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Abstract—The availability of precise and comprehensive experi-
mental data in science and technology is crucial for the usability of
Artificial Intelligence (AI) models. A digitally analysable, system-
independent representation of datasets is essential for enabling the
deployment of data-driven applications across different platforms.
We propose a metadata model based on domain-specific languages
and terminologies, that allows researchers to focus on data
provision by reducing routine activities rather than attempting
to align with other research groups. Furthermore, it enables
fast and efficient integration of new partners from different
laboratories and disciplines. To conclude, our approach supports
a paradigm shift away from more or less subjectively designed
individualistic conceptions in handling research data towards
objectively established harmonised solutions. The approach is
illustrated for an Interdisciplinary Research Training Group, in
which researchers from more than 10 different departments are
involved with the main research profiles, such as textile and
polymer technology and material sciences.

Index Terms—Metadata Model; FAIR Principles; Research
Data Management; Ontology; Machine Learning; Domain-Specific
Technical Languages.

I. INTRODUCTION

Metadata is data about data [1], i.e., metadata provides
information about one or more aspects of the data. This
layered structure enhances the ability to capture subtle data
relationships, thereby improving data management and analysis.
To work effectively with metadata, organisations can use several
key tools and technologies, including taxonomies, ontologies
and semantics.

Ontologies and taxonomies are key tools used by researchers
to understand and retrieve large quantities of scientific and
engineering data. However, the management and application
of ontologies themselves can prove to be a daunting task.
Although similar in function, ontologies and taxonomies
differ in complexity. Taxonomies have a hierarchical structure
and use only parent-child relationships, while ontologies are
considerably more complicated [2] [3]. In simple terms, an
ontology represents the structured and formal knowledge related
to a specific domain. The semantic system uses clear and
understandable representations of concepts, relationships, and

rules to develop knowledge. It is not possible to rely entirely on
database programmers or data engineers to build a system, that
considers target applications, such as materials or production
technologies. They lack domain-specific knowledge, which
is fundamental for characterising the associations between
concepts. Therefore, to acquire domain knowledge, it is
necessary to seek guidance from various domain experts [4].

Over the past decade, Machine Learning (ML) has gained
significance in the fields of materials engineering. ML is a
subset of the broader category of Artificial Intelligence (AI)
that involves the development of algorithms and models that
enable systems to learn and improve from data without explicit
programming. AI encompasses a wider range of technologies
integrated into a system that aims to facilitate reasoning,
learning, and problem solving to address complex problems.

ML algorithms analyse vast amounts of data, extract insights,
and use them to inform decision-making [5] to detect and
extrapolate patterns. ML is becoming increasingly popular
worldwide owing to the growing demand for data analysis
solutions [6]. However, they also require large amounts of
data, which may not be meaningful in many areas, partly due
to the need for elaborate large-scale laboratory tests. There
has been an increase in the utilisation of ML methodologies
in materials science research [7]. Research suggests that the
limited practicality of AI in certain domain-specific contexts,
partially because of the need for elaborate laboratory tests on
a large scale, is a significant obstacle to its application.

Focusing on industrial requirements, we developed a novel
approach for the applicability of AI techniques, termed Us-
able Artificial Intelligence (UAI) [8]. At present, data-driven,
machine learning, and artificial intelligence methods are not
fully utilised to solve the associated technical challenges, espe-
cially in industrial applications, despite versatile development
progress. This is mainly due to the limited practicability of
AI solutions. Technical practitioners frequently depend on
interdisciplinary collaboration with data science specialists
to fully exploit the capabilities of AI methods [9]. In our
work, a flexible, tractable, scalable, and adaptable technique
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for constructing anticipatory models has been introduced [8]
and it is demonstrated on a use-cases [9].

Multi-Task Learning (MTL) methodology, which is novel
in materials informatics, can be utilised for example to learn
and forecast various polymer characteristics simultaneously,
efficiently and effectively [10]. MTL is a machine learning
approach, in which multiple tasks are trained simultaneously,
optimising multiple loss functions simultaneously. Rather than
training independent models for each task, we allow a single
model to learn to complete all tasks at once. In this process,
the model uses all available data across different tasks to learn
generalised representations of data that are useful in multiple
contexts [11]. For example, multitask models can be utilised to
overcome the data scarcity in polymer datasets. This approach
is expected to become the preferred technique for training
materials data [10].

Additionally, in other fields, existing predictive models
struggle to capture the complex relationships between mechan-
ical characteristics and behaviour. These studies used ML to
predict the mechanical properties of carbon nanotube-reinforced
cement composites [12]. Successful training, validation, and
testing of ML and Deep Learning (DL) models require
significant amounts of relevant data [13].

According to a survey, data scientists spend most of their
time cleaning and organising data (60 %), collecting datasets
(19 %), and mining data for patterns (9 %). Messy data are by
far the most time-consuming aspect of typical data scientist’s
workflow [14].

