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Abstract—The present paper aims to propose a method for
creating an interpretable prototype network that is hidden within
original multi-layered neural networks. The interpretation of
the inference mechanism of neural networks has received much
attention in recent times, leading to the development of various
methods. However, these methods have focused on interpreting
specific internal representations created by neural networks.
There is an urgent need to propose an interpretation method
that considers not only specific representations but also all
internal representations created by a neural network, aiming for
a more unified understanding of the fundamental properties of
the inference mechanism. To address this problem, we propose
the introduction of a prototype network that is hidden within the
original multi-layered neural network. This is achieved through
an interpretation method called “comprehensive compression,”
which aims to replace the process of interpretation for finding
a simple and interpretable prototype network. The method was
applied to the analysis of customer data sets. The experimental
results demonstrate that interpretable compression can simplify
multi-layered neural networks and unify all obtained represen-
tations. It enables the detection and interpretation of non-linear
as well as corresponding linear relations. The proposed method
of the prototype network makes it possible to interpret not only
specific instances but also a number of different instances. It
helps us uncover the fundamental inference mechanism that is
deeply hidden within neural networks.

Keywords—prototype network; comprehensive compression;
interpretable compression; layer compression; collective com-
pression; stabilizing compression; total de-compression; selective
compression

I. INTRODUCTION

A. Problems of Interpretation

As neural networks have been applied in many fields be-
cause of their improved generalization performance, the prob-
lem of difficulty in interpreting their internal representations
has received much attention these days [1], due to reliability
[2] and ethical problems [3] [4]. Though much progress
has been made in the field of convolutional neural networks
(CNN), where the intuitive interpretation of image datasets is
fairly easy [5]–[8], the interpretation methods developed so far
are far from being acceptable, particularly when dealing with
more abstract objects in social and human sciences, where the
intuitive interpretation of data sets is almost impossible.

One of the main problems is that the majority of inter-
pretation methods have tried to interpret an instance of the
final results obtained by learning. A slight consideration of
these types of methods leads us to doubt their validity because

neural networks have had a bad reputation from the begin-
ning of research that the final results can be easily changed
by modifying initial conditions, input patterns, parameters,
network configurations, etc., which have recently received
much attention in the name of adversarial attacks [9]–[13]. In
addition, one of the more fundamental problems is that while
we should aim to explain why and how a method can reach its
conclusion as rigorously as possible, it only tries to describe
the phenomena occurring during learning in a very specific
manner. This specific interpretation is naturally not enough to
understand the main inference mechanism of neural networks,
even if it can explicitly and fully explain the inference.

Naturally, extensive studies have been conducted on the so-
called “global” interpretation [14] [15], and these studies seem
to deal with the inference mechanism broadly. However, they
do not necessarily explain the real global properties of neural
networks. As mentioned above, one of the main properties
of neural networks lies in their productive property, where a
neural network can generate a large number of different inter-
nal representations by changing learning conditions. Although
many of these representations may not be understandable to
observers, they should still be interpreted because networks
without interpretable representations can still produce the
appropriate final conclusions. This productive property has not
been fully discussed in the field of neural networks, with only
the acknowledgment that many different representations can
be generated with different initial conditions and situations. In
this framework of neural network productivity, the so-called
“global” methods seem to be limited to specific instances
among many, which should be called “specific” or “local”
interpretation.

Furthermore, considering the fact that neural networks were
developed to oppose rule-based systems, many global interpre-
tation methods with logical and semantic-based interpretation
[16]–[18] seem to have serious problems from the beginning.
We should move away from explanations based on logical
rules and explore different methods for understanding the
productive property of neural networks.

