
NN2EQCDT: Equivalent Transformation of Feed-Forward Neural Networks as DRL
Policies into Compressed Decision Trees

Torben Logemann
Carl von Ossietzky University Oldenburg

Research Group Adversarial Resilience Learning
Oldenburg, Germany

Email: torben.logemann@uol.de

Eric MSP Veith
Carl von Ossietzky University Oldenburg

Research Group Adversarial Resilience Learning
Oldenburg, Germany

Email: eric.veith@uol.de

Abstract—Learning systems have achieved remarkable success.
Agents trained using Deep Reinforcement Learning (RL) (DRL)
methods, e.g., promise real resilience. However, no guarantees
can yet be provided for the learned black-box models. For
operators of Critical National Infrastructures (CNIs), this is a
necessity as no responsibility can be assumed for an unknown
and unvalidatable control system. Intrinsically secure learning
algorithms and approximate, post-hoc interpretable models exist,
but they lack either learning performance or explainability. To
optimize this trade-off, this paper presents the NN2EQCDT
algorithm, which equivalently transforms a Feed-Forward Deep
Neural Network (DNN) (FF-DNN)-based policy into a compressed
Decision Tree (DT). The compression is achieved by dynamically
checking the satisfiability of the paths during construction,
removing checks that are not needed further, and considering
invariants. For a small policy model, NN2EQCDT was observed
to drastically compress the DT, making it possible to accurately
trace action regions to their observation regions in a plotted DT
and visualization.

Keywords—reinforcement learning; explainable AI; equivalent
transformation; neural network; decision tree; compression.

I. INTRODUCTION

Learning systems have achieved remarkable successes. DRL is
at the core of many remarkable successes, beginning with its
breakthrough in 2013 by end-to-end learning of Atari games
[1] and Double Q-learning [2]. Further successes were made
with AlphaGo (Zero), AlphaZero [3] and MuZero [4]. DRL
involves learning agents with sensors and actuators to achieve
specific goals through trial and error, using algorithms, such
as Twin-Delayed Deep Deterministic Policy Gradient (DDPG)
(TD3) [5], Proximal Policy Gradient (PPO) [6], and Soft Actor
Critic (SAC) [7] have proven that they are capable of handling
complex tasks. Due to its success, learning system are applied
in various fields, such as the following.

• In healthcare, RL is preferred over traditional DNN
methods to determine the best treatment policy [8].

• In robotics, RL agents can learn tasks, such as pouring wa-
ter, reaching through a human teacher, grasping, balancing
balls, and more [8].

• DRL is used in autonomous driving because of its strong
interaction with the environment [9].

• In cybersecurity, DRL is used for automatic intrusion
detection techniques and defense strategies [10].

• To be able to keep the power grid stable, DRL is used
to train defender agents with the Adversarial Resilience

Learning (ARL) framework to recover deviations from
the healthy state by deploying attacker agents in an
autocurriculum setting [11].

DRL agents promise true resilience by learning to counter the
unknown unknowns. However, unlike intrinsically interpretable
DRL models [12], no guarantees can yet be made about the
behavior of DRL agents learned with black-box models. This
is, however, a necessity for operators, since no responsibility
can be taken for an unknown control system that cannot be
validated, especially when it is used in such critical or very
critical areas as CNIs.

If agents with learned black-box models are to be deployed in
CNI, it is of absolute necessity to be able to provide guarantees
for them, as they have the potential to significantly threaten the
safety the overall system. Without guarantees, operators cannot
take responsibility for such an unknown and unverifiable control
system. An architecture, designed to provide such guarantees,
is presented in [13], which is suitable for usage in CNIs, such
as the power grid.

Agents deployed in complex environments, such as com-
plex interconnected systems, potentially face many different
situations and learn complex behaviors to cope with them
according to their goals. To understand how agents achieve
their goals, the effects of their strategies are studied in terms
of rewards or impact on the environment. One such example
is in [11], which ARL attack agents are deployed with the
goal of causing voltage band violations in a power grid. They
achieve this goal by exploiting a vulnerability in the deployment
of voltage controllers in the used network. How the actual
exploit works, is analyzed by examining the impact of the
attacker actions on the victim buses. This is sufficient for
commonly observed behaviors, but it is not deeply interpreted
and there is no guarantee that the extracted strategy explained
by the investigations is used for all situations, i.e., for all
observations from the environment. This is especially important
when dealing with control agents, who are expected to achieve
a goal in all possible situations, e.g., defender agents, for whom
the even greater problem of coping with an infinite horizon
exists in the explanation.

