,
only products with available source code were furthermore
eligible. Another prerequisite was that there should exist a
server implementation for the X Window System that could
be interfaced with MPX.

There are already some remote desktop systems that to some
extent support multicast data transmission: most of them are
based on VNC [4, 7, 19], RTP [14] or custom protocols [9, 11].
Some of these are view-only and lack remote control support,
others are not open source and thus not adaptable to concurrent
multi-user support.

However, the main issue with these existing multicast re-
mote desktop systems is that they lack complete multicast flow
control with error handling. While the missing remote control
features could possibly be added with maintainable effort,
the lack of proper multicast flow control and error handling
is a more serious problem – IP multicast is based on UDP
instead of TCP and thus provides no built-in flow control nor

reliable data transmission. These are important though when –
to minimise resource usage – only updated parts of the screen
are multicasted, as opposed to always multicasting full screen-
shots. Out of the considered multicasting solutions, only the
newer incarnation of TeleTeachingTool [19] and VNCast [14]
potentially provide multicast flow control since they are based
on RTP, but they still lack multicast error handling.

Because of these shortcomings of existing multicast remote
desktop software, it was decided to implement multicast
support from scratch, extending an existing unicast remote
desktop software. This way proper multicast flow control and
error handling could be implemented in a clean fashion while
keeping the existing unicast communication paths for loss-
sensitive data and as a fallback.

After evaluating different candidates, the Remote Frame-
buffer Protocol used by VNC was identified as a good starting
point: It is an already widely used protocol; thus enabling
legacy non-multicast clients to connect as well. In contrast to
multicast RTP that supports a lot of features that are not needed
for a remote desktop application, VNC is simpler, resulting in
a less complex system in the end. RTP has features that are
needed for proper transmission of audio data, but are of little
use for multicasting of simple image data: anti-jitter buffering,
reordering of packets and timestamps. Buffering of incoming
data in order to compensate jitter is essential for audio data,
but not really necessary for image data. Since multicasted
image payloads are split up into relatively small packets that
are tagged with size and position information, the order in
which packets arrive is irrelevant. Timestamps are essential
for transmission of audio data, but of little use for image
data. VNCs simplicity also is the reason it was chosen over
Microsoft’s RDP – it is a lot less complex and the core protocol
is open and extensively documented. As a reliable code base to
build upon the LibVNCServer/LibVNCClient [3] library was
chosen because of its good coverage of standard VNC features
and useful protocol extensions on the server and client side.

III. COLLABKIT DESIGN

The different non-functional and functional requirements a
real-time collaboration system should meet were identified in
[8]. This meant designing CollabKit to provide features useful
for concurrent multi-user collaboration while ensuring that
the system would still offer the same levels of performance
with many user connected. Thus, CollabKit design focused on
multi-user support on one hand and multicast transmission of
remote desktop data on the other hand.

A. Multi-User Support

1) Concurrent Multi-User Operation : could be achieved
by extending the server application x11vnc included within
the LibVNCServer distribution and interfacing it with MPX:
when a client connects, it gets its own MPX master pointer
and keyboard focus which can be operated independently
from other MPX master device pairs. It was found that using
differently coloured cursors for mouse pointers is imperative
in order not to confuse users. To properly route input events
to the client’s assigned master devices, all functions, variables

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

and data structures in the VNC server sources that deal with
client input had to be extended to be device-aware.

2) Multi-User Graphical Annotations: were made possible
by extending the annotation tool Gromit [2] with multi-
pointer support. With Gromit, graphical annotations in dif-
ferent colours can be drawn onto an X display. Since the
widget toolkit used by Gromit, GTK+, has MPX support in
its most recent versions, the remaining task was to change the
application itself to be aware of multiple pointers.

3) Client-to-Server Window Sharing : Because VNC is
used for distributing the server’s screen to connected clients,
it was obvious to use the same technology to export client
windows to the central desktop. In CollabKit, this is done
by using a mode often called »reverse VNC«: The CollabKit
server machine runs a VNC viewer that listens for incoming
connections. CollabKit clients run a VNC server software that
supports sharing single windows instead of the whole screen.