There is an urgent need to enhance the infrastructure that
facilitates the reuse of educational data [15]. In addition, it is
necessary to consider that data governance is fundamental for
other activities besides data within any Information Technology
(IT) establishment.

Through analysis, it can be concluded that the difficulty
of identifying, collecting, retaining, and granting access to
all relevant data for organisations at an acceptable cost is
significant. Data integration is a long-standing issue in data
management, and the above observations attest to its continuing
importance [16]. It is important to tap into the full potential
of data to create added value. This provides new insights and
justifies the costly initially data collection.

A. Motivation

In recent years, data-driven methods have significantly
improved various engineering tasks by providing valuable
insights, pattern recognition, and identification of the underlying
relationships in complex datasets. This has led to remarkable
progress and numerous potential data-driven applications, in-
cluding production engineering [17] and materials science [18].
However, the availability and usability of underlying data are
fundamental to the application of these methods.

In engineering, proper documentation of research data is
highly significant as experiments are often complex, intricate
and elaborate. Inadequate data documentation can lead to
the misinterpretation of experiments by other researchers
and/or unnecessary repetition of already completed experiments,

with data that are publicly accessible in repositories. High-
quality data documentation is crucial for researchers seeking
to understand the relationships among the processes, structures,
and properties of manufactured components. This is sought
and increasingly demanded by public project sponsors, such
as the German Research Foundation (DFG).

Multi-stage manufacturing in the process chains is common
for many products. Cross-process data analysis can be used
to identify relationships in process chains. A prerequisite for
this is that an evaluable, comprehensive and well-documented
global dataset is available [19]–[23]. Nevertheless, acquiring
such a dataset across process boundaries presents a formidable
obstacle, owing to the distinct handling of individual process
steps by different partners.

To facilitate cross-platform implementation of AI models, a
digitally analysable, system-independent dataset representation
is necessary. These datasets can be combined to form a unique
dataset that represents different system properties, ultimately
enabling holistic data-driven modelling, for example, through
MTL or transfer learning. This will enable the harmonisation
of workflows across diverse domains, thereby facilitating
communication between areas of expertise or specialists
themselves. An overarching strategy is key to aligning different
approaches ensuring tha the experimental data are reusable
without modification.

We propose a strategy that allows specialists to focus on data
provision by reducing routine activities rather than aligning
with similar groups. This strategy enables researchers to focus
on their experiments and research questions. The objective
was to document research data across process boundaries,
thereby enabling researchers to maintain their perspectives
during data preparation and documentation. Metadata schemas
with synonyms grounded on ontologies or taxonomies guarantee
that research data that is understandable, usable for further
analyses, interoperable across laboratory boundaries, replicable
at a qualitative level, complete, and of superior quality.

In conclusion, the main motive of our research is to support
data-driven analysis and modelling, including comparisons
across laboratory boundaries. Datasets from different labora-
tories are to be merged, for example, for round robin-tests,
etc. For multi-stage process chains this reveals overarching
correlations in the overall dataset. Taking into account the
FAIR principles [15], i.e., Findability (F), Accessibility (A),
Interoperability (I), and Reusability (R), third party researchers
will be able to understand and analyse datasets from disciplines
that are unfamiliar to them for their own research questions.

B. Challenges

Effectively documenting data across processes and laboratory
boundaries presents a key challenge. At the heart of these
challenges is the need for data to comply with the guidelines of
good scientific practice and the FAIR principles. Each domain
possesses its own technical language and unique working
culture that needs to be integrated, while allowing researchers
to retain their languages. A clear and concise example of
the objective can be illustrated by the symbols and units of
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measurement used for the tensile strength in tensile tests. The
standards differ in the symbols for the tensile strength, which
are used for different materials. The ISO 1920-4 standard for
the tensile strength of concrete specifies fct as a symbol for
tensile strength, ISO 6892-1 for metals specifies Rm, ISO
527-1 for plastics specifies σm, and the RILEM TC 232-TDT
[24] technical guideline for textile-reinforced plastics specifies
σcu as a symbol for tensile strength. In addition, the frequently
used units of measurement differ, which are MPa (Megapascal)
and GPa (Gigapascal).

A common technical language that allows researchers from
different domains to communicate effectively is relevant, with-
out the necessity for a uniform overarching technical language
across all laboratories. Local technical terminology should
be compatible without the need for a uniform overarching
technical language across all laboratories. This can improve
recognition and reduce expenses, furthermore, it is necessary
for interoperability. We are not aware of any other method
for integrating data records. The completeness of reporting is
also critical. Researchers from various disciplines consider –
due to their specific research questions – different quantities
to be significant, leading to incomplete and inconsistent
data documentation across process and laboratory boundaries.
Therefore, complete data documentation is relevant for the
subsequent use of data by third parties and adherence to the
principles of good scientific practice is indispensable to ensure
accuracy. Sometimes, if experiments were carried out a long
time ago, it is not always possible to remember the details,
especially because staff turnover in the research sector is very
high.