Thus, the need arises to provide transparency to the learned
strategies of agents, i.e., to approximate their behavioral model

94Copyright (c) IARIA, 2023. ISBN: 978-1-68558-046-9

COGNITIVE 2023 : The Fifteenth International Conference on Advanced Cognitive Technologies and Applications

as well as possible by a more comprehensible model. This
leads to the conflict of goals of wanting to construct powerful
learning systems on the one hand, i.e., to rely on DRL, but
on the other hand to be able to explain them afterwards with
more comprehensible models, such as DTs.

DTs can be trained directly, which immediately leads to an
interpretable model. On the other hand, DNNs are better regu-
larized, which increases trainability [14]. This is particularly
relevant when sampling efficiency is required, as in the training
of DRL models where there may be long trajectories that need
to be calculated by computationally intensive simulations. Thus,
the goal is to achieve high trainability with high interpretability
of the resulting model.

The main contribution to this problem of explainability of
efficiently learned policies is that, in terms of input-output
behavior, the presented approach transforms efficient-learnable
FF-DNNs into compressed DTs to improve explainability,
interpretability, and verifiability. The presented algorithm
NN2EQCDT relies heavily on the equivalence description
of DNNs and DTs in [15], but there are still research gaps to
better use it for explainability, which will be addressed with
the following contributions:

• The equivalence description of DNNs and DTs from
Aytekin [15] is not so easy to implement, so this paper
proposes a transformation to directly use models learned
with the widely used Deep Learning (DL) framework
PyTorch

• Using the equivalence transformation, the DT grows
exponentially with branching. This problem is addressed
by lossless compression for smaller but equivalent models,
which enhances human interpretability.

• The dynamic compression method reduces the computa-
tion time significantly and may reduce the inference time
of the DT.

• There may be constraints inherent in the system that affect
the model but are not considered in the transformation.
Therefore, these are included as invariants in the satisfia-
bility check to further compress the DT.

• Finally, we provide an implementation [16] for the
transformation of FF-DNN into equivalent, compressed
DTs and the generation of visualizations from DTs.

This paper fits the conference because it aims to understand hid-
den knowledge of machine-learned DNNs cognitively through
DTs. For the essential compression, satisfiability and other
constraints are used to achieve an equivalent transformation
instead of an approximation with uncertainty.

The rest of this paper is organized as follows: First, related work
is presented in Section II. The construction of the equivalent
compressed DT from a FF-DNN is described in general terms
in Section III. All necessary components and details and their
meaning are explained in later sections. In Section IV, the
derivation for a right-handed linear transformation is described
to be able to use PyTorch models. Dynamic path checking

when adding subtrees to dynamic compression is described in
Section V and further compression is described in Section VI.
Furthermore, the application of the NN2EQCDT algorithm
to a simple model is presented in Section VII. Finally, the
presented approach is discussed in Section VIII as well as a
conclusion is drawn and possible future work is described in
Section IX.

II. RELATED WORK

In general, there is a tradeoff between model readability
and performance [12]. Tree-based models are, e.g., more
readable than DNNs, but their performance is worse. Not
only performance, but also explainability is crucial for the use
of a system. If a system is not trustworthy, especially in critical
environments, it will not be used. In the case of DRL, there
may be concerns about correctness, or at least doubts that the
black box system in question does not always behave as it
should to achieve a particular goal.

There are different types of interpretability in terms of the
scope and timing of information extraction [12]. Interpretable
models are either global or local and either intrinsic or post-hoc.
Here, scope refers to the explained domain of the model in
question and the timing of information acquisition. An intrinsic
model is directly interpretable by itself at creation time, like
a DT. Post-hoc interpretable models are models that become
interpetable only after creation, e.g., by a transformation or
distillation of a black-box DNN model into an interpretable
model.