B. Prototype Network

In this context, we aim to introduce a new type of in-
terpretation method to clarify the objective of interpretation.
In this method, the interpretation is based on detecting a
prototype and interpretable network, which is assumed to be
hidden within actual multi-layered neural networks. In existing
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interpretation methods, the prototype is used to facilitate
the interpretation process, where neural networks attempt to
classify input images based on the prototypes created in the
prototype layers [19]. However, we propose that behind many
multi-layered neural networks, there always exists a simple
prototype network. These multi-layered neural networks are
assumed to be generated by transformation rules from the pro-
totype network, and the productive property can be explained
by this transformational generation. Furthermore, because the
prototype network is assumed to be simple enough to interpret
the meaning of any components within it, the interpretation lies
not in directly interpreting the original multi-layered neural
networks but in uncovering the hidden prototype network.
Thus, the abstract and intuitive process of interpretation can
be replaced by a more concrete process of finding a prototype
network.

C. Interpretable and Stabilizing Compression

The prototype network is supposed to be as simple as
possible. For example, it can be imagined that the prototype
network can be represented by a network without hidden
layers, and the interpretation method should aim to find this
prototype network without hidden layers for interpretation.
This network is realized by simplifying multi-layered neural
networks to the extreme. Thus, interpretation, in the first place,
is about simplifying multi-layered neural networks as much
as possible to approximate the prototype network from a
technical viewpoint. To find the prototype network, we need
to compress multi-layered neural networks to the simplest
ones without hidden layers. Additionally, we need to compress
all representations created by learning with different initial
conditions, input patterns, parameters, and network configu-
rations for interpretation. These types of compression can be
called “interpretable compression.” It should be stressed that
interpretable compression is different from conventional com-
pression methods [20]–[22] in that the original information
in internal representations should be preserved as much as
possible in the compressed ones.

In addition, the number and intensity of components in a
neural network should be reduced in order to simplify and
stabilize the interpretable compression. This reduction aims
to restrict the flexibility of components. This compression is
referred to as “stabilizing compression.” It is closely related to
conventional regularization methods such as weight decay [23]
[24] and pruning [25] [26] as it aims to restrict the productive
property of neural networks. However, because the obtained
prototype network is expected to generate a considerable
number of multi-layered networks, which is directly related
to the productive property at the surface level, it should aim
to simplify representations while preserving the productive
property as much as possible. To achieve this, we introduce
a process of compression accompanied by decompression,
which controls the productivity of neural networks for smooth
learning.

D. Main Contributions

Main contributions are summarized as follows:
• The present paper proposes a new interpretation method

that replaces the interpretation process for finding a
prototype and interpretable network.

• This network is obtained through interpretable com-
pression by simplifying or compressing as many multi-
layered neural networks as possible.

• Although this interpretable compression naturally entails
some instability due to the productive property of neural
networks, it can be mitigated by introducing stabilizing
compression.

• The paper demonstrates how our method successfully
produces a prototype network with several important
inputs that were considered unimportant by conventional
methods, serving as an example of interpretation.

E. The Structure of the Paper

In Section 2, we explain how to compress multi-layered neu-
ral networks for interpretation, using layer compression and
stabilizing compression. Layer compression gradually elim-
inates hidden layers, while stabilizing compression includes
both total de-compression to control the strength of weights
and selective compression to select strong weights. In Section
3, we present the experimental results on the interpretation of
a customer data set. We demonstrate how layer and stabilizing
compression can be used to clarify relations between inputs
and outputs and to distinguish between linear and non-linear
relations.

II. THEORY AND COMPUTATIONAL METHODS

A. Concept of Compression

In this paper, the interpretation aims to detect a prototype
network supposed to be hidden in multi-layered neural net-
works. Figure 1 shows our basic framework of interpretation.
Firstly, it is supposed that an actual multi-layered neural
network is generated from the corresponding prototype net-
work by decompression or by deploying it to a multi-layered
network, as shown on the left side of Figure 1. One of the
major challenges is to find this prototype network, which we
refer to as the “interpretation,” because the prototype network
is supposed to be as simple as possible. To find this prototype
network, we must compress an actual multi-layered neural
network to the extreme point as shown on the right side of
Figure 1, because simplicity must be one of the most important
inherent properties of the prototype network. The present paper
focuses on this compression to find a prototype network. For
actual implementation, this compression should be elaborated
further to deal with actual and practical learning processes.

