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Abstract—This paper aims to propose a new type of
information-theoretic method to control information content
stored and transmitted in neural networks. To make the meaning
of information concretely interpretable, we introduce the selec-
tive information and a method to control it, called “selective
information-driven learning”. The new method is more suited
for modeling neural learning than conventional information-
theoretic measures, such as mutual information, because we
can easily maximize and minimize the information, and we
can interpret the meaning of information more concretely. The
method was applied to the well-known wine data set. The
experimental results show that the selective information could
be maximized and minimized, and we could easily interpret
the meaning of information in terms of the number of strong
weights. In addition, the partial compression of multi-layered
neural networks revealed that maximum information tended to be
focused on output information, while minimum information tried
to consider input information in addition to output information.
Finally, collective weights, averaged over all compressed weights
obtained in learning, were similar to the original correlation
coefficients between inputs and targets, meaning that the selective
information can disentangle complicated connection weights into
simple, linear, and independent ones to be easily interpreted.

Keywords-Selective information; mutual information; partial
compression; collective interpretation; correlation coefficient

I. INTRODUCTION

Due to the requirement of right of explanation [1], many
attempts have been made to explain how neural networks try
to produce outputs. Because the inner mechanism of neural
networks is far from being clarified, the black-box property has
been taken into granted, in particular, in practical applications
such as medical ones [2]. In those applications, the black-box
has been considered to be not so critical as has been expected,
because even the human body is a kind of black-box. The
most important thing for application lies in the usability and
prediction performance of adopted models. Though in neural
networks, as well as machine learning, there have been many
different types of methods to explain the network behaviors,
they seem to suppose implicitly or overly this type of black
box model. For example, in the field of convolutional neural
networks, the majority of methods for interpretation, have been
focused on the explanation of network behaviors with implic-
itly supposed black-boxed models. Since it is impossible to
clarify the inner mechanism at the present stage, all we can do
is to check how outputs can be changed in accordance with the

inputs, namely, external explanation. The well-known methods
such as the activation maximization, surrogate functions, local
perturbations, layer-wise relevance propagation, and so on [3]–
[7], seem to detect features, corresponding to the specific
inputs. Though they try to make the maximally informative
explanation [8], they seem to suppose implicitly the black
boxed properties of inference mechanism. Those methods have
been very effective in practical applications, in particular, in
the cases of image data sets, because it is easy to understand
intuitively the meaning of features detected by those methods.
However, even though those methods with strong visual power
can show how some important features can be detected in
multiple layers in neural networks, it is far from understanding
the inner mechanism of our intelligence [9].

In addition, when we try to deal with data sets whose
meaning cannot be easily understood such as business data
sets, more interpretable models to make the black-box whiter
are needed [9], [10]. Even in the seemingly interpretable image
data sets, the well-known Clever Hans phenomena [11] cannot
be easily explained without understanding the overall context
in the prediction. Naturally, there have been also some attempts
to interpret the main and inner mechanism of human nervous
systems, as well as human cognitive processes, dating back
to the so-called “connectionism” approch to human cognition
[12]–[14]. However, those attempts could not necessarily
clarify the inner structure by which complicated cognitive
processes can be explained [15].

Parallel to this connectionism approach to human cognition,
there were important attempts to interpret the inner structure
from the information-theoretic points of view. Linsker’s max-
imum information preservation had an impact to the studies
to understand and explain visual information processing, as
well as human information processing in general [16]–[19].
Linsker’s approach was a trigger to produce many different
types of information-theoretic methods in neural networks
[20]–[26]. Though the attempts may be promising in ex-
ploring the general information processing properties behind
neural networks, the complexity of information measures,
such as mutual information in computation have prevented
those information-theoretic methods from being widely used
in neural networks. In addition, we have another problem of
difficulty in understanding the meaning of final internal repre-
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sentations. Ironically, by introducing the information-theoretic
methods, the inner structure has become uninterpretable due to
the abstract properties of those information-theoretic measures.
Thus, we can say that the abstract property of information
measures, such as mutual information made the information-
theoretic methods themselves black-boxed, though they tried
to understand and explain the inner mechanism of human
information-theoretic processing.

