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Emails: wajnberg.mickael@courrier.uqam.ca poulinjm@gmail.com
blondin masse.alexandre@uqam.ca valtchev.petko@uqam.ca

Abstract—In language theory and cognition, the search for a
minimal set of language primitives from which every other
concept could be defined is an ever-recurring topic. In order
to help identify such primitives, a serious game was designed,
where the player has to produce a meaningful lexicon as small
as possible, starting by defining a single word and, recursively,
all those appearing in any definition. Using simple graph theory
and relational concept analysis (RCA), we extracted association
rules from feature tables while putting in common the newly
discovered abstractions into the overall knowledge data discovery
process. The utility of the mined rules has been validated by the
success in linking the dictionaries structural attributes to the
psycholinguistics characteristics of the words they contain.

Keywords–Lexicon; Dictionary; Relational concept analysis;
Cicularity; Association rule; Serious game.

I. INTRODUCTION

If someone is trying to learn a new language using only a
dictionary, he must first identify a set of words in the foreign
language’s dictionary that he can relate to words in his mother
tongue. one must also ensure that this set of words covers
the lexical primitives (assuming that they exist) of the foreign
language, i.e., a set of “indecomposable” words sufficiently
large to span all the other words of the language. The pro-
cess of acquiring the first words of the foreign dictionary is
addressed by the so-called symbol grounding problem, which
was formalized in 1990 [1]. The task is all the more difficult
when the alphabets do not match, like Mandarin or Arabic. It
is nevertheless achievable, and even characteristic of the work
of palaeographers aiming to understand extinct languages.

To identify such lexical primitives of a language, some
authors put forward the concept of minimal grounding sets
(MGS) of dictionaries, i.e., minimum size sets of dictionary
words from which one can define all the other words in a
dictionary [2][3]. To properly characterize these MGS, it is
necessary to understand both their structural aspect and their
description from a psycholinguistic point of view [3].

By means of association rules, we analyze in this article a
body of small dictionaries produced by human players as an
artefact of a serious game called “Dictionary Game”. These
association rules are derived using a mathematical procedure
known as Relational Concept Analysis (RCA) [4], an extension
of Formal Concept Analysis (FCA) [5]. First, in Section II,
we detail the context of the study. Section III introduces the

formalization of a dictionary. Next, in Section IV, we describe
in more detail “The Dictionary Game”, which supplies our
datasets. Finally, Section V is devoted to the description of
the characteristics of the data set and the experiment carried
out.

II. SYMBOL GROUNDING AND LEXICAL PRIMITIVES

In language theory, as well as in cognitive science, the
search for lexical primitives has been a very active subject for
several decades [6][7]. These primitives form a set of lexical
units, such that any word in a language can be defined from
them. In theory, we can integrate in an iterative way this
collection to eventually define all the words of a dictionary.
To be really helpful in this purpose, a valuable set of lexical
primitives should both contain as few words as possible and
be as expressive as possible.

One of the famous first attempt to identify a minimum set
of lexical primitives was made in 1930 by Ogden [8]. Although
he did not succeed in constructing a universal language, one
can still retrieve his word list [9]. Emphasizing the timeless
aspect of this line of research, the graph structure of Ogden’s
Basic English Word List was even recently studied [10].

In 1972, Wierzbicka introduced a group of 14 semantic
primitives, which she considers to be universal Semantic
Primitives [11]. Pursuing this line of research for two decades,
she extended her list of words to more than 50 semantic
primitives and has shown that they can be translated into a
large number of languages [12]. Not long ago, Browne et al.
have constructed several “general” lists of words, such as the
New General Service List [13][14]. These word lists, carefully
chosen to meet the requirements of lexical primitives, have
been used primarily for teaching English, but have also been
used in other contexts [15]. More recently, Goddard proposed
a Minimal English based on Wierzbicka’s theory [16]. It aims
to manually build a set of basic English words which allow
to describe a large number of more complex words, which are
translatable into many different languages [16]. Its main goal
is to provide a basic language as an effective entry point for
learning English as a secondary language.

Although useful in practice, all these approaches start by
proposing a set of primitives and try, from these, to construct
as many concepts as possible. However, the authors of these
methods emphasize that they should not be considered as
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complete and definitive [17]. Even the notion of “indecom-
posability” is not obvious: Wierzbicka’s list of 65 primitives
includes the concepts NOT, GOOD and BAD; however, one
could argue that among the concepts GOOD and BAD, at least
one of them could be removed, since each can be defined by
combining the other with the negation concept NOT, i.e., GOOD
= NOT BAD and BAD = NOT GOOD.

Still in response to the problem of symbol grounding, a
complementary approach was developed by Blondin Massé et
al. [2]. As an alternative to a fixed set of word primitives,
the authors propose to calculate the MGS for dictionaries, i.e.,
identify in a dictionary a minimum set of words which allow
to define in an iterative manner all the other words. Although
the number of MGS for a dictionary can be exponential with
respect to its number of words, all MGS seem to share common
psycholinguistic characteristics [3]. Indeed, it has been shown
that these words tend to be used more frequently, learned
younger and are more concrete [3]. For these psycholinguistic
variables (age of acquisition, frequency, concreteness), one can
also note a difference, depending on the part of the dictionary
in which a word is found.