We introduce a framework shown in Figure 2 to make
the basic framework in Figure 1 practically applicable. One
of the main differences is the introduction of comprehensive
compression instead of simple compression. In the compre-
hensive compression component in Figure 2, two types of
compression are introduced: interpretable (a) and stabiliz-
ing (b) compression. In the interpretable compression, two
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Figure 1. A framework to find a prototype network, which is decompressed
into an actual network configuration, while an actual network is compressed
into the prototype network.

types of compression, layer and collective compression, are
introduced. In layer compression, hidden layers are gradually
eliminated to find a network without hidden layers. Collective
compression is used to compress all representations created
by a neural network with different initial conditions, input
patterns, parameters, and network configurations. Then, sta-
bilizing compression is introduced to simplify and stabilize
multi-layered neural networks for producing an easily inter-
pretable network. In this stabilizing compression, we introduce
total de-compression and selective compression. In total de-
compression, the strength or magnitude of total weights is
mainly decreased, and to stabilize this process, we introduce
the decompression of the strength of total weights, meaning
that the reduced strength is restored. Thus, we call this process
“de-compression” to combine a process of compression and
decompression. The selective compression aims to simplify
a network configuration by selecting important connection
weights in the corresponding hidden layers.

B. Interpretable Compression

1) Compression for Interpretation: The prototype network
can be estimated by producing and compressing many different
types of multi-layered neural networks with different initial
conditions, input patterns, parameters, and so on, which is
called “interpretable compression,” aiming to produce the
simplest network or collective network to approximate the
prototype network. In interpretable compression, we have
two types of compression: collective compression and layer
compression. Layer compression is used to reduce the number
of hidden layers, and collective compression aims to unify all
possible representations created by learning.

Figure 3 shows the concept of interpretable compression.
In the first place, we try to produce many different types
of networks with different initial conditions (a), input pat-
terns (b), and different parameter values (c), among others.
This is necessary because the fundamental property related
to the prototype network can be estimated by viewing data
sets from many different viewpoints. The obtained estimated
networks are collectively unified or averaged in the collective

Figure 2. Actual compression components in which simple compression
is substitued for comprehensive compression in the practical implementation
with stabilizing and interpretable compression inside.

compression (d) to create collective networks (e) which are
used to estimate the corresponding prototype network (f). The
difference between the two networks can be detected, albeit
roughly, by the ratio (u/z) (e) of the actual absolute coeffi-
cients of the collective network (u) to the absolute coefficients
(z) of the prototype network. The absolute values are used
to roughly understand the meaning of prototype networks at
the present stage. Since it is actually impossible to use the
coefficients of the prototype network (z), we should employ
other measures such as linear correlation coefficients between
inputs and targets obtained through regression analysis.

2) Layer Compression: Let us illustrate the process of
layer compression in Figure 4(a)-(e). First, we compress the
connection weights from the first to the second layer, denoted
by (1,2), and from the second to the third layer (2,3) for an
initial condition and a subset of a dataset. Then, we obtain
the compressed weights between the first and the third layer,
denoted by (1,3).

w
(1,3)
ik =

∑
j

w
(1,2)
ij w

(2,3)
jk (1)

These compressed weights are further combined with the
weights from the third to the fourth layer (3,4), resulting in
the compressed weights between the first and the fourth layer
(1,4).

w
(1,4)
il =

∑
k

w
(1,3)
ik w

(3,4)
kl (2)

By repeating these processes, we obtain the compressed
weights between the first and the fifth layer, denoted by w(1,5)

iq .
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Figure 3. Compression from multi-layered networks with different initial
conditions (a), input patterns (b), and parameters (c) to the simplest collective
network (e) to estimate the corresponding prototype network (f).