DTs have a simple, understandable structure and are therefore
easy to interpret [17], so they are intrinsic models. But they are
not suitable to be used directly as policy representation of RL
agents. Only DNN-based strategies can be efficiently obtained
using existing DRL methods. One approach to optimize the
tradeoff between predictive accuracy and interpretability is to
train DTs from DNN-based policies or to use a more direct
transformation for given states [18].

In [19], it is described that DTs can be trained from samples
of pre-trained DNN policies with the (Q-)DAGGER and VIPER
algorithms. Such imitation learning have the problem that much
larger DTs than necessary are learned and the performance can
be lower compared to the original DNN.

This approach uses efficient FF-DNN policies, but approximates
the DT, which can then also become large, which in turn
reduces the explainability. It is therefore less suitable for the
use of the explainability of learned FF-DNN policies as agent
controllers in CNIs.

III. DECISION TREE CONSTRUCTION

FF-DNNs can equivalently be transformed into compressed
DTs using the NN2EQCDT construction algorithm shown in
Figure 1. The algorithm generates DTs by iterative computing
and connecting subtrees with effective layer-wise filters from
weight and bias matrices of neural networks. It shows accessing
the final effective filters and computing the activation vector

95Copyright (c) IARIA, 2023. ISBN: 978-1-68558-046-9

COGNITIVE 2023 : The Fifteenth International Conference on Advanced Cognitive Technologies and Applications

from the paths of the subtrees, as well as converting the final
rules into expressions and compressing the whole tree. Here
the algorithm is described in general and how it can be used.
The individual components are explained in more detail in later
sections.

1: Ŵ = W0

2: B̂ = B>0
3: rules = calc_rule_terms(Ŵ , B̂)
4: T,new_SAT_leaves = create_initial_subtree(rules)
5: set_hat_on_SAT_nodes(T,new_SAT_leaves, Ŵ , B̂)
6: for i = 1, . . . , n− 1 do
7: SAT_paths = get_SAT_paths(T)
8: for SAT_path in SAT_paths do
9: a = compute_a_along(SAT_path)

10: SAT_leave = SAT_path[−1]
11: Ŵ , B̂ = get_last_hat_of_leave(T,SAT_leave)
12: Ŵ = (Wi � [(a>)×k])Ŵ

13: B̂ = (Wi � [(a>)×k])B̂ + B>i
14: rules = calc_rule_terms(Ŵ , B̂)
15: new_SAT_leaves =

add_subtree(T,SAT_leave, rules, invariants)
16: set_hat_on_SAT_nodes(T,new_SAT_leaves,

Ŵ , B̂)
17: convert_final_rule_to_expr(T)
18: compress_tree(T)

Figure 1. NN2EQCDT algorithm

The weight and bias matrices Wi and Bi from the FF-DNN
model are processed layer by layer. These are used to compute
rules that are used to add subtrees to the overall DT. This
allows the DT to be built dynamically as the model is iterated
layer by layer. From the second layer, when multiplying the
weight and bias matrices, it is necessary to take into account
the position of the node to which the generated subtree will
be attached. This is done by applying the slope vector a to
the current weight matrices. It represents the node position of
the connection, since it is the vector of choices according to
the ReLU activation function along the path from the root to
the connection node.

When adding a node of a newly created subtree to the overall
tree, each path from the root to the node in question is checked
for satisfiability. If there can be no input so that its evaluation
of the DT that takes this path, the node in question and thus
further subtrees are not added to keep the size of the DT
dynamically small. Finally, the last checks are converted into
expressions, and the DT can be further compressed by removing
unnecessary checks, since they are evaluated the same for all
possible inputs.

IV. DERIVATION OF THE REPRESENTATION WITH
RIGHT-HANDED LINEAR TRANSFORMATION

DTs can be constructed from the effective weight matrices
Ŵ computed by spanning and connecting subtrees through

them. The algorithm for this is shown in Figure 2. It is first
motivated and then explained with its construction.