In this context, the present paper tries to make the concept
of information as concrete as possible and as interpretable
as possible in terms of components of neural networks. We
suppose that the information content can be described in terms
of selectivity of components of neural networks. When the
selectivity of components increases, they tend to have more
information content. The research on the selectivity have been
well discussed in neuro-sciences [27]–[33]. In addition, in
the interpretation methods in the field of convolutional neural
networks, many interpretation methods have actually focused
on the detection of selectivity of some parts of neural networks
to the coming inputs [34]–[39].

We here represent information content stored in neural
networks in terms of selectivity of components. When the
selectivity increases, more information can be stored. Thus,
the information dealt with in this paper is called “selective
information”, and a learning method by using this selective
information should be called “selective information-driven
learning”. Because we can maximize completely this concrete
selective information and at the same time minimize it, we
can interpret states with maximum and minimum information
by which we can infer the actual internal representations with
intermediate information content.

The paper is organized as follows. In Section 2, we first
define the selective information and how to increase and
decrease this selective information in the name of selective-
information-driven learning. Then, we briefly explain how to
compress connection weights partially and step by step to
examine the information flow in multiple layers of neural net-
works. In Section 3, we present the results on the well-known
application to the classification of wines. We first explain that
the selective information could be maximized and minimized,
producing different connection weights. When the selective
information increases, more individually separated weights
appeared, while more collective behaviors of several neurons
appeared when the selective information decreased. Finally, we
show that generalization and selectivity-based interpretation
may be contradictory to each other, but the contradiction can
be solved by supposing two types of information for different
levels.

II. THEORY AND COMPUTATIONAL METHODS

We here explain the concept of selective information and
how to compute it for multi-layered neural networks. In
addition, we present how to compress partially multi-layered
neural networks to examine the outputs from hidden layers.

A. Selective Information-Driven Learning

Now, let us begin with the definition of selectivity and
selective information. For simplicity’s sake, we compute the
selectivity between the second and third layer denoted by the
notation (2,3) in Figure 1. For the first approximation, we
suppose that the strength of connection weights can be ob-
tained by their absolute values. When the strength of absolute
values of weights are larger, neurons connected with these
weights are more strongly connected. As shown in Figure
1(a), in an initial stage of learning, all connection weights
are randomly connected in all layers. When, the selective
information is maximized, only one connection weight is
connected with the corresponding neuron. When the selective
information is minimized, we can have different types of states
with minimum information. For example, as shown in Figure
1(c), all connection weights have equal and strong absolute
values. Stronger connection weights may cause troubles in
improving generalization and interpretation, we decrease the
strength of connection weights as much as possible as shown
in Figure 1(d). In this paper, we try to decrease the strength
of connection weights when we try to minimize the selective
information.

Then, we can obtain the absolute values of original weights
from the second to the third layer,

u
(2,3)
jk =| w(2,3)

jk | (1)

where the notation (2,3) denotes the transition from the second
to the third layer. Then, we normalize these values by their
maximum one, which can be computed by

g
(2,3)
jk =

u
(2,3)
jk

maxj′k′u
(2,3)
j′k′

(2)

where maximum operation is over all connection weights
between two layers.

Now, by using this normalized strength, selective informa-
tion for the second to the third layer (2,3), can be computed
by

G(2,3) = n2n3 −
n2∑
j=1

n3∑
k=1

g
(2,3)
jk (3)

where n2 and n3 denote the number of neurons in the second
and the third layer. Then, we try to increase or decrease this
selective information, and in particular, we actively control this
information to produce appropriate internal representations.
When only one connection weight has some strength, while
all the others are zero, the selective information is maximized
(n2n3 − 1). On the contrary, when all connection weights
have the same strength, the selective information become
zero. In the extreme case, when no connection weights exist
between two layers, the selective information is minimized
by definition, because all connection weights have the same
strength of zero.

To maximize the selective information, we must control the
normalize strength gjk. However, when we try to decrease
this selective information, we need to reduce the strength
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for all neurons between the layers. For this, we introduce an
complement case of the original normalized strength

ḡ
(2,3)
jk = 1− g(2,3)jk (4)

This means that, when the strength increases, this inverse
one decreases. This inverse equation have an effect to reduce
the strength of larger connection weights. When the strength
becomes larger, the corresponding connection weights are
forced to be smaller. Then, by combining those two, we have
a unified one

h
(2,3)
jk = αg

(2,3)
jk + ᾱḡ

(2,3)
jk (5)

where the parameter α ranges between zero and one. Then,
the connection weights at the t + 1th learning step is simply
computed by

w
(2,3)
jk (t+ 1) = h

(2,3)
jk w

(2,3)
jk (t) (6)