Using these connection weights, we have the final and fully
compressed weights (1,6).

w
(1,6)
ir =

∑
q

w
(1,5)
iq w(6,7)

qr (3)

3) Collective Compression: Figure 4(d) shows that all the
finally compressed weights are averaged to obtain the final
collective weights. Then, c represents the real coefficients
of a prototype network in Figure 4(e). Similarly, z denotes
the absolute and individual compression coefficients of the
prototype network.

zir =| cir | (4)

These coefficients should be compared with the corresponding
coefficients or weights of the collective weights.

uir =| wir | (5)

Then, we define the collective compression coefficient as
follows:

cir =
uir
zir

(6)

Here, the denominator represents the absolute values of the
basic relations between inputs and targets in a prototype
network. The use of absolute values allows us to intuitively
observe the overall relations without considering the sign
information. This coefficient aims to indicate which inputs are
larger than the corresponding basic relations. Introducing this
coefficient is crucial for interpreting the finally compressed
weights since interpreting the compressed weights on their

own is not possible. Interpretation can only be achieved
by comparing them to other interpretation results. Several
possibilities for these basic relations include the correlation
coefficient between inputs and targets of the original data
set, regression coefficients from regression analysis, weights
obtained through conventional methods, and so on. When the
collective weights significantly deviate from these relations
obtained by conventional methods, it becomes necessary to
provide an explanation for the deviation.

(1) i
(2) j (3) k (4) l

(1) i
(2) j (3) k (4) l

(1) i
(2) j (3) k (4) l

(0) Initial state (0) Initial state (0) Initial state

(a) Initial conditions (b) Input patterns (c) Parameter

(a1) 1st compression (b1) 1st compression (c1) 1st compression

(a2) 2nd compression (b2) 2nd compression (c2) 2nd compression

(a3) 3rd compression (b3) 3rd compression (c3) 3rd compression

(a4) Final compression (b4) Final compression

(d) Collective network by collective compression

(e) Prototype network

(c4) Final compression

(5) q (5) q (5) q

(5) q (5) q (5) q

(5) q (5) q (5) q

(5) q (5) q (5) q

(4) l (4) l (4) l

(4) l (4) l (4) l

(3) k (3) k (3) k

(1) i (1) i (1) i

(1) i (1) i (1) i

(1) i (1) i (1) i

(1) i (1) i

(1) i

(1) i

(1) i

(6) r (6) r (6) r

(6) r (6) r (6) r

(6) r (6) r (6) r

(6) r (6) r (6) r

(6) r (6) r

(6) r

(6) r

(6) r

u

z
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Figure 4. Layer compression from multi-layered networks (1) to the simplest
networks (4) with different initial conditions (a), different inputs (b), and
different parameters (c), and collective network (d) and the corresponding
prototype network (e).

C. Stabilizing Compression

1) Stabilizing Concept: We will explain stabilizing com-
pression within the framework of comprehensive compression.
It is necessary to simplify the actual network to an extreme
point in order to find the prototype network. This simplifi-
cation and restriction of possible network configurations are
associated with the stability of the produced networks and their
internal representations.

In compression, we can identify two types: total de-
compression (compression and decompression) and selective
compression. Total compression aims to reduce the strength of
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total weights, while total decompression aims to increase the
strength. The purpose of total decompression is to enhance
the effectiveness of total compression. On the other hand,
selective compression is used to minimize the number of
connection weights for simplification. These types of com-
pression should be performed simultaneously when using
the conventional learning approach. However, these types of
compression and error minimization are contradictory. For
instance, total compression and decompression are completely
contradictory to each other, and it is impossible to perform
them simultaneously.

For solving this type of contradiction, we introduce the
serially disentangled stabilizing compression. In this method,
all compression procedures and error minimization are com-
pletely disentangled, and they are independently applied.
Firstly, the total compression is applied to reduce the strength
of total weights, and then errors between outputs and tar-
gets are reduced. Then, the selective compression is applied,
followed by the corresponding error minimization. Finally,
the total decompression is used to weaken the effects of
total compression, followed by the corresponding error min-
imization. In this way, completely contradictory terms such
as total compression and decompression can coexist, though
seemingly.

2) Total de-compression: Let us define total de-
compression by considering the strength of weights.
Note that the compression in this paper is different from
or contrary to the conventional compression methods using
the compression rate. The total compression can be defined
by measuring the strength of the absolute weights. When
the absolute weights become smaller, the actual degree of
compression becomes larger because information should be
represented by the smaller strength of weights, where the
flexibility of weights becomes smaller.

