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Abstract—Social networks of the Web 2.0 have become global
(e.g., FaceBook, etc). In 1977, FREEMAN published generic
metrics for Social Networks Analysis (SNA), mainly based on
graph-mining models. The objective of our work is to extend
these static analysis models by taking the conceptual aspects
of enterprises and institutions social graph into account. These
conceptual aspects are embedded in trades-oriented ontologies
extracted from the endogenous information, connate to the
studied social networks. The originality of our multidisciplinary
work is to define new multidimensional measures in SNA for
new decision-making functions in Human Resource Management
(HRM). This paper introduces three new contributions: (1) a
metric of tension of a social network, (2), an extension of the
FREEMAN’s betweenness measure named semantic betweenness
and (3) a notion of reactance of a social network used for the
evaluation of the individual stress.

Keywords-social, networks, analysis, ontologies, semantic, be-
tweenness.

I. INTRODUCTION

Current trends and needs of communication permanently

require new functions and applications of social networking,

as demonstrated by the constant eruption of new socialisation

modes (e.g., Twitter, Facebook Diigo). In comparison with the

real spaces of exchange, these virtual spaces facilitate the static

analysis and the emergence of metrics and methods dedicated

to Social Networks Analysis (SNA). The measures of central-

ity introduced by FREEMAN are the basic foundation in SNA

[1]. Naturally, SNA is gradually extended to enterprises, in

order to provide new management tools dedicated to work or-

ganisation, workforce and human resource management tools.

The culture of collaborative work is more and more paired to

”Web 2.0” tools, characterising a form of enterprise ”2.0”,

aware of human and social capital management. A social

network can be formalised with a (not) directed, labelled and

weighted graph. From such a structure, two kinds of SNA can

be differentiated: static SNA and semantic SNA.

Static SNA studies the state S of social graphs at a time t. It

is grounded on models and measures dedicated to structures

- such as defined in [1], [2], [3] -, or flow-based models [4],

[5]. The graphs can be random graphs [6], pseudo-random

graphs [7], scale-free graphs [8] or hybrid graphs. Static SNA

enables the classification of individuals groups or communities

and the discovery of implicit relationships between individuals

involved into the social graph, by computing degrees, con-

nectivities, distances and flows. Basically, the count of edges

connected to a vertex v is the degree of v. The count of other

vertices accessible from v is the connectivity of v. The distance

between two vertices is the minimal count of edges between

them. An elemental flow is characterised by a count of units

circulating between two vertices - cf., electrical or hydraulic

networks, road networks.

Semantic SNA studies the conceptual aspects of social

graphs. It is based on the principles underlying conceptual

graphs theory and semantic networks theory [9]. Semantic

SNA refers to the Semantic Web standards (i.e., W3C lan-

guages and micro-formats, such as RDF, OWL or FOAF), On-

tology Engineering [10] and logical inferences, in correlation

with cognitive sciences [11], [12]. With the exponential growth

of social networks and information flows, semantic SNA

becomes crucial for knowledge discovery and knowledge man-

agement, from the enterprise content to the large communities

of the Web. Semantic SNA can notably bring real advantages

in the areas related to social and human capital management

or optimisation of work-groups and working methods, within

professional organisations (societies, institutions).

Currently, not many works try to integrate the differentiated

forms of analysis. The purpose of our work consists in filling

this gap by defining a new convergent system based on both

static and semantic analysis of Enterprises and Institutions

Social Networks (EISN). Our approach is multidisciplinary,

since it is based on physics and cognitive sciences. It leads

to the definition of a multidimensional model enabling the

development of new decisional tools for the optimisation of

work and well-fare at work and for the social and human

capital management. In its current version, this model includes

three new contributions: (1) a metric of tension of a social

network, (2) an extension of the L.C. FREEMAN’s between-

ness measure, named semantic betweenness, and (3) a notion

of reactance used for the evaluation of the individual stress

within a professional social networks.