C. Aim

The main objective of this paper is to provide a workable
approach towards synchronised documentation of research
data within the engineering sector across various phases while
meeting all the requirements regarding the FAIR principles.
It is specifically geared towards enabling researchers to
maintain their domain-specific perspective during the data
preparation and documentation phases. The goal is to develop
a methodology that is achievable, extensible, and effective for
promoting cross-platform functionality. The deployment of AI
models is facilitated through a digitally analysable, system-
independent presentation of training datasets that enable cross-
process data analysis.

D. Contribution

We present a solution concept in which research data can
be documented based on a subject-specific ontology. The
feasibility of the concept is illustrated using an example of
the documentation of compression tests as part of the joint
GRK2250 project [25]. The concept is largely independent of
the above project and can therefore be easily transferred to
other collaborative projects. Subsequent data-driven modelling
is outside the scope of this study.

To conclude, our strategy supports a paradigm shift from
more or less subjectively designed individualistic conceptions

to the handling of research data towards objectively established
harmonised solutions. The motivation for this work is the
importance of harmonised data preparation and subsequent
documentation in the engineering field. The impetus for this
work comes from recognising the fundamental significance of
standardising data preparation and subsequent documentation
in the engineering domain.

E. Paper organisation

The remainder of the paper is structured as follows: Sec-
tion II provides an overview of existing work related to the
described problem. A description of our strategy is presented
in Section III. In Section IV, the strategy is illustrated for an
Interdisciplinary Research Training Group, in which researchers
from more than 10 different departments are investigating
mineral-bonded composites for improved structural impact
safety.

The presentation of the main results and discussions based
on these results constitute the content of Section V. Section VI
summarises our contributions and draws perspectives for future
work.

II. RELATED WORK

This section offers an overview of the existing approaches
to metadata schemes for research software. Whereas some
publications focus specifically on metadata, others introduce
software ontologies that can serve as a vocabulary for research
software. A recent summary [26] of existing approaches to
metadata schemes for research software includes DataCite [27],
CodeMeta [28], and EngMeta [29], etc. The international
consortium DataCite was founded in late 2009, to address the
ever-increasing amount of digital research data. The objectives
of the consortium include promoting the acceptance of research
data to facilitate data archiving and enabling future studies to
verify and repurpose the results.

CodeMeta is a community driven metadata standard for
research software based on the schema.org. Various crosswalks
to other metadata schemes already exist. CodeMeta contains
multiple elements, some focusing on technical details, such as
file size or supported operating systems and others including
administrative information, such as licenses. The metadata
standard does not have mandatory elements. It supports the
use of uniform research identifiers for authors and contributors
as well as licenses. Content-specific metadata are limited to
the application categories and keywords.

EngMeta is an XML-based formal definition of the informa-
tion required to find, understand, reproduce, and reuse data from
engineering disciplines [29]. It uses a metadata schema for the
description of engineering research data and the documentation
of the entire research process, including the people, software,
instruments and computing environment involved, as well as
the methods used and their parameters [30] [31].

In general, the more precise the data documentation that can
model a specialist area, the more suitable it is. This means
that general ontologies, on which knowledge databases, such
as WikiData [32] or DBpedia [33] are based, are only suitable
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to a limited extent for use in highly specialised fields of
application, such as additive manufacturing. The European
Materials Modelling Ontology (EMMO) [34] is an approach for
standardising technical terms in applied sciences, particularly
in materials science. It can be used to model experiments and
simulations.

OntoSoft [35] captured scientific software metadata, and
expanded them using machine-readable descriptions of the
expected content of the inputs and outputs of the software. The
EDAM ontology contributes to open science by enabling the
semantic annotation of processed data, thus making the data
more understandable, findable, and comparable [36]. Software
Ontology (SWO) [37] has been developed to extend the
EDAM ontology to describe software in this research area [38].
SWO includes licences, programming languages, and data
formats as taxonomies. In contrast to OntoSoft, the use of
taxonomies improves the usability of semantic web applications
and links [39].

Several universal metadata standards are available in the
literature, and metadata schemes have been used in online
retail for over a decade. More than 100 metadata standards
were visualised in [40]. Additionally, metadata standards related
to engineering domains are available, such as EngMeta [31].
However, metadata templates for specific experiments are
lacking. Even in experiments standardised according to the
German industry standard (DIN), there is no guidance on
what metadata should be stored. The standards focus on the
execution of experiments rather than on managing the data
collected during the experiments.

There are already a number of different Research Data
Infrastructures (RDIs) for collaborative projects in the fields
of engineering sciences, such as the Karlsruhe Digital Infras-
tructure for Materials Science (Kadi4Mat) [41]. The software
includes many features for data management and collaborative
work in joint projects (including web-based access, fine-grained
role management, creation of reproducible workflows, and
publication of research data). This basic functionality can
be easily extended using plug-ins. Metadata schemas with
key-value pairs are commonly used to document data in a
machine-readable form [42], usually stored in XML or JSON
format.