On the contrary, when the absolute strength becomes larger,
the actual degree of compression becomes smaller because
larger weights have a possibility to represent many different
types of weight configurations.

For simplicity, we consider weights from the tth hidden
layer to the t+ 1th hidden layer, represented by (t, t+ 1), and
the absolute weight from the jth neuron to the kth neuron is
defined by

u
(t,t+1)
jk =| w(t,t+1)

jk | (7)

We need to use the total weight strength, summed over all
connection weights in all hidden layers. Then, averaging this
total weight strength, we have the average total compression
coefficient, computed by

Ū =
θ

h · nt · nt+1

h∑
t

nt∑
j

nt+1∑
k

u
(t,t+1)
j,k (8)

where h denotes the number of hidden layers minus one,
and nt is the number of neurons in the tth hidden layer. In
the following experimental results, the parameter θ should be
positive, and it should be decreased gradually.

3) Selective Compression: Then, we should count the num-
ber of strong weights in a layer as an index for representing the
compression in a hidden layer, meaning that we must select
important connection weights in the selective compression.
Here, we also consider the absolute strength of weights, but
they are normalized by the corresponding maximum absolute
weight. This relative strength can be computed by

γg
(t,t+1)
jk =

[
u
(t,t+1)
jk

maxj′k′u
(t′,t′+1)
j′k′

]γ
(9)

where the max operation is over all connection weights in
the layer, and the parameter γ should be a small positive
value for stabilizing learning. When this equation is applied to
connection weights, a winning connection weight in terms of
weight strength remains the same, while all the other weights
are pushed toward smaller ones. In an extreme case, only one
winning weight has some strength, while all the others become
zero, which is the well-known hard type WTA (winner-take-
all).

By using the relative strength over all hidden layers, we
have the average selective compression coefficient, defined by

γḠ =
1

h · nt · nt+1

h∑
t

nt∑
j

nt+1∑
k

[
u
(t,t+1)
jk

maxj′k′t′ u
(t,t+1)
j′k′t′

]γ
(10)

This average selective compression coefficient becomes max-
imum when all connection weights have the same values.
When only one connection weight is larger than zero, while
all the others are zero, the corresponding coefficient becomes
minimum, supposing that at least one weight should be larger
than zero.

III. RESULTS AND DISCUSSION

A. Customer Data Set

The experiments were performed, using a data set with
a sport gymnasium’s customers. We tried to discriminate
between genders, and to infer the characteristics of female
customers [27]. The data set was composed of 2104 gym-
nasium customers, and the inputs were composed of eight
variables. We used networks with ten hidden layers with ten
neurons for each hidden layer. The scikit-learn neural network
package was used with default parameter values except the
activation function (set to the tangent-hyperbolic) and the
number of learning steps (set to 600 learning steps) for the
easy reproduction of the experimental results.

In the experiment, a multi-layered neural network with
ten hidden layers are compressed for interpretation with the
stabilizing compression, composed of total de-compression
and selective compression. This network is compressed (layer
compression) into networks without hidden layer for all learn-
ing steps. All those compressed networks are collectively
compressed in the collective compression. Finally, we tried
to compare this collective network with the corresponding
prototype network to examine the characteristics obtained by
our compression method.
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B. Interpretable Compression

The interpretable compression consists of layer compres-
sion and collective compression. In the layer compression,
the network with ten hidden layers is compressed gradually
into the corresponding network without hidden layers. The
connection weights or coefficients of the estimated network
were compared to those of the prototype network. We here
used the correlation coefficients between inputs and outputs
as an example of coefficients of the prototype network. The
comparative study between the estimated network and the
prototype network in terms of correlation coefficients clarified
several important inputs that could not be identified by the
simple linear correlation coefficients.