Our work is funded by the French State Secretariat for

prospective and development of the digital economy, in the

context of the SOCIOPRISE project [13]. It is developed in

collaboration with a French IT service and software engineer-

ing company which provides industry-leading software and

implementation services dedicated to human capital manage-

ment.
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The rest of this paper is structured as follows. Section 1

introduces, in a synthetic way, the principles and methods

respectively used for static SNA and semantic SNA. Section

2 presents in details the approach we advocate to integrate

static and semantic SNA. Our contributions are based on

(1) a bridge-building between knowledge engineering and the

measures of static analysis and (2) a bridge-building between

the semantic SNA introduced in (1) and electric principles.

Our work is dedicated to Enterprises and Institutions Social

Networks Analysis - EISNA.

II. UNIDIMENSIONAL APPROACHES

A. Static Analysis

Static SNA studies the state S of a social graph at a time

t, S being defined by the structures and/or the flows of the

studied graphs. The first notions of SNA were focused on

the leadership in communities [14]. These notions have been

enriched with measures of centrality and betweenness [1],

which characterise properties of social networks in terms of

power, prestige, proximity and confidence.

The centrality measures are based on the comparison of a

vertex degree or flows, to those of the graphs, neighbours or

distant ones. A vertex connected to a large count of vertices

in the graph (directly or not) holds an important centrality

of power ratio. A vertex connected with the vertices of the

social graphs bearing the strongest degrees holds an important

centrality of prestige ratio. A vertex connected with a large

count of close or neighbour vertices owns a high centrality

of proximity. By induction, an important centrality of prestige

and proximity can reveal a significant trust coefficient.

A measure of betweenness defines how an individual is

important to interconnect his neighbourhood. According to [1]

and [15], we formalise it as follows:

∀i 6= u 6= j, σ(i, u, j) > 0, Iu =
∑

(ı,)

σ(i, u, j)

σ(i, j)
(1)

where σ(i, j) is the count of shortest chains between i and j,

σ(i, u, j) is the count of shortest chains between the vertices

i and j crossing u. The ratio σ(i, u, j) by σ(i, j) is cumulated

for the (i, j) where σ(i, u, j) > 0. The sum can be restricted to

the couples (i, j) for which σ(i, u, j) > 0, in order to define an

approximative measure adapted to large social graphs analysis.

1) Structural Analysis: Classification (graph-clustering)

and characterisation of graphs are the basic foundations of

static SNA. Structural properties are defined for the main types

of social graphs and they provide some elements of static

SNA. In the context of random graphs [6], the degree of the

n vertices of the graph is determined by a probability p(n)
with p 7→ [0; 1]. With pseudo-random graphs, the degree of n
vertices is distributed according to an uniform distribution law

(e.g., law of Laplace-Gauss) where G(V,E) owns a probability

p =| E | ÷( |V |
2 ), with V a set of vertices and E a set of edges.

With scale-free graphs [8], the most connected nodes increase

their connection degree following a power law (”richers get

richer”). By defining specific behaviours for each type of

networks and sub-graphs, these structural static properties also

provide elements for dynamic analysis of social graphs.

2) Flows Analysis: Several works of graph theory (e.g.,

the maximal flow problem) are applicable to static analysis

of flows within social networks. It is particularly the case

of the small world study in which V. LATORA et M. MAR-

CHIORI have introduced the notion of efficiency, defined as

a measure of communication weighted inversely proportional

to the shortest path between two vertices i and j [4]. The

work of J. LESKOVEC and E. HORVITZ about large social

graphs (MSN - 179 millions of vertices), updates the ”six

degrees of separation” hypothesis, a small world characteristic.

In [16], the MILGRAM hypothesis, advocating the ability to

reach 100% of the vertices of a graph in 6 hops [17], is

dropped down to only 48% of vertices reached. Following a

long-tail curve, the distribution reaches 78% of vertices within

7 hops and for 90% of vertices, the measured mean is 7,8 hops,

with a maximal shortest path of 19 hops between two vertices

(measured on a sample set of 1000 vertices).

Some physics models are also treated with help of graphs for

the understanding and discovery of theoretical principles. In

the electricity area, the KIRCHHOFF’s law of nodes and law of

meshes are the most well-known illustration of this trend. The

work of [5] about resistance and currents of finite networks,

demonstrating the unity and continuity of flows within large

graphs, brings a new hypothesis to be validated in SNA.

To sum up, static SNA provides a large set of mathematical,

sociological and even physics models. These models are

mainly based on the graph theory and and they can be used to

discover explicit or implicit knowledge within social graphs.