When the parameter α increases, weights tend to be more
affected by the force to increase the strength. On the contrary,
when the α decreases, the weights are more strongly affected
by the force to decrease the strength as shown in Figure 1(d).
When the information is maximized, only one connection
weight is used to connect one with the other, while in the
minimum state, all neurons are equally connected with each
other. Usually, the learning starts with randomly initialized
weights, corresponding to an intermediate information state.
From this intermediate state, we can increase and decrease
information flexibly, and we interpret the meaning of informa-
tion in terms of the number of strong weights. On the contrary,
information, for example, even when mutual information can
be defined for the connection weights, it is extremely difficult
to understand the actual meaning in terms of components of
neural networks. However, the selective information, though
defined very simply, can represent the content of mutual
information concretely in terms of the number of strong
connection weights.

1) Partial Compression : To examine information flow in
multiple hidden layers, we here use the partial compression in
which a multi-layered neural network is compressed gradually
up to the simplest one without hidden layers in Figure 2.

Let us show how to compress a multi-layered neural net-
work gradually from the input to the output layer. For this,
we suppose that the number of neurons in all the hidden layer
is the same. This does not necessarily exclude the variable
number of neurons. Actually, the number of neurons can be
reduced by the effect of selective information maximization,
where the number of strong connection weights can be in-
creased or decreased.

The first partial compression in Figure 2(b) lies in connect-
ing the input and output layer

w
(1,2,7)
ir =

n6∑
q=1

w
(1,2)
iq w(6,7)

qr (7)

where the notation (1,2,7) represents compressed weights up to
the second layer, and n6 is the number of neurons in the sixth

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(a)  Maximum selectivity

(c)  Minimum selectivity 

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(d)  Minimum selectivity 

(2) j (3) k (4) l

(1)

(6)(5)

(7)

(a)  Initial state 

Fig. 1. Network architecture with seven layers, including five hidden layers
(a) for active information maximization (b), information minimization No.1
(c) and selective informaiton minimization No.2 (d).

layer. The second partial compression in Figure 2(c) begins
with connecting the first two connection weights

w
(1,2,3)
ik =

n2∑
j=1

w
(1,2)
ij w

(2,3)
jk (8)

where the notation (1,2,3) denotes compression up to the
second layer. Then, by combing it with weights to the output
layer, we have the second partial compression

w
(1,3,7)
ir =

n6∑
q=1

w
(1,3)
iq w(6,7)

qr (9)

where the notation (1,3,7) shows the compression up to the
third layer with the weights to the output layer. In the same
way, we gradually combing the remaining connection weights,
and finally, we can compress all connection weights

w
(1,6,7)
ir =

n6∑
q=1

w
(1,5,6)
iq w(6,7)

qr (10)

where the notation (1,6,7) denote compression up to the sixth
layer with the seventh layer or output layer, and (1,5,6) denotes
compression up to the fifth layer.

III. RESULTS AND DISCUSSION

We applied the method to the well-known wine data set
to show how well the method could maximize and mini-
mize selective information, and we could easily interpret the
meaning of connection weights. In addition, the method could
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(a) Original network
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(2) (3) k (4) (5) (6) q
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(7)

(1)

(7)

(b) Partial compression 

(b) (1,2,7) (c) (1,3,7) (b) (1,6,7)

i

j

Fig. 2. Network architecture with seven layers, including five hidden layers
(a) to be compressed gradually and partially into the simplest ones (b).

produce weights, which was close to the original correlations
between inputs and targets. This means that the method could
disentangle complicated relations into the simple ones.

A. Experimental Outline

The experiments aimed to predict red and white wine from
the north of Portugal [40], based on twelve input variables.
The number of patterns was 4898 white and 1599 red wines.
As shown in Figure 3, the number of hidden layers was ten
with ten neurons for each layer. We compressed multi-layered
neural networks partially (b) and fully (c) for interpreting
the information flow in multiple layers. The parameter α
decreased from 1 to 0, which means that the selective infor-
mation could be maximized and minimized. The number of
learning steps was 100, and within each learning step, there
were several sub-steps to assimilate the effect of selective
information, ranging from 5 to 10. Though we can completely
maximize and minimize the selective information, the selective
information minimization was accompanied by the weight
strength reduction, making the learning impossible when the
information becomes closer to a minimum state. Thus, we
made the effect of selective information minimization weaker
for the stable learning. We should note that without consider-
ing the stability of learning, we could completely minimize the
selective information. We used the scikit-learn neural network
package with all default setting except the number of learning
steps (epochs) and tangent-hyperbolic activation function, and
naturally, connection weights were modified by the composite
function to control the selective information. Those default
values were used to make the reproduction of the present
results as easy as possible.