1) Layer and Collective Compression: Figure 5 shows
collective weights (1), ratios of absolute collective weights (2)
to the corresponding absolute correlation coefficients between
inputs and targets (3) by the conventional method (a) and by
new methods where the parameter θ decreased from 1.0 (b) to
0.6 (f). As shown on the left side of Figure 5, the input No.8
(daytime use) was the largest by all the methods, while all
the others were considerably smaller in terms of correlation
coefficients and connection weights.

Then, we examined the ratios of absolute connection
weights to the corresponding correlation coefficients, repre-
sented in the middle of Figure 5. The correlation coefficients
between the ith input to the corresponding target were repre-
sented by vi. Then, the absolute and individual compression
coefficients of the prototype network were represented by zi:

zi =| vi | (11)

These values should be compared with the weights of col-
lective weights. Then, we have the ratio of the absolute con-
nection weights to the corresponding correlation coefficients
as:

ci =
ui
zi

(12)

The ratios showed that when the inputs on the left side
became relatively larger, these relations between the inputs and
targets could not be extracted by linear correlation coefficients.
However, the ratios slightly differed when the parameter was
decreased from 1 (b) to 0.6 (f). When the parameter decreased
from 1.0 (b) to 0.6 (f) in Figure 5, gradually the input No.2
became larger than the others. Finally, we should average
compressed weights for really collective meaning of the con-
nection weights, which was the final round of interpretable
compression.

Figure 6 shows the final collective weights averaged over
all weights obtained by different parameter values, shown in
Figure 5. As seen in the figure, the female clients tended to use
the gym during daytime (input No.8) but relatively irregularly
(input No.2) in terms of negative values, and the usage period
tended to be longer (input No.3). Our compression method
could clarify the characteristics of female clients. In addition
to the linear relation represented in the input No.8 (daytime
use), non-linear relations were detected in the input No.2
(irregularity) and No.3 (usage period). This means that the

(a1) Collective weights

(b1) Collective weights

(c1) Collective weights

(d1) Collective weights

(e1) Collective weights

(f1) Collective weights

(a2) Ratio

(b2) Ratio

(c2) Ratio

(d2) Ratio

(e2) Ratio

(f2) Ratio

(a) Conventional

(b) 1.0(1.0)

(c) 0.9(1.1)

(d) 0.8(1.2)

(e) 0.7(1.3)

(f) 0.6(1.4)

(a3) Correlation coefficients

(b3) Correlation coefficients

(c3) Correlation coefficients

(d3) Correlation coefficients

(e3) Correlation coefficients

(f3) Correlation coefficients

Figure 5. Collective weights (1), ratio (2) and correlation coefficients (3) by
the conventional method (a), and by decreasing the parameter θ from 1.0 (b)
to 0.4 (f) for the customer data set.

(a) Collective weights (b) Ratio (c) Correlation coefficients 

Regular use Daytime use

Usage period

Figure 6. Collective weights (a), ratio (b) and correlation coefficients (c) by
averaging all the collective weights for the customer data set.

female clients tend to use longer the gym in daytime, but in
an irregular manner.

C. Stabilizing Compression

1) Stability of Selective Compression: By decreasing the
parameter θ in total compression, accompanied by increasing
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the parameter θ in total decompression, average total compres-
sion coefficients decreased with large fluctuations. However,
the selective compression coefficients decreased almost with-
out fluctuations to have an effect to simplify the corresponding
network configurations in terms of number of connection
weights. This means that the stabilized simplification was
realized by this compression in spite of large variations of
total compression coefficients.

Figure 7 shows total (1) and selective (2) compression
coefficients. Figure 7(a) shows the results by the conventional
methods without compression. As can be seen in the figure,
total and selective compression coefficients remained to be
unchanged throughout all learning steps. When the parameter θ
decreased from 1.0 (b) to 0.6 (f), two compression coefficients
gradually decreased. In spite of decrease in the parameter to
have an effect to decrease the strength of weights, the intensity
of each compression coefficient tended to increase, when the
parameter decreased from 1.0 (b) to 0.6 (f). This effect could
be explained by the fact that the parameter for decompression
was inversely set to 2 − θ. Total compression coefficients
decreased with large fluctuations by the effects of compression
and decompression in the total de-compression. However, in
spite of these fluctuations, the selective compression coeffi-
cients decreased almost without fluctuations.