Some of these models are also extended to dynamic SNA [18],

an aspect out of scope for this paper.

B. Semantic SNA

Semantic SNA studies the conceptual aspects of social

graphs. It is founded on conceptual graphs and ontologies cou-

pled with SNA principles [12]. Currently, to our knowledge,

no significant work has been published in the domain, but the

attractiveness of the subject is visible.

We define an ontology as a formal and explicit specifi-

cation of a shared conceptualisation [10]. J. JUNG AND J.

EUZENAT comment the description of a three-dimensional

view of semantic SNA, putting together social graphs, annota-

tions and ontologies ERgraphs - Entities/Relationships graphs,

[19]. Their proposal overlays and makes the three dimensions

coincide in order to build ”consensual” ontologies, where

annotations are linked to the social graph. ALEMAN-MEZA

AND AL. introduce a semantic application for interest conflicts

detection within social networks of scientific publications [20].

Based on the research of syntactico-semantic patterns, the

application measures the semantic similarity between authors

corpus, in order to detect possible redundancies or concurren-

cies within subjects shared or divided across teams. The work

of [21] about semantic SNA paves the way of semantic and

statistic analysis. It makes the outline of SNA operational, by
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integrating it to the models and languages of the Semantic

Web (i.e., OWL, RIF, FOAF, SIOC, MOAT, POWDER).

Rules and inferences systems, in correlation with cognitive

sciences, bring a main line of SNA developments towards

a semantic dimension. These developments are submitted to

vertices and edges annotations, by automatic means such

as statistic learning and natural language processing, or hu-

man treatments such as social tagging. Reciprocal evaluation

between members of a social network shows how human

interaction produces a valuation on which a reliable degree of

confidence can be computed. We talk of favours network when

the graph structure depends on peer-to-peer evaluations. Even-

tually, the integration of cognitive sciences such as linguistics,

psychology or neurosciences, produces interesting results as

demonstrated by ontology personalisation [11]. The hypothesis

of derived methods specifically adapted to semantic SNA can

be considered.

T. GRUBER cheers on initiatives which tend to integrate

semantic web principles and languages, to social networks

for the development of Collective Intelligence and Collective

Knowledge Systems [12]. From the large Web communities

to the enterprises social networks, semantic SNA can bring

real progresses in different domains, such as global marketing

linked to globalisation, social and human capital management

or work-groups and work-methods optimisation within profes-

sional organisations, the domain in which we are interested.

III. MULTIDIMENSIONAL SYNERGIES IN EISNA

The main objective of our work is to exhibit multidimen-

sional synergies between the static and semantic aspects in En-

terprises and Institutions Social Networks Analysis - EISNA.

The specificities of EISNA are: (1) social graphs composed of

up to 100 000 nodes, (2) endogenous data restricted to a few

specific and connate domains and (3) intensive collaborative

work with trade-oriented information sharing.

The methodology we have adopted respects the segmenta-

tion of the problematics:

• Static SNA is integrated without any change. Our con-

tribution mainly consists in providing relevant bridge-

building of known methods and identified models, orig-

inally from physics or cognitive sciences. The results

we provide concern new flows metrics of social graphs.

Devoted to EISNA for the prevention of social risk, they

consist in the definition of 2 metrics. The first metric

is dedicated to evaluate a new notion named tension of

a social network (cf. section III-A1). The second metric

extends the L.C. FREEMAN’s measure of betweenness

(cf. section III-A2) which becomes semantic - semantic

betweenness.

• Semantic SNA is developed by integrating social graphs,

conceptual graph, ontologies and inferences rules. The

contributions we provide can only be applied to EISNA

and they are specially devoted to work organisation and

social/human capital management. Currently, our third

contribution consists in defining a new notion of reac-

tance, which aims at the evaluation of individual stress

(cf. section III-B).

The results we provide are jointly afforded to converge in

a multidimensional model, leading to the development of

decision-making tools for enterprises and institutions social

networks.