4) Multicast Transmission of Image Data: Since one of the
main uses of the system is to transmit rather bulky image
data, the underlying network’s maximum throughput poses a
fundamental constraint. When used on wireless LANs with
54 MBit/s (802.11a/g) or just 11 MBit/s (802.11b) gross data
rate, it is apparent that delivering 25 fps of RGB image data
to multiple participants will quickly exhaust the network’s
capacity. Compression can only alleviate the consequences of
this problem but not solve it.

Since the image data representing the shared desktop is the
same for all connected participants, an obvious approach to
avoid the constraints posed by limited network capacity is to
use multicast data transmission instead of unicast.

The Remote Framebuffer protocol used by ordinary VNC
only supports unicast data transmission, relying on TCP at
the transport layer. It was deemed adequate to let the exten-
sion only transmit framebuffer update messages using UDP
multicast since other messages defined by the protocol do
not consume nearly as much throughput capacity as these.
This way the common TCP unicast communication paths can
be used for loss-sensitive data while bulky image data is
transmitted to clients via UDP multicast, providing significant
channel capacity savings when several clients are connected.
As suggested by the RFB protocol specification, the multicast
VNC extension was realized by introducing a new pseudo-
encoding. This way the protocol can be extended in a back-
ward compatible fashion. The full specification of the Multi-
castVNC protocol extension is presented in [8]. Nevertheless,
since the integration of flow control and error handling sets
MulticastVNC apart from other multicasting remote desktop
solutions, the next Subsection discusses MulticastVNC flow
control.

5) MulticastVNC Flow Control: Flow control is the process
of managing the rate of data transmission between network
nodes to prevent a fast sender from overwhelming a slow
receiver. Since UDP does not provide built in flow control like
TCP does, an application layer multicast flow control scheme
had to be integrated into the MulticastVNC protocol extension:
MulticastVNC uses a rate-based flow control scheme coupled
with a NACK-based error handling mechanism: a message
retransmission request by a receiver is interpreted as an indica-

tion to lower the send rate. Regarding the actual flow control
algorithm, MulticastVNC uses a modified form of the send
rate adaptation algorithm proposed in [18]. The modifications
to the original algorithm are as follows:

Figure 2: Send rate adaptation algorithm used by Multicast-
VNC. The send rate R is additively increased by a certain
increment value I on expiration of time t. R and I are decreased
on receipt of k or more significant NACKs. The constant
parameters m and n are used to balance the algorithm.

For a rate decrease to occur, MulticastVNC requires a burst
of k or more significant NACKs. This modification was made
because during evaluation it became apparent that the original
flow control scheme did not consider networks characterised
by relatively high packet loss probability such as WLAN. The
NACKs generated for these losses caused the transmission rate
to be decreased to a much too low value.

While the original approach used a variable timer value T,
the MulticastVNC flow control scheme uses a constant timer
value t. This change was made because with the original flow
control scheme, the send rate is increased too slowly when
its low but too fast when its rather high. Furthermore, there
is no reason to let the increment timer depend on the current
send rate: While it is true that more NACKs are generated at
a higher send rate because more messages are sent, this does
not mean that the send rate has to be increased faster because
the number of significant NACKs as defined in [18] does not
change substantially.

An outline of the flow control scheme used by Multicast-
VNC is depicted in Figure 2.

IV. COLLABKIT EVALUATION

A. Evaluation of Multi-User Functionality
Unlike other systems which only provide turn-taking, Col-

labKit features concurrent multi-user remote control of a
shared desktop, concurrent graphical annotations as well as
client-to-server window sharing.