III. STRATEGY

We begin by examining some basic concepts. There is a
continuous need to enhance infrastructure that supports the
reuse of research data. To this end, a concise and measurable
set of principles has been developed to govern the reusability
of research data, known as FAIR Data Principles [15]. These
foundational principles, namely Findability (F), Accessibility
(A), Interoperability (I), and Reusability (R) are guidelines for
those wishing to improve the quality of their data. However,
they also have wider applicability, as researchers who wish to
share and reuse their data can benefit from them. They can also
be used by professional data publishers, who offer services
and expertise in this area.

It is important to note that these values did not end. Data
sharing and collaboration are important elements of scientific
research. Researchers must share and collaborate in order to
broaden their knowledge and perspectives. They must rely on
each other’s data and interpretations without bias. However,
researchers must always maintain objectivity and balance when
using technical terminology and adhering to conventional
academic structures. It should be applied not only to data
in the traditional sense, but also to the algorithms, tools and
workflows that produce it. The emphasis on fairness, which
applies to both human and machine activities is the focus of
the FAIR Guiding Principles. Good data management is not
an end in itself, but rather the key to knowledge discovery and
innovation, and to the subsequent integration and reuse of data
and knowledge by the community after data publication [15].

An ontology describes the structure of data, including classes,
properties, and relationships within a particular field of knowl-
edge, ensuring consistency and understanding of the data model.
Description Logics (DLs) provides fundamental concepts and
information about this family of logic, which has become
increasingly important in recent years as the formal basis for
most contemporary applications. The Web Ontology Language
(OWL) family includes expressive ontology languages [43] [44]
An ontology is expressed using OWL 2 QL (query logic). A
query is expressed using SPARQL, a mapping is expressed
using R2RML, whilst SPARQL is the standard query language
for RDF data. Ontologies offer several advantages over the
relational and object models. They allow a strict definition
of conceptual schemas and enable systems to understand the
semantics of the data [45].

The proposed approach is based on an information structure
that includes keys (term classes) and values (concrete expres-
sions of terms). The keys are derived from ontology, whereas
the values reflect the potential forms of metadata, such as
the value ranges for numerical properties, etc. Examples of
process-specific metadata include characteristics such as the
ultimate tensile strength in tensile tests.

• Schema Structure: Metadata schemas are created for all
investigations, which serve as a template for recording
the metadata. These schemas are divided into chapters,
whereby some chapters are the same for all investiga-
tions and other chapters are adapted to the respective
investigation.

• Ontologies: Key names are generated based on domain-
specific ontology. Key names are used in process-specific
metadata schemas to document the research data. Keys and
values are filled with specific terms from the taxonomy
and ontology to obtain concrete values. Specific ontologies
and taxonomies exist for each domain or process.

• Thesaurus: The creation of a common language that
encompasses all processes of the involved domains is
necessary. A thesaurus is a domain-specific dictionary
of synonyms that lists technical terms that have the
same meaning or are similar to the technical terms. This
helps ensure that an individual researcher can maintain
his familiar terminology, even in an interdisciplinary
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environment. Constant readjustment of new partners is
unnecessary. Nevertheless, it is ensured that the data
remain comprehensible and, therefore, usable for other
researchers, both internally and externally. The researcher’s
own language is linked to the master language through
synonyms.

The metadata schema has a clearly defined structure. The
static metadata chapters have the same keys for all investiga-
tions and are mandatory. Dynamic metadata chapters must be
redefined for each investigation along with domain experts to
ensure the reproducibility of the investigation.

Key names are created using a domain-specific ontology
and then used in metadata schemas that are specific to the
research process. To ensure specific, concrete values, specific
terms obtained from the ontology are used to populate the
keys and values of metadata schemas. A universal language
that covers all relevant domains is essential. Each domain
has its own specific ontologies that must be merged into a
global ontology. Domain-specific dictionaries of synonyms
(thesauri) enable researchers to use familiar terminology even
in interdisciplinary settings, as they list technical terms that
have the same or similar meanings. This eliminates the need
to constantly adapt to new partners.

The resulting data can easily be shared with other researchers.
Thesauri were included to allow the laboratories to retain
their preferred terminology. In addition, researchers complete
metadata schemas in their native languages. Nevertheless, the in-
formation is presented objectively to facilitate understanding by
researchers inside and outside the laboratory. The researcher’s
own language is linked to the master language using synonyms.

IV. USE CASES: AN EXCERPT

In order to exemplify our concept as outlined in Section III,
we present a research case, i.e., the Interdisciplinary Research
Training Group “Graduiertenkolleg 2250” (GRK 2250) [9],
[25], which is dedicated to the investigation of mineral-bonded
composites for improved structural impact safety [8]. This
project provides an overview of common procedures, such as
experiments, tests, numerical simulations, and manufacturing.
Another special feature of the project is that three cohorts are
planned to be established, with each cohort being worked on
by a different team. This makes data transfer very important.