A. Static EISNA, Physical Models and Cognition

Our model adopts FREEMAN’s centrality and betweenness

measures, starting with non-directed graphs. For instance with

directed graphs, Page-Rank provides a score easily assimilated

to a measure of prestige [22], and an extrapolation integrating

an authority coefficient (author reputation), Trust-Rank, gives

a confidence/trust score, also adaptable to non-directed graphs

as a complement of other measures [23].

1) Static EISNA, Flows and Physical Models: To introduce

some new flows measures, we test assimilation of the graph

edges to conductors transporting electrical flows. Our method

consists in quantifying and qualifying flows embedded in

social networks with semantic ratios. These ratios are defined

according to percentages of read, written or shared in common

documents (e.g., office, mails, instantaneous messages), ex-

changed data packets (ToIp, VoIp) and other numerical marks

able to characterise conceptual links between individuals.

Some electrical principles are adapted to static analysis of

flows around a vertex, among which the KIRCHHOFF’s laws

of nodes and meshes. Figure 1 illustrates the Law of nodes,

with I intensity of electrical charges for an output quantity Q

by time unit t.

Fig. 1. Law of nodes,
∑

Iinput =
∑

Ioutput, i2 + i3 = i1 + i4

The originality of our work consists in introducing the

concept of tension in a social network related to the notions

of crossing flow intensity and vertex resistance. A vertex s

directly connected with two other vertices r and t can be

likened to a dipole which resistance is noted R. We use OHM’s

laws:

Urt = Rs.Irt and Ps = Rs.Irt.Irt2 = Urt.Irt2/Rs =
Urt.Irt,
where Urt represents the electrical tension depending on Rs
and Irt, and Ps represents the delivered power by a vertex

of which maximal admissible power is noted Pmax, with

Umax =
√
R.Pmax and Imax =

√

Pmax/R.

By applying OHM’s law upon a social graph, it is possible

to compute a charge-capacity ratio of the enterprise social

network, by analogy with Ps, Pmax. The purpose is to

introduce a stress measure of individuals and communities.

This measure uses the Joule effect to estimate the enterprise

60

COLLA 2011 : The First International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-143-4



social network components warm-up and to prevent risks of

performances degradation, instability or breakdown (socio-

psychological trouble). The warm-up T depends on dissipated

energy and material resistivity ρ. Since the value of ρ varies

according to diversity of molecular structures, its computation

gets out of the scope of this paper. So, it must be considered

that the social material is a priori abstracted as a constant by

initialising algorithms with ρ = 1, let T.ρ = W = R.I2.∆t.
Next, ρ should be refined by ρ 7→ [0; 1], according to a defined

determinant used to induce recursive interaction between T

and R encountered in physics, where ρ is varying according

to T.

2) Static EISNA and cognition: Manual resources tagging

requires cognitive processes. In the context of EISNA, this

method can lead to psychological rejects mainly caused by

political and ethical aspects. To be more ethically acceptable,

manual tagging should be limited to non-human resources

(documents, textual corpus, databases). The characterisation of

individuals and groups must be based on criterias respecting

persons and privacy.

By associating terms used to annotate trades-oriented re-

sources with of concepts of an ontology, the semantisation of

annotation process facilitates the discovery of communities of

practice by the means of implicit relationships between anno-

tated resources. According to this standpoint, we use trades-

oriented ontologies to qualify numerical analysis of social

graphs. Technically, this is done by correlating statistic results

obtained on flows and structures to ontological conceptual

graphs.

From the equation (1), we define a new measure of se-

mantic betweenness weighted by endogenous resources (i.e.,

mainly annotated documents with help of terms) where (1)

each annotation is associated to at least one individual of

the considered social network and where (2) the sum of

annotation occurrences calibrates favourably the measure for

the individuals who share resources associated to the majority

annotations.

This new measure is defined in the following context.

Explicit relationships between the set of human resources Rh,

the set of resources Rsi extracted from the information system

and the set of content annotations Esi are used to enrich

EISNA and discover some implicit relationships.