1: Ŵ = W0

2: B̂ = B>0
3: for i = 0, . . . , n− 2 do
4: a = []
5: for j = 0, . . . ,mi − 1 do
6: if (Ŵjx

>
0 + B>j)> > 0 then

7: a. append(1)
8: else
9: a. append(0)

10: Wi+1 ∈ Rmi×k,a ∈ Zmi
2

11: Ŵ = (Wi+1 � [(a>)×k])Ŵ

12: B̂ = (Wi+1 � [(a>)×k])B̂ + B>i+1

13: return (Ŵx>0 + B̂)>

Figure 2. Algorithm for calculation of effective weight matrices with
right-handed linear transformation and bias for ReLU activation
function, based on [15]

In the basis of the NN2EQCDT algorithm, the linear transfor-
mation is performed with a left multiplication of the weight
matrix in [15], but there is no implementation given. For
an implementation there was raised the requirement, that an
algorithm must be able to use FF-DNN models in the format
of the widely used DL framework PyTorch to be able to
effienctly reuse existing models in a quasi standard format.
But unfortunately, PyTorch uses a right instead of a left side
multiplication of the weight matrices [20] as follows:

Yl = W>
l X + B Yr = XW>

r + B

To construct a DT from a Pytorch model consisting of linear
layers with bias and applying the activation function σ = ReLU
between them, the layer-wise effective weight matrices Ŵi

must be computed using the right-handed linear transformation
with bias as shown in Eq. (1) based on [15]. Here, the activation
function is performed by multiplying the activation slopes
element-wise by the weight matrices. The activation vector a
must be repeated k times for the multiplication to match the
size of the matrices to which it is applied. In the following
equations, however, it is written simply as a when repeated to
be analogous to [15].

Ŵ>
i = σ(xi−1W

>
i−1 + Bi−1)W>

i + Bi

= σ((Wi−1x
>
i−1 + B>i−1)>)W>

i + Bi

= (ai−1 � (Wi−1x
>
i−1 + B>i−1)>)W>

i + Bi

= ((a>i−1 � (Wi−1x
>
i−1 + B>i−1))>)W>

i + Bi

= (Wi(a
>
i−1 � (Wi−1x

>
i−1 + B>i−1)))> + Bi

= ((W>
i � a>i−1)>(Wi−1x

>
i−1 + B>i−1))> + Bi

= ((Wi � ai−1)(Wi−1x
>
i−1 + B>i−1))> + Bi

= (((Wi � ai−1)(Wi−1x
>
i−1 + B>i−1)) + B>i)> (1)

96Copyright (c) IARIA, 2023. ISBN: 978-1-68558-046-9

COGNITIVE 2023 : The Fifteenth International Conference on Advanced Cognitive Technologies and Applications

The recursive form in Eq. (1) can be used to formulate a general
closed of as shown in Eq. (2) based on [15]. It is equivalent
to the right-handed linear transformation with bias and ReLU
activation function.

NN(x0) = (. . . ((W1 � a0)(W0x
>
0 + B>0) + B>1) . . .)>

= (. . . ((W1 � a0)W0︸ ︷︷ ︸
Ŵ1,a0

x>0 + (W1 � a0)B>0 + B>1︸ ︷︷ ︸
B̂1,a0

) . . .)>

(2)

The corresponding algorithm for a simple FF-DNN with linear
transformation, bias, and ReLU activation function is shown
in Figure 2. The subscript j of Ŵj ∈ R1×fs with x0 ∈ Rbs×fs

and a batch size of bs ≥ 1 and a feature size of fs ≥ 1 refers to
the j-th row of the current Ŵ ∈ Rk×fs , but the subscript i+ 1
of Wi+1 refers to the weight matrix of the i+ 1-th layer and
not to a row. The same is true for the bias matrix. [(a>)×k]
means that the transposed vector a> ∈ Rmi×1 is repeated line
by line k times.

To better understand the application of the algorithm in Figure 2,
a simple example of converting the XOR function into a DT
is given in Figure 3. The XOR function is represented by the
following weight matrices of linear layers without bias as in
the example for the EC-DT algorithm of [21]:

W0 = [1 −1
−1 1] W1 = [1 1]

Each coefficient of a row of Ŵi is linearly expanded and used
as a split point rule with ReLU activation function. After a
layer, only the Ŵi+1,a with the respective previous activations
a are used for branching.