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

1) Concurrent Multi-User View and Control: The modified
x11vnc server used in CollabKit provides every participant
with their own independent mouse cursor and keyboard focus,
allowing users to interact with objects on the server’s desktop
jointly and simultaneously, as can be seen in Figure 3

Figure 3: A scientific collaboration use case: three remote
participants concurrently operating applications on a shared
desktop. One is drawing on-screen annotations.

It is important to state though that at the time of writing
legacy applications can only be operated flawlessly by one
user at a time, concurrent interaction on the same desktop
is only possible with different legacy applications. However,
new applications can be designed with multi-device control
in mind and existing legacy applications can be modified to
be made multi-device aware. In the simplest case, it may be
sufficient to just link against a multi-device aware version of
the underlying widget toolkit, such as GTK+ 3.0.

2) Multi-User Graphical Annotations: On-screen annota-
tions can be used to either explain something more clearly
or to be able to ask more specifically about something on
the shared desktop. By using a heavily modified version of
the annotation tool Gromit, on-screen annotations can be done
concurrently by all or some users: it is possible that only a
few clients annotate – others are still able to operate the shared
desktop, as can be seen in Figure 3.

3) Client-to-Server Window Sharing: When connecting to
a CollabKit server using the CollabKit client, the client-to-
server window sharing functionality is easily accessible from
within the client application’s user interface: after having
established a connection to the server, the user may select
the »share window« entry out of the »window sharing« menu.
The selected window will then appear on the shared desktop.
It can be freely dragged around on the shared desktop and
also be operated by other participants.

B. Evaluation of the MulticastVNC Extension

The remainder of this paper documents how well Multicast-
VNC performs compared to traditional unicast VNC. In order

to make well-founded statements on unicast versus multicast
performance, extensive real-world tests with a total of eight
computers were carried out. Up to seven client machines
were employed, measuring throughput and latency as well as
MulticastVNC NACK and loss ratios.

A single test unit was defined to last exactly 3 minutes,
resulting in 180 samples of throughput and latency taken by
each participating client instance. In order to put load on the
clients, the server machine in all tests constantly sent 640x480
pixels of 32-bit image data with a desired frame rate of 15
frames per second. The VNC encoding used for the majority
of tests was Raw encoding. Ultra encoding as the default was
considered as well, but ultimately dismissed because with the
relatively weak server machine used in the experiments the
achievable throughput was found to be CPU-bound instead of
being limited by network characteristics and method of data
transmission.

1) Throughput Properties: The expected throughput prop-
erties of unicast versus multicast data transmission can be
formalized as follows: For the unicast case, the maximum
throughput observable by a client cl can be defined as

Tcl = min

(
Tp,

Tsp

Nsp

)
(1)

In this metric Tcl, the expression Tp describes a concave
metric that defines the maximum throughput limited by the
characteristics of the network path from server to client: Let
T (ni, nj) be a metric describing the achievable throughput be-
tween two network nodes ni and nj and let p (n1, n2, ..., nm)
be the path between server node n1 and client node nm. Then
Tp can be expressed as

Tp = min (T (n1, n2) , T (n2, n3) , ..., T (nm−1, nm))

Similarly, the expression Tsp describes the achievable
throughput on the path sp which is the subset of p that the
client cl shares with Nsp − 1 other clients. It can clearly be
seen that Tcl decreases with an increasing Nsp.

However, when using multicast data transmission, the max-
imum client-observable throughput becomes independent of
the number of clients that share the same path. The metric
then evaluates to a rather simple

Tcl = Tp (2)

showing that the maximum throughput observable by cl is
now independent of the number of other clients it shares the
network path to the server with.

To be able to compare the throughput characteristics of
VNC and MulticastVNC on a sound basis, experiments were
carried out that measured throughput as seen by clients in
different configurations: This included varying the number of
connected clients, testing in different network environments
(Fast Ethernet LAN and 802.11b WLAN) and changing be-
tween traditional unicast VNC and MulticastVNC.

The basic methodology for each test run was to start with
one client and increase the number of clients over time. As
noted above, this was done every 3 minutes, resulting in 180

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

K
B

yt
e/

s]

Number of Clients

(a) VNC.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

K
B

yt
e/

s]

Number of Clients

(b) MulticastVNC.