We introduce the sets Rh,Rsi, Esi and the relationships

R,R′ and avoid to compute wastefulness reflexive relation-

ships (e.g., relationships in RsiXRsi, EsiXEsi).
We define a relationship R(D,D′) where:

D = Rh or D = Rsi, D′ = Rh or D′ = Rsi or D′ = Esi.
We define a new set of measures by introducing a weighting

ratio Cp, based on the cardinality of R. When the SNA metric

to which we apply our semantic extension method gives a

result superior to 0, for a vertex u within a social graph, we

modify the metric by integrating the Cp factor. The factor

increases the value of the SNA measure for the vertices sharing

the same knowledge. Cp uses the cardinality of the relationship

R, relationship between the graph represented by pD, and the

endogenous content or its indexation, represented by pD′. pD

and pD′ are respectively restricted by the arguments eD, eD′,

where eD represents an element of pD (e.g., u) and eD′

represents one or several elements of the content or the index,

given by pD′ (e.g., some keywords). Cp is formalised as

follows:

SNA metric > 0 ∧ Cp = |R(pD, pD′, eD, eD′)| (2)

We have simulated the behaviour of a betweenness centrality

incorporating the Cp factor. The simulation is combining some

one-decimal values ranged from 0, 1 to 1.0 for the centrality,

and some values from 1 to 10 for the Cp factor. It aims at

the estimation of three alternatives of the use of Cp. These

alternatives are formalised as follows, with V the vertices

of G(V,E), semindex a semantic index of the endogenous

content, u a vertex in V and knowledge, a knowledge set

related to seized keywords:

BCp(u) =
∑

ı

σ(i, u, j)

σ(i, j)
× |R(V, semindex, u, knowledge)|

(3)

BCp(u) =

(

∑

ı

σ(i, u, j)

σ(i, j)

)2

×|R(V, semindex, u, knowledge)|

(4)

BCp(u) =
∑

ı

σ(i, u, j)

σ(i, j)
×
√

|R(V, semindex, u, knowledge)|

(5)

The figure 2 illustrates the behaviour of the equation (3)

in green, of the equation (4) in blue and of the equation

(5) in red (i.e., the lowest curve). The output values are

presented vertically and the samples used for the simulation

are numbered horizontally.

Fig. 2. Simulation of the Cp integration with the betweennes centrality.

Cp can reach a value superior to 1000 in the context of the

Socioprise project. Therefore, we choose to weak its influence,

using equation (5). When Cp > 0, the equation (1) is modified

as follows:

BCp(u) =
∑

ı

σ(i, u, j)

σ(i, j)
×
√

|R(V, semindex, u, knowledge)|

(6)

61

COLLA 2011 : The First International Conference on Advanced Collaborative Networks, Systems and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-143-4



Equation (6) introduces a new measure of semantic between-

ness, based on [1]. This measure takes a qualitative dimension

into account by integrating endogenous information contained

in Rsi and Esi, to the calculus of betweenness centrality.

Cp is quantified and qualified by eD, eD′ through ontologies

enabling semantic association of elements in Rsi and Esi.
The discovered knowledge in these conceptual associations is

the strong point of this new “smart” measure.

B. A use case of semantic EISNA

Sections III-A1 and III-A2 have introduced an analogy

between flows and structures analysis within social networks,

and some principles close to radio-electricity which seem

to be relevant. We have put forward notions of resistance,

charge, capacity, warm-up and powers. This context is used to

characterise implicit or explicit relationships Rs(i, j) between

the vertices of a social graph. Our goal is to cross these rela-

tionships with semantic properties (object or data properties)

represented by one or more domain ontologies to conceptualise

interactions within the social graph.

The notion of reactance already exists in electrodynamic

and social psychology. In electrodynamic, the reactance (in

Ohms) describes the energy opposed to an alternative current.

WANG uses reactance as a parameter of a neuron network,

to control the defects of an electrical network, depending on

the kind of element crossed [24]. In psychology, the reactance

characterises ”a state of negative motivation following a men-

ace (supposed to be real) of individual freedom restriction that

is translated into a influence resistance“ [25].

In our work, we propose to use the reactance Ψ as a notion

of individual stress. From the metric of tension defined in

section III-A, we draw up the following assertions :

Let a graph G(V,E) where vertices of V are connected by

the edges of E, respecting the following properties:

- Each element v of V intrinsically holds coefficients

resulting from classical measures of social networks (cf.

Freeman) or possible refinements.

- ∀(u, v) ∈ V connected by e ∈ E, u, v intrinsically holds

analogical values of resistance, charge, capacity, warm-

up, powers depending on V,E.