X0 −X1 > 0

−X0 +X1 > 0

Y = 0 Y = −X0 +X1

−X0 +X1 > 0

Y = X0 −X1 UNSAT

0

0 1

1

0 1

Ŵ0 =
(

1 −1
−1 1

)X0 X1

a = [0 0]

Ŵ>
1,a = [00]

a = [0 1]

Ŵ>
1,a =

[−1
1

]
a = [1 0]

Ŵ>
1,a =

[
1
−1
]

Figure 3. Simple example of an DT representing an XOR function
constructed using the algorithm of Figure 2 without bias based on an
example of the EC-DT algorithm [21]

In the algorithm in Figure 2, the calculation of Ŵ requires
the next weight or bias matrix. The iteration index can be
equivalently converted from i+1 to i by iterating with for i =
1, . . . , n− 1 do. Thus, the last effective weight or bias matrix
is required for the calculation of the current weight or bias
matrix and of the next subtree to be attached. This is used
in the NN2EQCDT algorithm in Figure 1 to be able to use

the last instead of the next effective weight and bias matrices.
To access them in the current iteration, they are stored in the
iteration before by appending them to all SAT nodes of the
subtrees they span.

In addition to the last effective and current weight or bias matrix,
the activation vector a is also needed for the calculation of the
new effective weight or bias matrix. In the concept algorithm
in Figure 2, it is computed by using the input to branch to
different activations. When converting the concept into an
implementation of a dynamic design in Figure 1, the activation
vector is required for each temporary SAT node for which
the next effective weight and bias matrices are computed and
attached as a subtree. Since the activation vector corresponds
to the branches of a path, it is computed along it in the DT as
seen in Figure 3.

V. DYNAMIC PATH CHECKING WHEN ADDING SUBTREES

In a DT spanned by the algorithm in Figure 2, there may be
regions that are invalid due to conflicting categorizations. For
example, the split point rule x > 0 and its inverse x ≤ 0
contradict each other, so they are not jointly satisfiable. If such
jointly unsatisfiable split point rules occur along a path in a
tree, the path is invalid from that point on.

When a subtree is added to the entire DT, the joint satisfiability
of all path rules is checked to avoid unnecessary calculation
of additional paths that cannot be satisfied. If a path is not
satisfiable from a certain node, there is no input where the
evaluation of the DT follows the path from the node in question.
The path is then terminated with an UNSAT node, as seen in
Figure 3. Since the path cannot be followed any further, further
checks and associated nodes and subtrees are not required. As
a result, node concatenation and subtree computation can be
stopped from this node. In this way, the DT is dynamically
compressed in the design phase, but is still equivalent to the
input FF-DNN, since only unreachable checks are omitted.

In addition to path rules, other constraints, such as input
ranges or output checks for input ranges can also be used
as invariants by expressing them as assertions. This allows the
DT to be further compressed while maintaining equivalence,
since further potentially unnecessary nodes can be omitted due
to the invariants. All related assertions, such as path assertions
and general input domain assertions can be written in the
Satisfiability Modulo Theories (SMT) format and are checked
for satisfiability together with the SMT solver Z3 [22].

Since path generation can be dynamically stopped at certain
nodes, entire subtrees may not be computed. This can compress
an DT and increase the overall computation time while
maintaining an equivalent representation.

VI. FURTHER TREE COMPRESSION

In addition to pruning the DT when it is created, it can be
further compressed by deleting checks in it that are evaluated
the same for their entire direct input space and are therefore
not needed to distinguish inputs from each other. If an DT is

97Copyright (c) IARIA, 2023. ISBN: 978-1-68558-046-9

COGNITIVE 2023 : The Fifteenth International Conference on Advanced Cognitive Technologies and Applications

created while its paths are dynamically checked for satisfiability,
it can have UNSAT nodes as leaves, as seen in Figure 3. This
example can be compressed, as seen in Figure 4, by removing
the right-hand check −X0 +X1 > 0, which evaluates to false
for all inputs, since the root check X0 −X1 > 0 evaluates to
true in this branch.

X0 −X1 > 0

−X0 +X1 > 0

Y = 0 Y = −X0 +X1

Y = X0 −X1

0

0 1

1

Figure 4. Simple compression example using DT from Figure 3

In any case, the rule of a parent node to an UNSAT node is
evaluated on the further path of the non-UNSAT node, since
the rules and their evaluations of the nodes preceding it in the
path cuts the input space to this evaluation region. Since there
is otherwise no input to evaluate, the rule check of a parent
node to an UNSAT node can be omitted. Therefore, the entire
parent node of an UNSAT node can be replaced by the non-
UNSAT child node and its associated subtree, without the DT
losing accuracy compared to the neural network model. This
operation is therefore consistent with the goal of equivalent
transformation of a neural network into a DT.