The proposed solution is based on an objective information
structure known as metadata schema. This schema comprises
keys representing term classes and values that express the
meaning of the term more concretely.

GRK 2250 was established in 2017 and is currently funded
by the German Research Foundation (DFG). Researchers from
nine different departments and four faculties at TU Dresden and
the Leibniz Institute of Polymer Research, IPF Dresden, were
involved in the program organised in three consecutive three-
year periods. Each cohort comprised 12 researchers representing
the main research profiles, such as textile technology, polymer
and material sciences, construction materials, structural engi-
neering, continuum mechanics, numerical modelling, 3D optical
monitoring techniques, sustainability, resilience, and machine

learning. The scope of research ranges from the microscale
to the structural scale and includes experimental, numerical
and data-based investigations. Examples of investigations at
the microscale include fibre pull-out tests and corresponding
simulations. At the structural level, for example, drop tower
tests are carried out in a 10-metre drop tower with plates
measuring 1.5 metres by 1.5 metres by 30 centimetres and
accompanied by corresponding simulations.

The current status of research data management within GRK
2250 shows considerable variation in the amount of data,
ranging from a few megabytes to several hundred megabytes
per experiment. The cumulative data volume of 3 terabytes
was stored from 15 test systems in six different laboratories.
Each test system was conducted for 20 to 300 experiments.
To support this diverse dataset, the research data infrastructure
consisted of a shared drive that could be accessed by all project
partners and Excel spreadsheets dedicated to the documentation
of the research data. The data documentation workflow involves
manually storing the research data in appropriate folders within
the group drive. Researchers manually entered the metadata
into an Excel spreadsheet, which was automatically named
according to a specific scheme. The completed Excel file was
then saved to the corresponding research data folder on a shared
drive.

The availability of appropriate data in materials science
has a major impact on the performance of the applied AI
models [6] [7]. Therefore, data management is particularly
important to the usability of AI models. To consider and analyse
cross-process relationships, a global view of the dataset in an
analysable form is required. This requires well-documented
data, which can be combined into a global dataset.

Interdisciplinary research networks bring researchers together
with different specialised ontologies. To work together effec-
tively in this case, i.e., in order to be able to understand the data
of the research partners, a common ontology is required. For
example, a measure for the amount of textile per unit for textile
reinforcement of concrete is typical weight per unit area (unit:
g/m2) in textile engineering, whereas, in civil engineering, it
is the cross-sectional area per linear metre (unit: m2/m).

The current solution envisages a top-down approach, i.e.,
there is a group/person responsible for metadata management
within the research network. This defined the standard ontology
used in the research network. Enforcing the use of a specified
standard ontology may lead to poor overall acceptance by
participants. This is because the ontology may overwrite terms
that have been established in their domain for years. It is
important to consider the difficulty of pushing changes through.

The participants/working groups may be involved in other
projects or networks in addition to the specific research
network. These projects/networks may have agreed upon a
different standard ontology. Therefore, conflicts may arise, since
researchers must constantly switch between those ontologies.

As already mentioned, the acceptance of specialists of new
ontologies is poor, as acceptance decreases the risk of errors
increases. Our response to this wrong-headed development are
summarised in Figure 1. This example illustrates the basic
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Chapter: administration metadata 
Data provider: TUD
Experiment: tensile test

Chapter: technical metadata 
Rm: 1,05 in GPa

Researcher 1
Process 2 - impact test

Metadata record

Chapter: administration metadata 
Author:
Process: compressive test 

Chapter: technical metadata 
Compressive strength: [Mpa]

Standard ontology
Process - compressive test

open-accesses 
dataset

Translation via 
thesaurus for 

domain ontology 

Chapter: administration metadata 
Creator: TUD
Experiment: compressive test

Chapter: technical metadata 
Compressive strength: 0,1 GPa

Researcher 1
Process 1 - compressive test

Metadata record

Researchers' space

Chapter: administration metadata 
Data provider: TUD
Experiment: tensile test

Chapter: technical metadata 
Rm: 1,05 in GPa

Researcher 2
Process 2 - tensile test

Metadata record

Chapter: administration metadata 
Data provider: IPF
Test procedure: compressive test

Chapter: technical metadata 
Compressive strength: 100 MPa

Researcher 2
Process 1 - compressive test

Metadata record

Translation via 
thesaurus for 

domain ontology 

Figure 1. Symbolic representation of the metadata management workflow
accessing a mapping thesaurus.

difficulty to overcome the different representation of metadata.
As depicted, researchers from different institutes use different
terminology for “Author” and different units (MPa/GPa) to
record the compression strength, hence the values are also
different. The basic idea is to introduce an intermediate layer
(thesaurus) as the translation layer. This allows each researcher
to use his own “laboratory ontology” or “researcher ontology”.
This is then used for the overall project, and translated into
the “standard ontology” of the research network.