The results show that total de-compression had the effect to
prevent connection weights from being too small by increasing
the strength of connection weights by total decompression.
In addition, the large fluctuations by the effects of total de-
compression had no effects on the process of decreasing
the selective compression coefficients. In sum, the selective
compression can be effective in decreasing the strength of
connection weights, which was performed very smoothly by
the effect of total de-compression. The smooth decrease in
the selective information by the help of total de-compression
can be used to realize actually the simplicity of network
configurations in terms of the number of connection weights.

2) Weight Stability : The results showed that an decrease
in the parameter θ was related to the stable acceleration of
learning. This explains why networks with different parameter
values could produce similar performance in terms of gener-
alization.

Figure 8 shows connection weights, obtained with 50 learn-
ing steps using the conventional method (a), when the parame-
ter decreased from 1.0 (b) to 0.6 (f). In Figure 8(a), when using
the conventional method, almost all weights were random,
making it impossible to discern any regularity inside. When the
parameter decreased from 1.0 (b) to 0.6 (f), the characteristics
became clearer. Upon closer examination, the characteristics
observed in connection weights with a parameter of 1.0 (b),
appeared to gradually unfold, as the parameter decreased from
0.9 (c) to 0.6 (f). This means that the change in the parameter
did not have any influences on the main characteristics of
connection weights, but it only accelerated the learning in
terms of clarifying the characteristics of connection weights.

Figure 9 shows connection weights at the final stage of
learning steps. The results using the conventional method in
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(b) 1.0(1.0)
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Figure 7. Average total (1) and selective (2) compression coefficients by the
conventional method (a), and by changing the parameter θ from 1.0 (b) to
0.6 (f) for the customer data set.

Figure 9(a) still produced random connection weights. When
the parameter decreased from 1.0 (b) to 0.6 (f), the number
of strong weights diminished considerably compared with the
results with 50 learning steps in Figure 8. Additionally, even
when the parameter decreased to 0.6, the number of relatively
stronger weights did not decrease significantly. This implied
that even with an extremely decreased parameter, similar
connection weights could still be obtained, which can be
explained by the effect of total decompression. Furthermore,
the connection weights between the first and the second hidden
layer, and those between the ninth and tenth hidden layer
were different from each other. This means that the connection
weights were quite similar to each other in the initial stage of
learning, and slight changes occurred in the later stages of
learning, in particular, for connection weights between hidden
layers, closer to the input and output layer.
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(b) 1.0(1.0)

(a) Conventional

(c) 0.9(1.1)

(d) 0.8(1.2)

(e) 0.7(1.3)

(f) 0.6(1.4)

Figure 8. Connection weights, obtained after 50 learning steps by the
conventional method (a) and by changing the parameter θ from 1.0 (b) to
0.6 (f) for the customer data set.

(a) Conventional

(b) 1.0(1.0)

(c) 0.9(1.1)

(d) 0.8(1.2)

(e) 0.7(1.3)

(f) 0.6(1.4)

Figure 9. Connection weights, obtained at the final step of learning by the
conventional method (a) and by changing the parameter θ from 1.0 (b) to 0.6
(f) for the customer data set.

The results show that the connection weights could produce
similar and stable characteristics even if the parameter was
forced to be decreased considerably, which was the effect of
the total decompression. Minor differences could be obtained
by the connection weights close to the input and output
layer. These stable connection weights are certainly related
to the stability of final performance, particularly in terms of
generalization, as shown in Table I.

3) Layer-wise Selective Compression: We attempted to
determine which hidden layers were primarily used in learning
by computing the average layer compression coefficients for
each hidden layer. By examing the average total compression
coefficients, we observed that the new method applied less
intense compression to connection weights closer to the input
and output layer. This indicates that connection weights near
to the input and output layer were not be easily compressible
due to the abundance of information from inputs and outputs.
However, when the parameter was excessively increased, only
connection weights closest to the input tended to play an
important role.