VII. APPLICATION TO SIMPLE MODEL

A simple controller model was trained using the DDPG
algorithm for MountainCarContinuous-v0 environment (MCC)
[23], [24]. Originally an actor model shown in Figure 5 was
trained with larger hidden size of hid = 64. Since it is not
necessary and more difficult to further analyse a model of
that size a student model with hid = 8 and MSE-loss was
destilled from the larger one only in the relevant region of
x ∈ [−1.2, 0.6] and y ∈ [−0.7, 0.07] and stepsize of 0.1. It
was visually found to perform about the same as the larger
model [16].

1 nn.Sequential(

2 nn.Linear(2, hid, bias=True), nn.ReLU(),

3 nn.Linear(hid, hid, bias=True), nn.ReLU(),

4 nn.Linear(hid, 1, bias=True)
5)

Figure 5. Actor model in PyTorch with variable hidden size

The smaller student model was then converted to an equivalent
compressed DT using the algorithm from Figure 1. DTs are
represented by networkx graphs that can be plotted with pyvis,
as shown for the simple control example in Figure 6. The rules
and expressions are node labels that are not visible at this
zoom factor. Both models have the same output (δ = 1e−4)
for a sampled grid, strongly confirming the correctness of the
implementation. The relevant input range was specified as an
invariant for further compression.

Figure 6. Compressed DT equivalent to the FF-DNN of a MCC
controller

The different regions of a DT can be easily separated for 2D
inputs. If the expressions for each input are to be visualized,
they can be evaluated for the corresponding decision region and
plotted as a third dimension, as shown in Figure 7. The points
for the 2D regions (x and y) are obtained by implicitly plotting
with sympy. The values for the z dimension are evaluated for
each x and y point by the final expression and then drawn as a
scatter plot using plotly. The gaps between the planes are due
to a plotting problem, the input space is actually completely
covered.

Figure 7. 3D visualization of DT regions for the MCC example

The compressed DT from the example in Figure 6 contains 83
nodes. It was computed with a median computation time of
9.75s as seen in Figure 8.

98Copyright (c) IARIA, 2023. ISBN: 978-1-68558-046-9

COGNITIVE 2023 : The Fifteenth International Conference on Advanced Cognitive Technologies and Applications

9 9.5 10 10.5 11 time [s]

Figure 8. Boxplot (n = 30) for the computation time of the
NN2EQCDT algorithm for the simple model

The amount of nodes of a DT according to the equivalence
description of [15] without compression can be calculated with
the following formula. It depends on the depth of each layer
d =

∑n−2
i=0 mi with the number of filters in each layer mi.

#nodes =

d−1∑
i=0

2i

This formula was tested by computing the DT with the
equivalence description but without compression and summing
the number of nodes for different Linear-ReLU FF-DNN
architectures and hidden sizes. For an architecture as in Figure 5,
it can be calculated as d = 2 + 2hid. Thus, for hid = 8, such
a DT already consists of

∑18−1
i=0 2i = 262143 nodes, which

corresponds to a compression ratio of 99.97% with respect
to the number of nodes. At this size, the computation was
aborted after a computation time of 1.5h. However, for other
small sizes of hid, it was also observed that the computation
time without compression starts to explode compared to the
computation with compression.

VIII. DISCUSSION

The principle of equivalence description of Aytekin [15] could
be verified by implementation, testing and application to a
simple model. The presented compression method seems to be
a useful tool in transformation to increase the explainability of
FF-DNN-based DRL policies, since the transformed, relatively
small DT model and visualization can be used to trace actions
back to observations. But in this form it is not meaningful
enough to intuitively recognize a learned strategy. Probably,
for this, the environment with its dynamics must be included
in order to explain the agent’s reactions and their effects on
the next observations.

The transformation was successfully tested on a learned
DRL model in a benchmarking environment. The results are
summarized in Table I. However, the calculated compression
ratio of 99.97% cannot be assumed to be representative
without further evaluations. Also, a general statement about the
performance of this approach for more complex environments
and larger models cannot be made yet.