When taking a closer look at several MGS, other interesting
features have been observed. Indeed, the authors of [3] focused
on the largest strongly component connected (SCC), called
the core of a dictionary, and compared it to the smallest
remaining SCC, called the satellites. They found out that, when
partitionning the MGS into two parts, one in the core and the
other in the satellites, the words in the core are more frequent,
more abstract and learned earlier, unlike those found in the
satellites [3]. Thus, the core seems to mirror some abstraction
occurring in the mental lexicon.

III. PRELIMINARIES

We now recall the terminology about lexicons and graphs.
Formalism on lexicons is adaptated from [18].

Definition 1. [18] A complete disambiguated lexicon is a
quadruple X = (A,P,L,D) where

• A is a finite alphabet, whose elements are letters;
• P is a finite set whose elements are part-of-speech (POS);
• L is a finite set of triples of the form ` = (w, i, p), called

lexemes, denoted by ` = wi
p, where w ∈ A∗ is a word,

i ≥ 1 is an integer and p ∈ P . The triple (w, i, p) is called
the i-th sense of the POS-tagged ordered pair (w, p)

• D is a partial application associating with a lexeme ` ∈
L a finite non empty sequence D(`) = (`1, `2, . . . , `k),
where for each i, di ∈ L. Such a sequence is called the
definition of `.

The quadruple must satisfy the following constraints:

stop lexeme The set P contains a special element S, identi-
fying the stop lexemes;

completeness For each triple (w, i, p) ∈ L, if p 6= S, then
D(w, i, p) is well-defined;

consistent numbering of lexemes If (w, i, p) ∈ L and i > 1,
then (w, i− 1, p) ∈ L.

If for each triple (w, i, p) ∈ L, we have i = 1, then the
lexicon X = (A,P,L,D) is called monosemic. In that case,
we write wp instead of wi

p.

TABLE I. A COMPLETE DISAMBIGUATED LEXICON.

` D(`)
BIGA (NOTS , SMALLA)
HUGEA (VERYS , BIGA)
SMALLA (NOTS , BIGA)

Roughly speaking, a complete disambiguated lexicon is a
list of lexemes that are all defined, except the stop lexemes,
and such that each definition is disambiguated.

Example 1. Let X = (A,P,L,D), where A = {a, b, . . . , z},
P = {A,S} (N = name, A = adjective, S = stop) and L, D
are defined in Table I. Each lexeme used in a definition is itself
defined, except the stop lexemes NOTS and VERYS . Hence, the
lexicon X is complete and disambiguated.

In practice, words tagged with S are words playing mostly
a syntactic role and whose semantic value is poor (such as
no, the, a). However, any word can be placed in that category
whenever its sense is not pertinent for a given study. From
now on, we assume that P = {N,V,A,R, S}, denoting
respectively the POS name, verb, adjective, adverb and stop.

A directed graph is an ordered pair G = (V,A), where V is
a finite set whose elements are called vertices and A ⊆ V ×V
is a finite set whose elements are called arcs. The density of
G, denoted by density(G), is the ratio of the number of arcs
belonging to the graph over the number of possible arcs, i.e.,
density(G) = |A|/|V |2.

Let G = (V,A) be a graph, u, v ∈ V and k be a positive
integer. We say that p = (v1, v2, . . . , vk) is a (directed) uv-
path of G if u = v1, v = vk and (vi, vi+1) ∈ E for i =
1, 2, . . . , k − 1. In particular, if u = v, the path p is called
a circuit of G. Let u, v ∈ V . We write u →G v whenever
there exists a uv-path in G, or simply u → v if the graph
G is clear from the context. Also, we write u ↔ v if and
only if u → v and v → u. It is easy to verify that ↔ is
an equivalence relation. Hence, an equivalence class of the
relation ↔ is called strongly connected component (SCC) of
G = (V,A). In other words, two vertices belong to the same
SCC if there exist directed paths connecting the first one to
the second one and vice-versa. SCC can be computed in linear
time by different algorithms, such as Tarjan’s [19].

When computing statistics about directed graphs, it is often
convenient to consider their undirected version. Given two
vertices u, v of a directed graph G = (V,A) and a positive
integer k, we say that p = (v1, v2, . . . , vk) is a uv-chain of
G if u = v1, v = vk and, for each i = 1, 2, . . . , k − 1, we
have (vi, vi+1) ∈ E or (vi+1, vi) ∈ E. The length of a uv-
chain, denoted by |p|, is the number k− 1, i.e., the number of
arcs traveled by p. The distance between u and v, denoted by
dist(u, v), is the length of a shortest chain between u and v,
i.e.,

dist(u, v) = min{|p| : p is a uv-chain}.

From these definitions, we can derive structural statistics
for a given graph G. For instance, the diameter of G, denoted
by diam(G), is the maximal distance between two vertices of
G:

diam(G) = max{dist(u, v) : u, v ∈ V }.