B. Selective Information and Mutual Information

First, we try to show that the selective information can
be controlled flexibly, reducing the strength of connection
weights. In addition, the selective information can be easily
understood in terms of the number of weights, while mutual
information cannot give concrete meaning to the final results.

(1) (2) (3)

(12)

Forward

12 10 10

(4)

Forward

10

(5)

Forward

10

(6)

Forward Backward Backward Backward Backward

10

(7)

10

(8)

10

(9)

10

Backward

(10)

10

(11)

10

(c)  Full compression

(a) Original network

(b) Partial compression

(1)

14 (11)

(1)

14 (11)

(1)

14 (11)

(1)

14 (11)

Fig. 3. Network architecture with 12 layers (10 hidden layers) in which
each hidden layer has 10 neurons, a series of partial compression (b) and full
compression (c) for the wine data set.

Figure 4 shows the selective information (left), mutual
information (middle) and averaged absolute weight strength
(right), when the parameter α decreased from 1(a) to 0(e).
As shown in the leftmost figure of Figure 4(a), the selective
information increased rapidly and close to its maximum value
(10 by 10 by definition) in the end. Then, when the parameter
decreased from 0.7(b) to 0(e), the selective information de-
creased gradually. When the parameter was zero in the leftmost
figure of Figure 4(k), the selective information became slightly
larger than that obtained when the parameter was 0.2 in Figure
4(j). As mentioned, to stabilize the learning, we reduced the
effect of selective information when the parameter decreased
and in particular, close to zero. Without this constraint on
the selective information minimization, it could be reduced to
almost an minimum point of zero. Thus, when the parameter
decreased, the selective information was forced to be smaller
as can be expected. In the same way, the figures in the
middle shows mutual information, where mutual information
increased immediately up to almost its maximum value. Then,
when the parameter decreased, mutual information decreased
gradually, and final close to zero. Then, the rightmost figures
show the average strength of absolute weights, which were
forced to be smaller by decreasing the parameter α.

As above mentioned, we can easily interpret the values
of selective information. When the selective information is
higher, the number of stronger weights becomes smaller. On
the contrary, when the selective information is smaller, the
number of stronger weights connecting with specific neurons
becomes smaller, and all the weights become equal in their
strength. At the beginning of learning, the random initial
states are usually given, and the selective information in this
case should be close to the middle of 50, meaning that the
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Number of steps Number of steps Number of steps

(a) 1

Number of steps Number of steps Number of steps

(d) 0.7

Number of steps Number of steps Number of steps

(f) 0.5

Number of steps Number of steps Number of steps

(i) 0.2

Number of steps Number of steps Number of steps

(k) 0

Fig. 4. Selective information (left), mutual information (middle) and averaged
weights (right) when the parameter α decreased from 1(a) to 0(k) for the wine
data set.

fifty percent of all connection weights should have stronger
weights, though the strength of weights are different from
each other. Then, when the selective information increases, the
number of stronger weights becomes smaller and smaller and
in the end when the maximum information state is reached,
where only one connection weight becomes strong, while
all the others are zero. On the contrary, when the selective
information becomes smaller, the number of strong weights
becomes smaller, and all weights become equally small. In
the extreme case, all connection weights becomes zero, which
is also a minimum selective information state by definition.