The NN2EQCDT algorithm can in principle transform arbi-
trary Linear-ReLU FF-DNN with any size for the input and
output dimensions. The number of coefficients and variables in
the transformed DT would then correspond to the size of the
input dimension and the number of output values would then
correspond to the size of the output dimension, but this has
not yet been implemented due to implementation difficulties.
Also, only three dimensions can be easily visualized together,

more dimensions require more work and possibly information
splitting or reduction.

TABLE I. COMPARISON OF RESULTS OR CALCULATIONS FOR THE
CONSTRUCTION OF A DT FROM THE SIMPLE MODEL WITHOUT AND WITH

COMPRESSION OF THE NN2EQCDT ALGORITHM

Compression #nodes Computation time
� 262143 > 1.5h

X� 83 9.75s

IX. CONCLUSION AND FUTURE WORK

In this paper, an algorithm capable of equivalently transforming
a FF-DNN into a compressed DT was presented. Using a simple
model, it was shown that a compressed DT may be significantly
smaller than one without compression.

This approach can be used to trace the output regions exactly
to the input regions. It can furthermore be a useful tool to
accurately analyze the behavior of black-box models of FF-
DNN. Furthermore, if a FF-DNN was learned as a DRL policy
for an agent in a CNI, this approach has the potential to fun-
damentally strengthen the explainability, operator confidence,
and hopefully the safety of the system.

For future work, better benchmarking of the algorithm in terms
of computation time and compression ratio could be interesting.
To better counteract unkown-unkowns in explaining FF-DNN
models as DRL policies, the learned policies should be better
analyzed with such an equivalently transformation approach.
Therefore, we will attempt to combine the agent model with a
learned world model and identify useful metrics based solely
on the agent model and its traceability of output to input DT
regions to indicate specific behaviors.

In particular, we will try to explain the learned strategy
of ARL attack agents without unknown-unkowns using this
approach. In addition, for visualization of more than three
dimensions together, multiple combinations of three dimensions
or other reduction methods, such as Principle Component
Analysis (PCA) may be of interest. The implementation of the
transformation could further be generalized to arbitrary sizes
of input and output dimensions. And furthermore, for other
use cases, it could also be interesting to use other layers for
exact transformations.

ACKNOWLEDGEMENTS

This work was funded by the German Federal Ministry for
Education and Research (BMBF) under Grant No. 01IS22071.

REFERENCES

[1] V. Mnih et al., “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, pp. 1–9, 2013, [retrieved:
05, 2023]. arXiv: 1312.5602. [Online]. Available: http://arxiv.
org/abs/1312.5602.

[2] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double q-learning,” in Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA, vol. 30, AAAI Press,
2016, pp. 2094–2100.

99Copyright (c) IARIA, 2023. ISBN: 978-1-68558-046-9

COGNITIVE 2023 : The Fifteenth International Conference on Advanced Cognitive Technologies and Applications

[3] D. Silver et al., “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Science,
vol. 362, no. 6419, pp. 1140–1144, 2018.

[4] J. Schrittwieser et al., “Mastering atari, go, chess and shogi
by planning with a learned model,” Nature, vol. 588, no. 7839,
pp. 604–609, 2020.

[5] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in Proceedings
of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, ser. Proceedings of Machine Learning Research,
PMLR, vol. 80, 2018, pp. 1587–1596.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, Jul. 19, 2017, [retrieved: 05, 2023]. arXiv:
1707.06347. [Online]. Available: http://arxiv.org/abs/1707.
06347.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft
actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor,” CoRR, vol. abs/1801.01290,
2018, [retrieved: 05, 2023]. arXiv: 1801 . 01290. [Online].
Available: http://arxiv.org/abs/1801.01290.

[8] M. Naeem, S. T. H. Rizvi, and A. Coronato, “A gentle
introduction to reinforcement learning and its application in
different fields,” IEEE access, vol. 8, pp. 209 320–209 344,
2020.

[9] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep
reinforcement learning framework for autonomous driving,”
Electronic Imaging, vol. 29, no. 19, pp. 70–76, Jan. 2017,
[retrieved: 05, 2023]. DOI: 10.2352/issn.2470-1173.2017.19.
avm-023. [Online]. Available: https://library.imaging.org/ei/
articles/29/19/art00012.