Figure 4: Average per-client throughput of 1 to 7 clients in
a Fast Ethernet LAN using Raw encoding. It can be seen
that for unicast data transmission average per-client throughput
decreases with an increasing number of connected clients.
With MulticastVNC instead, average per-client throughput is
independent of the number of connected clients.

samples per client count. This paper presents a subset of the
experimental findings.

The first test series measured achieved throughput in a LAN,
with all machines being connected through a Gigabit Ethernet
switch. Figure 4 shows the results for 1 to 7 connected clients
for the VNC and the MulticastVNC case. The graphs show test
runs each lasting 21 minutes where an additional client would
connect 180 seconds after its predecessor. Values on the y axis
are averaged throughput, computed as the arithmetic mean of
the samples taken by all active clients during the corresponding
180-second time span. The upper and lower ends of the error
bars denote the biggest and smallest values sampled.

With traditional unicast data transmission (Figure 4a), per-
client throughput decreases with each new client joining the
session. In contrast to the unicast measurements, Figure 4b
shows that with MulticastVNC, per-client throughput is not as
affected by the number of clients as it is when using traditional
VNC. In fact, the graph shows that throughput seen by each
client is around 10,000 KByte/s, independent of the number of
clients in the session. This matches the theoretical predictions
of the metric in equation 2.

2) Latency Properties: Multicast data transmission was
also expected to be beneficial for the latency of communi-
cation taking place, because it cuts down on server answer
time. First, for the unicast case, the delay or latency observed
by a client cl can be defined as

Lcl = Lp + tsrv ∗ (Nsp − 1) (3)

Within Lcl, the expression Lp describes an additive metric

defining the latency of the client’s connection to the server:
Let L (ni, nj) be a metric that describes the latency between
two network nodes ni and nj and let p (n1, n2, ..., nm) be the
path between server node n1 and client node nm. Then Lp

can be expressed as

Lp = L (n1, n2) + L (n2, n3) + ...+ L (nm−1, nm)

The term tsrv in Lcl describes the time the server needs
to transmit data to a single client. Nsp is defined as in the
throughput metric above. It can be seen that given a non-zero
tsrv, Lcl increases with an increasing Nsp. The higher tsrv,
the stronger the effect.

The benefit of multicast data transmission is that it elimi-
nates the possible delay a client might encounter while waiting
for others to be served: Because data is now sent only once
instead of Nsp times, the latency observed by cl when using
multicast data transmission is described by

Lcl = Lp (4)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7

A
ve

ra
ge

 L
at

en
cy

 [m
s]

Number of Clients

(a) VNC.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

A
ve

ra
ge

 L
at

en
cy

 [m
s]

Number of Clients

(b) MulticastVNC.

Figure 5: Average per-client latency of 1 to 7 clients in a
Fast Ethernet LAN using Raw encoding. For the unicast case,
the graphs show that average per-client latency increases the
more clients are connected. For multicast data transmission,
test results show a constant average per-client delay.

The latency occurring for different configurations, i.e. a
varying number of clients using unicast VNC or Multi-
castVNC in different network environments, was measured
employing the same test methodology as was used in the
throughput experiments. The measured latency values reflect
the data packet round trip time of the network in use plus the
time the server takes to reply.

Figure 5 shows the results for 1 to 7 clients in a Fast
Ethernet LAN using Raw VNC encoding. Again, the averages
are computed as the arithmetic mean of valid samples taken
by all active clients, the upper and lower ends of the error

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

bars denote the biggest and smallest sampled values. As can
be seen in Figure 5a, average per-client server answer time
increases linearly with more clients to be served, matching the
predictions of equation 3. For MulticastVNC, the test results
depicted in Figure 5b show a constant average per-client delay
unaffected by the number of connected clients as predicted by
equation 4.