- ∀e ∈ E assimilated to an uncharacterised flow $,

owning a quantifiable value ϕ$ 6= 0, e is intrinsically de-

scribed by values of resistance, charge, capacity, warm-

up and powers. For e, ~$ or ϕ$ are measured as a pseudo-

tension Te or pseudo-intensity Ie.

From these assertions and the results of experiments man-

aged in the context of the SOCIOPRISE project (i.e., a project

dedicated to human and social capital management) within

trade-oriented organisations, we offer a first set of knowledge

dedicated to the identification of individual stress. This set

of knowledge can be represented by the following rules and

axioms:

* rule 1:

If CCu = chargeu
capacityu

increases and CCu < 80%,

then Ψu increases.

By analogy with electronic power networks, we integrate

the notions of minimal charge threshold under which the

performance collapses.

* rule 2:

if Pu =
resistanceu.intensity

2

u

Pmaxu
increases and Pu 6 1,

then Ψu and warm−upu increases (Pu represents a used

power).

* rule 2 bis (inference learning on rule 2):

if warm− upu increases,

then Ψu increases.

* rule 3:

if Pu increases and Pu > 1,

then Ψu decreases, Pmaxu decreases and warm− upu
quickly increases (Pu has exceeded Pmaxu).

* rule 3 bis (inference learning on rule 3 and experts

supervision):

if Ψu decreases and warm− upu increases,

then quick decreasing of Pmaxu and destruction risk.

* axiom 1 (inference supervised learning on rule 1):

if CCu 6 0.8,

then risk to lose socio-professional performances.

* axiom 2 (inference learning on rule 3 and 3 bis):

if Pu > 1,

then risk of socio-professional troubles.

* axiom 3 (inference supervised learning on axioms 1 +

2 and their premisses):

performance optimisation is equivalent to CCu > 0.8 and

Pu 6 1.

* axiom 4 (learning from symmetry on axiom 3 and his

premisses):

risk of socio-professional troubles is equivalent to risk of

loss of socio-professional performances.

From the equations system underlying these rules and ax-

ioms, we are currently formalising an innovative scalar metric

of reactance Ψu. From the multidisciplinary model we define,

we plan to get an innovative tools-set for decisional appli-

cations dedicated to social capital management. These tools

combining SNA metrics, knowledge engineering, ontologies

and sociology, applied to enterprise content and to enterprise

or institutions social networks (e.g., LDAP Directories or

other structures), will enable an innovative approach of human

capital management and human risk management.

IV. CONCLUSION

The purpose of our work is to define a model of enterprises

and institutions social networks analysis (EISNA). The main

originality of this model is to integrate the static and the

semantic dimension of EISNA. Our current proposal is based

on 3 contributions, defined in the context of a multidisciplinary

approach. These new contribution are respectively dedicated to

the evaluation of tension, semantic betweenness and reactance,

for professional social networks analysis.

Our introduction of semantics in the FREEMAN’s mea-

sures enables to qualify some collaborative and quantified

exchanges, while establishing new centrality degrees for a
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semantic identification of knowledge communities within en-

terprises and institutions social networks. The possible new

measures extended by our approach correlate statistic and

conceptual dimensions through endogenous resources and

scientific multidisciplinarity.

This work is a baseline for the development of new decision-

making functions and tools applied in social and human capital

management of enterprises and institutions. Compared to some

usual methods of sociometry such as internal surveys, our

model ought to significantly reduce the bias, while answering

to the problems of socio-professional troubles risk prevention,

performances loss risk prevention and social risk prevention.

From an applicative standpoint, our proposal is currently

evaluated in the context of an experiment related to the

SOCIOPRISE project. From a theoretical standpoint, this work

is currently in progress towards the integration of dynamic

aspects of EISNA. We plan to use AMPERE’s laws and

MAXWELL’s laws of electrodynamic, in order to advocate a

predictive analysis of social networks structural evolution.

The main applicative perspective of this approach is to

assist the optimisation of work-groups and performance in an

enlarged context, such as a pool of enterprises and institutions.

The main theoretical perspective is to formalise a complex

and multidimensional model (static, dynamic and semantic)

dedicated to professional social network analysis.
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