[10] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning
for cyber security,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–17, 2021. DOI: 10.1109/TNNLS.
2021.3121870.

[11] E. M. S. P. Veith, A. Wellßow, and M. Uslar, “Learning new
attack vectors from misuse cases with deep reinforcement
learning,” Frontiers in Energy Research, vol. 11, pp. 01–23,
2023, [retrieved: 05, 2023], ISSN: 2296-598X. DOI: 10.3389/
fenrg . 2023 . 1138446. [Online]. Available: https : / / www .
frontiersin.org/articles/10.3389/fenrg.2023.1138446.

[12] E. Puiutta and E. M. S. P. Veith, “Explainable reinforcement
learning: A survey,” in Machine Learning and Knowledge
Extraction. CD-MAKE 2020, vol. 12279, Dublin, Ireland:
Springer, Cham, 2020, pp. 77–95. DOI: 10 . 1007 / 978 - 3 -
030-57321-8_5.

[13] E. M. Veith, “An architecture for reliable learning agents in
power grids,” ENERGY 2023 : The Thirteenth International
Conference on Smart Grids, Green Communications and IT
Energy-aware Technologies, pp. 13–16, 2023, [retrieved: 05,
2023], ISSN: 2308-412X. [Online]. Available: https://www.
thinkmind.org/articles/energy_2023_1_30_30028.pdf.

[14] J. Ba and R. Caruana, “Do deep nets really need to be deep?”
Advances in Neural Information Processing Systems, vol. 27,
pp. 2654–2662, 2014.

[15] Ç. Aytekin, “Neural networks are decision trees,” CoRR,
vol. abs/2210.05189, pp. 1–8, 2022, [retrieved: 05, 2023].
arXiv: 2210.05189. [Online]. Available: https://arxiv.org/abs/
2210.05189.

[16] T. Logemann, Nn2eqcdt implementation, [retrieved: 05, 2023],
2023. [Online]. Available: https://gitlab.com/arl-experiments/
nn2eqcdt.

[17] M. Du, N. Liu, and X. Hu, “Techniques for interpretable
machine learning,” Communications of the ACM, vol. 63, no. 1,
pp. 68–77, 2019.

[18] Y. Qing, S. Liu, J. Song, and M. Song, “A survey on
explainable reinforcement learning: Concepts, algorithms,
challenges,” CoRR, vol. abs/2211.06665, pp. 1–25, 2022,
[retrieved: 05, 2023]. arXiv: 2211.06665. [Online]. Available:
https://arxiv.org/abs/2211.06665.

[19] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable rein-
forcement learning via policy extraction,” Advances in neural
information processing systems, vol. 31, pp. 2499–2509, 2018.

[20] PyTorch Foundation, Pytorch linear, [retrieved: 05, 2023],
2023. [Online]. Available: https:/ /pytorch.org/docs/stable/
generated/torch.nn.Linear.html.

[21] D. T. Nguyen, K. E. Kasmarik, and H. A. Abbass, “To-
wards interpretable deep neural networks: An exact trans-
formation to multi-class multivariate decision trees,” CoRR,
vol. abs/2003.04675, pp. 1–57, 2020, [retrieved: 05, 2023].
arXiv: 2003.04675. [Online]. Available: https://arxiv.org/abs/
2003.04675.

[22] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,”
in Tools and Algorithms for the Construction and Analysis of
Systems: 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary. Proceedings
14, Springer, vol. 4963, 2008, pp. 337–340.

[23] A. W. Moore, “Efficient memory-based learning for robot
control,” University of Cambridge, Computer Laboratory, Tech.
Rep. UCAM-CL-TR-209, 1990, [retrieved: 05, 2023], pp. 1–
248. DOI: 10.48456/tr-209. [Online]. Available: https://www.
cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf.

[24] Farama Foundation, Mountain car continuous, Gymnasium
Documentation, [retrived: 05, 2023], 2023. [Online]. Available:
https://gymnasium.farama.org/environments/classic_control/
mountain_car_continuous/.

100Copyright (c) IARIA, 2023. ISBN: 978-1-68558-046-9

COGNITIVE 2023 : The Fifteenth International Conference on Advanced Cognitive Technologies and Applications