3) Effectiveness of Multicast Flow Control: MulticastVNC
flow control builds upon related work done in [18], but makes
two important modifications, described in Section III-A5. This
section explains why these changes were necessary and shows
that the resulting multicast flow control scheme is in fact
working in both wired and wireless network environments.

The corresponding test runs all followed the same basic
procedure: A client connected to the server and ran at full
receive rate for 30 seconds. After that, it throttled its receive
rate to circa 50% and ran in this configuration for another 30
seconds. On expiration of that time span, the client unthrottled
again and ran like this for a final 30 second interval. During
execution of these high-low-high profiles, the transmission rate
of the server’s network interface was observed to see how the
server adapted its send rate to the respective new situation.
Tests were carried out in both a Fast Ethernet LAN and a
802.11b WLAN. The receive rate throttling on the client side
was done using the Linux netem emulation layer which allows
rate-limiting of incoming traffic by means of a token bucket
queuing discipline.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90

T
ra

ns
m

is
si

on
 R

at
e

[K
B

yt
e/

s]

Time [s]

Figure 6: MulticastVNC server transmission rate in a 802.11b
WLAN with m = 10, n = 1.2, k = 1, T = 100,000Byte

R . With
the unmodified original flow control scheme, the server send
rate is almost immediately throttled down to around zero in a
WLAN.

The first incarnation of the MulticastVNC flow control
scheme was closely modeled after the original algorithm
proposed in [18] and described in detail in Section III-A5.
The parameter values of m = 10 and n = 1.2 used in [18]
were adopted for the MulticastVNC flow control. The exact
choice of parameters for the variable timer T is left somewhat
unclear in the paper though. T = 100.000Byte

R was chosen after
some testing in a LAN.

While this multicast flow control scheme worked reasonably
well in a Fast Ethernet LAN, it failed completely when tested
out in a WLAN, as shown by the diagram in Figure 6: The
rise in transmission rate at the beginning of the test stems from
the client framebuffer initialization which is done via unicast,
but then the server send rate is almost immediately throttled
down to around zero. Since flow control worked well in a Fast
Ethernet LAN before, it was suspected that NACKs generated
from occasional packet loss in the WLAN were misinterpreted

by the algorithm as a sign for receive buffer overflow at the
client side, resulting in the server send rate to be lowered.

This misbehaviour could be fixed by changing the algorithm
to only decrease the send rate upon receipt of a burst of
NACKS. The reason this works better is that the patterns
of NACKs generated by occasional packet loss and receive
buffer overflow differ: In the former case, NACKs are mostly
evenly distributed over time and tightly packed NACK bursts
are relatively rare. However, on receive buffer overflow at the
client side a relatively large number of packets is dropped at
once, resulting in a burst of NACK messages arriving at the
server. A burst value of k = 3 was found to be adequate for
both WLAN and LAN environments.

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90

T
ra

ns
m

is
si

on
 R

at
e

[K
B

yt
e/

s]
Time [s]

(a) Fast Ethernet LAN.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90

T
ra

ns
m

is
si

on
 R

at
e

[K
B

yt
e/

s]

Time [s]

(b) 802.11b WLAN.

Figure 7: MulticastVNC server transmission rate in a Fast
Ethernet LAN and an 802.11b WLAN with m = 10, n = 1.2,
k = 3, t = 50ms. With both modifications applied, the
revised flow control scheme now works well in both wired
and wireless network environments.

While this modification fixed flow control on WLANs, there
still was a problem with either too frequent rate increases at
high send rates or too slow send rate recovery at low send
rates. To solve this, a fixed send rate increment timer value t
was introduced instead of the variable timer T that depended
on the current send rate R. In fact, there actually is no reason
for the send rate increment timer value to depend on the
send rate itself: While it is true that more NACKs can be
generated at a higher send rate since more packets can be
lost, this does not mean that the send rate has to be increased
faster – the algorithm distinguishes between significant and
meaningless NACKs and marks too high send rates as already
decreased. This way, additional NACKs for a certain send rate
have no effect. Figure 7 shows that the modified flow control
scheme with NACK bursts and fixed send rate increment timer
works well in both Fast Ethernet LAN and 802.11b WLAN,
respectively. A parameter set of m = 10, n = 1.2, k = 3 and
t = 50ms was found to be adequate for both cases. These also
are the values used in the throughput and latency experiments
presented above.