Researcher-MDS
researcher ontology 

for use by researchers

MDS
standard ontology

Data model
Key-value pairs in 
chapter structure 

Chapter 1 metadata 
metadata key: value

Chapter 2 metadata 
metadata key: value

Chapter administration metadata
Author: value
Process: value
ID: <research network-ID>

Chapter technical metadata
Compression strength: value [MPa]

Chapter administration metadata
<Thesaurus: ‚Author‘>: value
<Thesaurus: ‚Process‘>: value
<Thesaurus: ‚ID‘>: <researcher-ID>

Chapter technical metadata
<Thesaurus: ‚Compression strength‘>: value [GPa]

Th
esau

-
ru
s

Figure 2. Extended symbolic representation of the metadata management
workflow

The data model illustrated in Figure 2 as the general structure
of a Metadata Schema (MDS) is divided into several chapters.
These chapters contain metadata-key/metadata-value pairs that
represent the metadata itself, a method that can generally be
used To investigate specific chapters, the keys must be redefined
for each investigation. As exemplified, MDS is divided into
administrative and technical metadata.

The technical metadata schema (investigation specific) has to
be adapted to the specific use case of data generation, whereas
the administrative metadata (investigation-independent) has
general validity.

There should be a standard ontology agreed upon in the
research network. Accordingly, this ontology is also used
when data are made publicly available. Standards already in
use should be used to facilitate communication with external
parties, for example, EngMeta [31] or the European Materials
Modelling Ontology (EMMO) [46].

The Metadata Schema is a general structure that is then
applied to the specific experiments/data. It can be partitioned
into “static” and “dynamic” metadata, the static metadata
is similar for all data (i.e., general data, e.g., author, date,
etc.), whereas, the dynamic metadata is experiment-specific
(i.e., specifically adapted to the experiment, e.g., temperature,
test speed, etc.). Adjustment of dynamic metadata should be
performed together with domain experts. The MDS is linked
to the standard ontology via a translation layer. This allows the
researcher to view the schema in their usual domain-specific
language. To share the data, the metadata are translated back
into a standard ontology and can therefore be understood by
everyone.

An initial solution proposal and translation of the ontology
has already been published [9]. Furthermore, it explains in
more detail what data and metadata management must be able
to do in order to support data-driven applications. Figure 3
presents an overview of the FAIR Data Principles proposed
by Wilkinson. These principles were expanded to include the
principle of “usability” to ensure their practical implementation.

For the extension of the FAIR principles of Wilkinson et
al. [15] to “usable FAIR” as depicted in Figure 3, the GRK is
working with the company Symate [47] to extend their software
Detact. Detact is a cloud-based software for collecting data
from various sources along the process chains for subsequent
automated data analysis. As stated on the home page from
Detact: “Now we are able to merge the material data across
disciplines and from different data sources. This leads us to
completely new industrial planning and control systems in
the sense of the Fourth Industrial Revolution (‘Industry 4.0’)”
(Leibniz IPF) [48]. A major aspect of this study was the
development of a process modeller.

Findable

Interoperable

Accessible

Reusable

Usable

• (Meta)data are assigned a globally unique and persistent identifier
• Data are described with rich metadata (defined by R1 below)
• Metadata clearly and explicitly include the identifier 

of the data they describe
• (Meta)data are registered or indexed in a 

searchable resource

• (Meta)data use a formal, accessible, shared, 
and broadly applicable language for knowledge 
representation.

• (Meta)data use vocabularies that follow FAIR principles
• (Meta)data include qualified references to other 

(meta)data

• (Meta)data are richly described with a plurality of 
accurate and relevant attributes

• (Meta)data are released with a clear and accessible 
data usage license

• (Meta)data are associated with detailed provenance
• (Meta)data meet domain-relevant community 

standards

• (Meta)data are retrievable by their identifier using a 
standardized communications protocol

• The protocol is open, free, and universally 
implementable

• The protocol allows for an authentication and 
authorization procedure, where necessary

• Metadata are accessible, even when the data are no 
longer availableThe data management system:

• Can be efficiently adapted by the 
data curators to the needs of the 
research network

• Ensures that users can store, edit 
and use (meta-)data that complies 
with FAIR principles with minimal 
effort. 

Figure 3. Extension of the FAIR principles of Wilkinson et al. [15] to “usable
FAIR”.

Figure 4 shows the planned process modeller used to generate
the metadata. In addition to conducting the experiments,
the researcher created a process data model for the entire
experimental process chain. This model consists of four blocks
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Figure 4. Schematic representation of the process modeller diagram for the
use case “uniaxial tensile test of a textile-reinforced concrete test specimen”.

(Material, Processes, Devices, and Experiment). The metadata
associated with each block can be recorded within that block.
All the blocks had the same metadata structure, as depicted in
our example, and both administrative and technical metadata
were included.