Then, we should examine how connection weights changed
when the parameter also changed. Figure 5(a) shows con-
nection weights when the parameter was one, namely, when
only selective information maximization was applied. As can
be expected, only a small number of connection weights
among many became stronger, while all the others became

very small. When the parameter decreased to 0.7 in Figure
5(b), a neuron connected with many neurons appear, which
could be seen over weights close to the input and output
layer. When the parameter was 0.5 in Figure 5(c), we could
have an explicit pattern that all neurons in the precedent layers
tended to be connected with many neurons in the subsequent
layers, and vice versa. When the parameter was decreased
to 0.2 in Figure 5(d), this tendency was further enhanced,
and all neurons were explicitly connected with all the other
neurons. Finally, when the parameter was set to zero, and only
selective information minimization was applied, the tendency
became slightly weaker. This can be explained by the fact
that we made the effect of selective information weaker for
the stability of learning. These results show that when the
selective information increases, individual connection weights
tend to behave independently of other weights. Then, when
the selective information becomes smaller, connection weights
behave collectively, and a neuron tend to be connected with
many other neurons.

C. Partial Compression

Then, we tried to examine how information from the inputs
and outputs were transmitted in multiple layers. The results
show that the selective information maximization tried to
capture output information mainly, while information min-
imization tried to take into account input information in
addition to output information.

Figure 6 shows partially compressed weights when the
parameter decreased from 1 (a) to 0 (e). When the parameter
was one in Figure 6(a), and the selective information is
maximized, partial compressed weights in the intermediate
layers, were very weak in their strength, and only in the final
compression state, namely, in the full compression, the weights
became stronger. This means that information on the outputs
should be necessary to form the compressed weights. When
the parameter decreased from 0.7 (b) to 0.2 (d), gradually,
in the initial stages of partial compression, located on the left
hand side, connection weights became relatively stronger. This
means that when the selective information becomes smaller,
information on inputs was taken into account. Finally, when
the parameter became zero, namely, when only the selectivity
minimization was applied, the states of partial compression
became similar to those by the selective information maxi-
mization only used in Figure 6(a).

For more clearly presenting this tendency, we computed
the standard deviation of absolute connection weights of
partially compressed weights in Figure 7. For example, Figure
7(a) shows the standard deviation of compressed weights
when the parameter was one, and only selective information
maximization was used. As can be seen in the figure, the
standard deviation of weights from the first compression to
the ninth compression was very small. When only all weights
were compressed fully, the standard deviation became larger,
meaning that the final connection weights played important
roles to form the appropriate compressed weights. Then, when
the parameter decreased from 1 (a) to 0.1 (j), gradually,
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(a) 1

(b) 0.7

(c) 0.5

(d) 0.2

(e) 0

Fig. 5. Weights of hidden layers when the parameter α decreased from 1
(a) to 0 (e) for the wine data set.

the standard deviation of absolute weights of initial stages
of partial compression became stronger, though those com-
pressed weights were still weaker. This means that when
the selective information is decreased, connection weights
in the intermediate layers tended to have some information,
probably, on inputs. Finally, when the parameter was zero in
Figure 7(k), the partially compressed weights became similar
to those obtained when the parameter was one. This cannot
be easily interpreted, but we infer that input information
acquired in the intermediate layers, can be obtained only when
selective information maximization and minimization effect
are combined with each other. Or, as mentioned, we made the
effect of selective information weaker, which may be the main
cause of this state with the zero parameter.

D. Compressed Weight Comparison

We here compare the compressed weights with those by
the other conventional methods. The results show that the

(a) 1

(b) 0.7

(c) 0.5

(d) 0.2

(e ) 0

Fig. 6. Partially compressed weights when the parameter α changed from
1(a) to 0(e).

final compressed weights were quite similar to the original
correlation coefficients between inputs and targets. This means
that the selective information has an effect to disentangle
connection weights to have simpler, linear and independent
relations between inpts and outputs.

Figure 8(a) shows the correlation coefficients between in-
puts and targets of the original data set. When the parameter
was one in Figure 8(b), the correlation between the original
correlations in Figure 8(a) and compressed weights was 0.673.
When the parameter decreased to 0.7, 0.5, 0.2, the correlation
increased to 0.953, 0.946 and 0.958, which were almost perfect
correlations. Those correlations were higher than 0.937 of

25Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-847-1

COGNITIVE 2021 : The Thirteenth International Conference on Advanced Cognitive Technologies and Applications



(a) 1 (b) 0.9 (c) 0.8

(d) 0.7 (e) 0.6 (f) 0.5

(g) 0.4 (h) 0.3 (i) 0.2

(j) 0.1 (k) 0

Fig. 7. Standard deviation of partially compressed weights when the
parameter α decreased from 1 (a) to 0 (k) by 0.1 for the wine data set.