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

V. CONCLUSION AND FUTURE WORK

By integrating existing technologies and extending them
where needed, a computer-supported real-time collaboration
system that supports concurrent multi-user operation and scal-
able multicast transmission of image data could be created.
Source code and documentation are available at the project
web site [1].

As opposed to sequential turn-taking where only one user at
a time is in control, CollabKit integrates the Multi-Pointer-X
extension MPX with the remote desktop technology VNC to
give remote participants a per-user cursor and keyboard focus,
allowing them to simultaneously operate several applications
on a shared standard desktop in parallel. To make user in-
teraction more expressive, CollabKit furthermore implements
simultaneous per-user graphical annotations. For electronic
teaching and assistance use cases as well as for professional
remote collaboration, a window sharing feature was added that
enables users to show local windows to others by exporting
them to the remote desktop. A full-featured CollabKit client
application is available for Windows and Linux; there is an app
for Android and an alpha-stage Mac OS X implementation.

To address scalability with an increasing number of par-
ticipants and make CollabKit perform well even with a high
number of users in a low-throughput network, we extended
VNC with support for multicast data transmission. Experi-
ments showed that compared to its unicast counterpart, the
MulticastVNC extension performs significantly better when
several client computers are connected to the system: While
with unicast per-client throughput decreases with additional
clients, the use of MulticastVNC makes average per-client
throughput largely independent of the number of connected
clients. Regarding latency, test results showed that in the
unicast case average per-client delay goes up with an increas-
ing number of connected clients while with MulticastVNC it
stays at a constant low level. Finally, unlike other examined
multicast-enabled remote desktop systems, CollabKit also im-
plements multicast flow control and error handling using a
NACK mechanism in order to be able to deploy the system in
changing network environments without reconfiguration and
to deliver an accurate representation of the shared desktop to
its users.

While CollabKit already is a prototype shared view desktop
conferencing system, there are further enhancements and fea-
ture additions conceivable: Multi-user operation of the shared
desktop currently lacks a fine-grained floor control scheme.
This could include a concept like window or application own-
ership where users can take exclusive control of a particular
application, which can then be shared with others, passed on
or released. Regarding the MulticastVNC extension of the
RFB protocol, future work could focus on implementing other
VNC encodings than Raw and Ultra or investigate possible
encryption schemes for the pixel data sent via multicast.
Another interesting topic could be to examine how multicast
can be applied to the NACK mechanism so that lost datagrams
are not necessarily retransmitted by the server but by other
clients that have the requested data available.

REFERENCES

[1] CollabKit web site. http://wiki.informatik.hu-berlin.de/
nomads/index.php/CollabKit – Retrieved: 03, 2012

[2] Gromit web site. http://www.home.unix-ag.org/simon/
gromit – Retrieved: 03, 2012

[3] LibVNCServer web site. http://libvncserver.sf.net – Re-
trieved: 03, 2012

[4] MulticastVNC web site. http://www2.in.tum.de/~ziewer/
multicastvnc/ – Retrieved: 03, 2012

[5] PaintChat web site. http://www.paintchat.jp/
[6] SubEthaEdit web site. http://www.codingmonkeys.de/

subethaedit/ – Retrieved: 03, 2012
[7] TightProjector web site. http://www.tightvnc.com/

projector/ – Retrieved: 03, 2012
[8] Beier, C.: CollabKit - A Multi-User Multicast Collab-

oration System based on VNC, HU-Berlin, Thesis, 04
2011. – http://edoc.hu-berlin.de/docviews/abstract.php?
id=39389 – Retrieved: 03, 2012