In this particular instance (depicted in Figure 4), the
compression test of a concrete test specimen was modelled. The
material used is precisely defined in the first block “material
concrete”, in which the exact composition is recorded. This is
followed by the casting of the material defined in the block
“process casting” block and the subsequent drying of the
material defined in the block “process drying”. These steps
lead to the final test specimen. The test is then carried out
in a testing machine represented by block “device uniaxial
tester". The test procedure can then be recorded in the block
“experiment compression test”.

Figure 4 shows only the metadata of the Block ’Experiment
- compressive test’ for the purpose of simplification. However,
all other blocks also have metadata in the same structure.
The corresponding metadata keys can be added to the blocks
from a predefined library, known as the metadata library. The
experimental process chain for the concrete compression tests,
as shown in Figure 4, is relatively simple and short. In this
case, the metadata could be included in a single scheme for
the concrete compression test experiment, without the process
data model.

In real-life applications, the process chains are often much
longer and more complex, as shown, for example, by the work
in the research network Research Training Group GRK 2250
“Mineral-bonded composites for enhanced structural impact
safety” [25], where the process chain begins with mixing the
concrete and fibre production and extends to the reinforcement
of an existing component with textile-reinforced concrete.
Another example is the Collaborative Research Centre SFB
639 “Textile-reinforced composite components for function-
integrating multi-material design in complex lightweight appli-
cations” [49], where the process chain ranges from the fibre
and plastic to the complex function-integrated component. In

addition, as shown in the example, the complexity increases
very quickly if we use a composite material, such as textile-
reinforced concrete (TRC). The block “material concrete”
would be accompanied by the block “material - textile”, which
together would then form the block “material - TRC”. The
block “material textile” itself can also have upstream blocks,
like “process textile manufacturing”, “process fibre formation”,
etc.

This information is required to manage trial data according
to FAIR principles. Attempting to fit all of these metadata into
a single schema without a process data model will most likely
result in important parameters being omitted, hence the need
for the process data model. According to the example shown in
Figure 4, the drying time of concrete has a significant influence
on its strength. If the drying time was not recorded, the data
would be essentially unusable for further analysis as a major
influence is not recorded.

All individual blocks and overall process data models can
be collected and shared in a library, to unify the workflows of
the cooperating researchers. Using the process data model, the
workflows of other researchers can be easily understood and
adopted. Here, the process data model makes communication
between the researchers easier. The process data model provides
the instruction on how the experiment/entire workflow is to
be carried out. Standardisation of workflows is a fundamen-
tal step towards sustainable data management and research.
Standardised workflows are significant for the comparability
of experiments and, thus, for the reusability of the series of
experiments. Currently, researchers create their own workflows
during their research. Many experiments have not yet been
standardised because they require a new type of experimental
setup or a new type of material, the production of which is not
yet standardised. Even small variations in the manufacturing
process can significantly impact the target properties. This
makes it difficult to compare/reuse the data. The standardisation
of workflows also reduces unnecessary duplicate developments
in common process steps.

With the implementation of the process data model in Detact,
researchers do not have to scroll through “metadata lists”, but
can use the graphical version of the process model. Access
to Detact can occur via a web browser and metadata can be
recorded directly in the laboratory. The comment function
can be used to mark deviations that would otherwise not be
recorded (e.g., “Concrete stickier than usual today”). Using the
process model, metadata can be captured quickly and easily and
subsequently recorded. A new test can be initialised with default
values and can be easily adapted. Experience has shown that
metadata are currently insufficiently (not completely) captured.
The perceived costs for a complete recording are too high (see
point “Usability”) and can be significantly reduced with the
“process model”.

Based on this approach, it is possible to merge different
experiments with the corresponding data sets into a global
data set. The merging of the three different experiments into
one dataset is sketched in Figure 5. The example above was
adapted from the research project GRK 2250 [25]. The purpose
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Figure 5. Schematic illustration of a section of the overall dataset of the
research network.

of creating a combined dataset is to gain a comprehensive
understanding of the material from a data perspective, such
that in order to map the material behaviour, data-driven models
can be trained on the basis of this broad dataset. To achieve
this, the data from various material tests and, thus, properties
are to be combined. If the same material is analysed in different
tests, a corresponding dataset can be created, as outlined in
Figure 5.

The benefit of using such a dataset is the wider range of
information available for modelling, and the ability to determine
the interactions between multiple influencing parameters. This
allows the creation of models that can simultaneously map
several material properties.

The importance of the metadata management methods
outlined in this section is obvious, as experiments in research
networks are frequently conducted by various researchers in
different laboratories. Therefore, merging experimental data
into a single dataset is feasible using a collaborative data
management approach. The following three experiments were
conducted:

1) Determination of compressive strength of textile reinforced
concrete.

2) Determination of compressive strength of unreinforced
concrete.

3) Determination of the tensile strength of textile reinforced
concrete.