(a) Original Correlation (b) 1(0.673) (c) 0.7(0.953)

(d) 0.2(0.958)(c) 0.5(0.946)

(f) Conventional(0.531)

(e) 0 (0.704)

(g) Logistic(0.937) (h) Random forest(-0.084)

1   2   3   4   5   6   7   8   9   10   11  12 1   2   3   4   5   6   7   8   9   10   11  12 1   2   3   4   5   6   7   8   9   10   11  12

1   2   3   4   5   6   7   8   9   10   11  12 1   2   3   4   5   6   7   8   9   10   11  12 1   2   3   4   5   6   7   8   9   10   11  12

1   2   3   4   5   6   7   8   9   10   11  12 1   2   3   4   5   6   7   8   9   10   11  12 1   2   3   4   5   6   7   8   9   10   11  12

Fig. 8. Correlation coefficients (a), compressed weights for α=1 down to 0
(b)-(e), compressed weights by the conventional method (f), and the regression
coefficients by the logistic regression analysis (g) and prediction importance
by the random forest method (h) for the wine data set.

conventional logistic regression analysis in Figure 8(g). By
the conventional method without selective information, the
correlation was only 0.531 in Figure 8(f), and in addition,
the random forest produced the worst correlation of -0.084 in
Figure 8(h).

Finally, we examined relations between correlations and
generalization. The results show that the interpretation and
generalization were inversely correlated. Thus, we need to
make an attempt to unify improve interpretation and general-
ization. Figure 9(a) shows the correlation coefficients between
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Collective

Accuracy

Final

F-scoreC
o
rr

e
la

ti
o
n
 c

o
e
fi

c
ie

n
t

A
c
c
u
ra

c
y
 a

n
d
 F

-s
c
o
re

1     0.9   0.8  0.7   0.6   0.5  0.4  0.3   0.2    0.1    0 1     0.9   0.8  0.7   0.6   0.5  0.4  0.3   0.2    0.1    0

Fig. 9. Correlation coefficients (a) and generalization accuracy (b) for the
wine dat set.

the correlations of original data set and compressed (final)
and collective weights (collective). The compressed weights
were ones, obtained when the learning steps was the final one,
namely, 100 step in this case. On the other hand, the collective
weights were obtained by averaging all compressed weights
for all intermediate learning steps. As shown in the figure,
the collective weights produced always higher correlations
than the compressed weights. This means that the simple
average of all compressed weights in learning can increase the
correlation between the original correlation and compressed
weights. Figure 9(b) shows generalization accuracy and F-
measure, where the accuracy was always larger than the F-
measure. Comparing Figure 9(a) and (b), we can conclude that
the correlations were inversely related to generalization per-
formance, though decrease in generalization was considerably
small. This can be easily interpreted by using the selectivity
of neurons and connection weights. When the selectivity of
components of neural networks increases, and they tend to
respond to the inputs very specifically, they cannot deal with
less specific inputs naturally. Thus, we make a compromise
between selectivity and generalization or interpretation and
generalization. At the first glance, it seems to be impossible to
make this kind of compromise between them, but this type of
contradiction can be easily be solved by supposing selective
information maximization and minimization operating in two
different contexts or levels. We should explore this possibility
of contradiction resolution as a future study of this paper.

IV. CONCLUSION

The present paper aimed to propose a new type of
information-theoretic method called “selective information-
driven learning”. The selective information is introduced to
measure the selectivity of components in neural networks to
replace conventional mutual information, because it can easily
be interpreted in terms of the number of strong weights, while
conventional mutual information can not be easily interpreted
in terms of components of neural networks. The new method
was applied to the well known wine data set. The experimental
results showed that the selective information could be maxi-
mized and at the same time minimized within the same frame-
work. The interpretation can be possible in terms of number
of strong connection weights, which is easier to understand,
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compared with the conventional mutual information. In addi-
tion, by partially compressing multi-layered neural networks,
we could find that the selective information maximization is
focused on output information, while the selective information
minimization tried to detect input information as well.

The results confirmed that the explicit interpretation of
internal representations is possible by the present method.
However, it was observed that better interpretation is not
necessarily followed by improved generalization. This is be-
cause the selectivity for improve interpretation may be harmful
to improved interpretation, needing an ability to responding
well non-specific and ambiguous cases. Thus, we need to
make further studies on unifying improved interpretation and
generalization.
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