[9] Boyaci, O. and Schulzrinne, H.: BASS Application
Sharing System. In: Tenth IEEE International Symposium
on Multimedia, 2008. ISM 2008, 2008, pp. 432–439

[10] Coulthart, D. ; Das, S. and Kim, L.: THINCing Together:
Extending THINC for Multi-User Collaborative Support.
(2009)

[11] Hasan, S. M. ; Lewis, G. J. ; Alexandrov, V. N. ; Dove,
M. T. and Tucker, M. G.: Multicast Application Sharing
Tool for the Access Grid Toolkit. In: UK e-Science All
Hands Meeting, Nottingham, UK, 2005

[12] Hutterer, P. and Thomas, B. H.: Groupware support in
the windowing system. In: Proceedings of the eight
Australasian conference on User interface-Volume 64,
2007, pp. 39–46

[13] Masahiro, T. and Lowe, N.: DrawTop. ViSLAB School
of Information Technologies, University of Sydney, 2006

[14] Ng, C. J. ; Takatsuka, M. ; Smith, S. and Lowe, N.: VN-
Cast web site. http://wiki.vislab.usyd.edu.au/moinwiki/
VNCast – Retrieved: 03, 2012

[15] Packard, K. and Gettys, J.: X Window System network
performance. In: FREENIX Track, 2003 Usenix Annual
Technical Conference, 2003

[16] Tse, E. and Greenberg, S.: Rapidly prototyping single
display groupware through the SDGToolkit. In: Pro-
ceedings of the fifth conference on Australasian user
interface-Volume 28 Australian Computer Society, Inc.
(Conf.), 2004, pp. 101–110

[17] Wallace, G. ; Bi, P. ; Li, K. and Anshus, O.: A
multi-cursor x window manager supporting control room
collaboration. In: Computer Science Report No. TR-
0707-04, Princeton University (2004)

[18] Yamamoto, M. ; Sawa, Y. ; Shinji, F. and Ikeda, H.:
NAK-based flow control scheme for reliable multicast
communications. In: Global Telecommunications Con-
ference, 1998. GLOBECOM 98. The Bridge to Global
Integration. IEEE, 1998, pp. 2611–2616

[19] Ziewer, P. and Seidl, H.: Transparent teleteaching. In:
Proceedings of ASCILITE. 2002, pp. 749–758

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

http://wiki.informatik.hu-berlin.de/nomads/index.php/CollabKit
http://wiki.informatik.hu-berlin.de/nomads/index.php/CollabKit
http://www.home.unix-ag.org/simon/gromit
http://www.home.unix-ag.org/simon/gromit
http://libvncserver.sf.net
http://www2.in.tum.de/~ziewer/multicastvnc/
http://www2.in.tum.de/~ziewer/multicastvnc/
http://www.paintchat.jp/
http://www.codingmonkeys.de/subethaedit/
http://www.codingmonkeys.de/subethaedit/
http://www.tightvnc.com/projector/
http://www.tightvnc.com/projector/
http://edoc.hu-berlin.de/docviews/abstract.php?id=39389
http://edoc.hu-berlin.de/docviews/abstract.php?id=39389
http://wiki.vislab.usyd.edu.au/moinwiki/VNCast
http://wiki.vislab.usyd.edu.au/moinwiki/VNCast

	Introduction
	Related Work
	CollabKit Design
	Multi-User Support
	Concurrent Multi-User Operation
	Multi-User Graphical Annotations
	Client-to-Server Window Sharing
	Multicast Transmission of Image Data
	MulticastVNC Flow Control

	CollabKit Evaluation
	Evaluation of Multi-User Functionality
	Concurrent Multi-User View and Control
	Multi-User Graphical Annotations
	Client-to-Server Window Sharing

	Evaluation of the MulticastVNC Extension
	Throughput Properties
	Latency Properties
	Effectiveness of Multicast Flow Control

	Conclusion and Future Work