To clarify the characteristics of hidden layers, we plotted
the normalized layer compression rates in Figure 10. We
observed that the first hidden layer and the last hidden layer

had larger compression coefficients. However, when the pa-
rameter decreased to 0.6 (f), only the first hidden layer tended
to have larger compression coefficients. Finally, when using
the conventional methods, the compression coefficients were
larger for all hidden layers.

(a) Conventional (b) 1.0(1.0)

(c) 0.9(1.1)

(e) 0.7(1.3)

(d) 0.8(1.2)

(f) 0.6(1.4)
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Figure 10. Normalized layer compression coefficients by the conventional
method (a) by changing the parameter θ from 1.0 (b) to 0.6 (f) for the customer
data set.

D. Summary of Numerical Results

Let us summarize the experimental results in terms of
correlation coefficients and generalization performance. Better
generalization was achieved through compression method, and
particularly the new method was able to increase generaliza-
tion while improving correlation coefficients.

Table I presents the summary of generalization and cor-
relation coefficients. When the parameter was set to 1.0,
the generalization accuracy was 0.684, but the correlation
coefficient was the second lowest (0.807). As the parameter
decreased from 0.9 to 0.6, all generalization accuracies ex-
ceeded 0.690. Additionally, the correlation coefficients were
higher than those obtained all the other methods, except for
the parameter θ = 0.8. The similarity in generalization and
correlation coefficients can be attributed to the stability of
learning, as explained in the above experimental results on
the stabilizing compression. The logistic regression analysis
yielded accuracy of only 0.678, the second lowest one, and
even the correlation coefficients was 0.855, which was not
particularly large compared with those using the present
method. Finally, the random forest model produced the lowest
accuracy and correlation coefficient, as it could not handle
negative effects.

One of the most important findings is that when the gen-
eralization accuracy was the largest (θ = 0.9), the correlation
coefficient was also the highest. This means that the present
method tried to increase generalization by using connections
weights as independently as possible, and by making the
weights as linearly as possible.
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TABLE I
SUMMARY OF EXPERIMENTAL RESULTS ON AVERAGED CORRELATION

COEFFICIENTS AND GENERALIZATION PERFORMANCE BY OUR METHODS,
COMPARING WITH THOSE BY THE CONVENTIONAL METHODS FOR THE
CUSTOMER DATA SET. BOLD TYPE LETTERS INDICATE THE MAXIMUM

VALUES.

Methods Paramθ(2− θ) Accuracy Correlation
Compression 1.0(1.0) 0.684 0.807

0.9(1.1) 0.692 0.885
0.8(1.2) 0.691 0.833
0.7(1.3) 0.690 0.878
0.6(1.4) 0.690 0.885

Conventional 0.683 0.833
Logistic 0.678 0.855
Random 0.613 0.256

IV. CONCLUSION

The present paper proposed a new interpretation method
in which a process of interpretation was replaced for finding
an interpretable prototype network. The prototype network
is supposed to be found by simplifying multi-layered neural
networks to the extreme point. The compression method is
called “comprehensive compression”, which is composed of
interpretable and stabilizing compression. In the interpretable
compression, multi-layered neural networks are compressed
into the simplest ones without hidden layers, and all the in-
ternal representations, obtained by different initial conditions,
inputs, parameters, learning steps, are averaged to produce the
final collective weights. Those collective weights are compared
with the weights in the prototype network to see relations
between inputs and targets more exactly. The method was
applied to the analysis of a customer data set, trying to
clarify the characteristics of customers. By considering the
correlation coefficients between inputs and targets as weights
in the supposed prototype network, our method could detect
linear relations, as well as non-linear ones to capture clearly
the characteristics of customers.

One of the major problems is how to check the valid-
ity of our estimated prototype networks. In this paper, we
tried to consider the correlation coefficient as an example
of coefficients of prototype networks. However, we need to
examine more exactly the possibility of the prototype network
in addition to the linear correlation coefficients between inputs
and outputs. Though some problems should be solved for
more practical applications, the present method can certainly
contribute to the development of global interpretation methods
in neural networks.
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