Each test had its own data space, which sometimes overlapped.
The data available for each experiment are indicated by the
coloured boxes. The absence of colour markings indicates
the absence of the specific data. For example, unreinforced
concrete does not have data on textile reinforcement, as this is
not present and is outside the scope of the investigation. In this
context, features refer to descriptive elements of the experiment,
whereas labels denote the outcome of the experiment. Terms
features and labels were chosen because they are typical terms
in the field of machine learning. In detail, the representation
for the experiments is as follows:

• Experiments 1 and 3 share the same features to describe
textile-reinforced concrete, but have different features to
describe the experiment itself, as there are different tests to
determine the compressive and shear strength. In addition,
different properties were determined, which are labelled
here.

• Experiments 1 and 2 have the same features to describe the
experiment and also have the same label (the same material

property that is determined). However, in experiment 2
the features that are related to textile reinforcement are
missing, since they do not apply to the experiment.

• Experiments 2 and 3 shared the same features for de-
scribing the concrete matrix. They have different features
to describe different tests and, accordingly, different
labels. In experiment 2, the features related to the textile
reinforcement were missing.

V. OUTLINE OF THE RESULTS

The proposed strategy helps bridge different domain-specific
languages and working cultures by providing a common
language that all researchers and engineers from different
domains can understand. This is achieved by using metadata.
In particular, the metadata model helps unify physical units
and terms. Data are stored and documented such that data
from different processes along a process chain can be merged,
resulting in a single overall dataset. Therefore, cross-process
data analysis methods can be applied. The solution approach
allows merging of research data in the following ways:

• Merging data from similar processes provided by different
institutions or fields.

• Merging data from different processes along a process
chain.

A multi-level metadata model connects different domain-
specific languages by defining a common set of concepts and
relationships that can be used in different domains. The model
provides a method to manage metadata by defining a set of
rules on how metadata should be structured and stored.

The drawbacks of the metadata model are as follows:
• The creation of a metadata template relies on the assistance

of metadata experts, whereas the goal should be for re-
searchers or domain experts to use/create it independently.

• The outcome depends on the domain experts. In the
end, the solution approach allows for the creation of
global datasets in an analysable manner. In this way, the
interoperability and collaboration among different research
groups in the engineering domain will be improved.

• The common language was created by surveying data
providers to establish a shared technical vocabulary.

The proposed model can be used as a framework for
managing digital objects in other research domains, such as
the social sciences and natural sciences. Additionally, further
research can be conducted to explore how this metamodel
can be integrated into existing research data management
systems or how it can be improved to better meet the needs
of different users. Overall, the model provides a promising
approach for addressing the challenges of research data
management and improving collaboration among researchers
and engineers from different domains. This solution ensures
that the data are captured in a comprehensible manner through
clear documentation, thus, it can be understood by other
researchers too. The interoperability of data across laboratory
boundaries is ensured by the proper identity management of
components, processes, and machines across these boundaries.
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This makes the data available for subsequent data-driven
analysis across the laboratory and process boundaries. The
analysis results based on the documented research data can be
reproduced at a qualitatively high level owing to the detailed
data documentation.

VI. CONCLUSION AND FUTURE RESEARCH PERSPECTIVE

The proposed strategy helps bypass different working cul-
tures by providing a harmonised approach that all researchers
and engineers from different domains can understand. This is
achieved by using metadata enhanced by the development of
adequate ontologies. In particular, the metadata model helps to
store and document data, such that data from different processes
along a process chain can be merged, enabling cross-process
data analysis methods.

As a use case approach, this article also summarises the exist-
ing requirements of the GRK 2250 joint project for practicable
research data management and presents a solution concept for
the investigation of mineral-bonded composites within the GRK
2250 project. The concept is largely independent of GRK 2250
and can therefore be easily transferred to other collaborative
projects.

Experience has shown that researchers need support in setting
up a structured process data model. It is difficult for them to
identify all the metadata that needs to be recorded so that
the experiment is documented in a repeatable manner. As a
result, it can happen that important influencing factors in the
experiments were not recorded and the generated data is hardly
reusable. The structured process data model (as exemplified in
Figure 4) is intended to help identify all necessary steps and
influences.

To consider and analyse cross-process relationships, a global
view of the dataset in an analysable form is required. This
requires well documented data that can be combined into global
datasets [6] [7], as subsequent data-driven modelling is not
part of this study.

The aspect of “usability” is not fully covered in this paper.
It is still an open question as to whether and how it can be
satisfactorily solved, since setting up a metadata management
system that covers the FAIR principles is one thing, but in the
end it only works if all participants are on the board. According
to the experience gained through the use cases presented, it
often fails in the end because there is an overhead due to the
metadata management system for the individual researcher.

The aim of the Industrial Ontologies Foundry (IOF) initia-
tive [50], is similar to that proposed for the OBO Foundry
(for biomedicine) [51]. In both cases, commitment to a
standard upper-level ontology plays a key role in supporting
harmonisation. This upper-level ontology is termed Basic
Formal Ontology (BFO) [52]. Consideration of how the current
effort relates to this wider effort to curate and facilitate access
to industrial ontologies might be a useful focus area for future
research.
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