Finally, the characteristic path length (CPL) of G is the
average length of a shortest path between two vertices. It is
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denoted by CPL(G) and defined by

CPL(G) =
∑

u,v∈V

dist(u, v)

|V |(|V | − 1)
.

If X = (A,P,L,D) is a complete disambiguated lexicon,
then the graph of X is the directed graph Graph(X) = (L, A),
such that (`1, `2) ∈ A if and only if the lexeme `1 appears in
the définition D(`2) of lexeme `2.

IV. THE DICTIONARY GAME

The “Dictionary Game” is a web-based, crowdsourced
game, whose purpose is to create small but complete micro
dictionaries of tractable size [3][20].

The reader can take a look at the game’s web site for a
more complete description of the game and even get down to
build a new dictionary of one’s own [21]. At the outset of
the game, the player has to pick a “seed word” and provide
a definition for it. After that, the words used in this first
definition must in turn be defined. The game continues in the
same manner, new definitions being created, new words being
added and defined using existing or new words. The goal of
the game is to “complete” the dictionary so that all the words
used in definitions are themselves defined. Thus, the dictionary
obtained at the end verifies all criteria of a complete lexicon
according to Definition 1. To improve the expressiveness of
the resulting dictionary, the player must also ensure that all the
definitions provided contain at least three non stop lexemes.
An error message is displayed if this constraint is not satisfied,
inviting the player to improve the definition. Example 2 shows
the written representation of the first words and definitions of
a dictionary built using the seed word horse.

Example 2. Using the seed word horse:

• horse: animalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimal on which one humanhumanhumanhumanhumanhumanhumanhumanhumanhumanhumanhumanhumanhumanhumanhumanhuman ridesridesridesridesridesridesridesridesridesridesridesridesridesridesridesridesrides
• animal: organismorganismorganismorganismorganismorganismorganismorganismorganismorganismorganismorganismorganismorganismorganismorganismorganism that belongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongsbelongs to the livinglivinglivinglivinglivinglivinglivinglivinglivinglivinglivinglivinglivinglivinglivinglivingliving kingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdomkingdom
• human: animalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimalanimal speciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspeciesspecies that possesspossesspossesspossesspossesspossesspossesspossesspossesspossesspossesspossesspossesspossesspossesspossesspossess reasonreasonreasonreasonreasonreasonreasonreasonreasonreasonreasonreasonreasonreasonreasonreasonreason
• etc.

Also, a graphical representation of the graph associated
with a dictionary produced from the seed word clock is
depicted in Figure 1.

Some additional data representation aspects must be taken
into account to prepare the output of the “Dictionary Game”
for further analysis.

1) Seed Words: As mentioned just before, game dictionar-
ies are built using seed words. In the current version of the
game, one can choose between 4 different seed words. We can
see in the first columns of Table V these seed words along with
the number of dictionaries built for each of them.

2) Graph Characteristics: The dictionaries produced by
the players are converted to directed graphs, using the natural
transformation described in Section III. To get an overview of
the underlying structure, we computed several classic measures
on the resulting graphs, summarized in Table II.

3) Words Psycholinguistic Properties: In order to portray
the words used to build the game lexicons, we used external
norms to tag them according to their psycholinguistic prop-
erties. Table III shows a few sample words along with their
associated psycholinguistic properties:

Figure 1. A dictionary produced by a player in the game, represented as a
so-called “condensed” graph. Each SCC has been merged into a single
meta-vertex containing equivalent words with respect to the relation ↔.

TABLE II. STATISTICAL PROPERTIES OF GRAPH CHARACTERISTICS FOR
ALL GAME DICTIONARIES: numV : NUMBER OF VERTICES, numE: NUMBER

OF EDGES, nSCC: NUMBER OF STRONGLY CONNECTED COMPONENTS,
CPL: CHARACTERISTIC PATH LENGTH, dens: DENSITY, diam: DIAMETER.

numV numE nSCC CPL dens diam

Mean 124.0 436.1 7.0 4.8 0.038 13.1
Std 73.9 272.7 11.2 1.5 0.022 4.7
Min 35 120 1 0.87 0.008 3
Max 433 1558 88 11.4 0.108 35

Age of Acquisition: The variables AOAB and AOAC both
represent estimations of the age at which a word is
supposed to have been learned. They were sourced from
psycholinguistic norms, [22] and [23], respectively.

Concreteness: The variable Conc is an evaluation, on a 1 to
5 scale, of whether a word is abstract or concrete [24].

Frequency: FreqP – [25] is a measure of the relative occur-
rence rate of words in the SUBTLEXUS corpus, while

TABLE III. A SAMPLE OF WORDS AND THEIR PSYCHOLINGUISTIC
PROPERTIES. A MISSING VALUE IS WRITTEN AS A DASH.

AOAB AOAC Conc FreqP FreqL

abandon 8.32 — 2.54 8.10 1
abide 9.50 4.00 1.68 2.71 1
ability 8.84 — 1.81 19.22 38
able 7.79 4.77 2.38 159.90 39
absence 7.70 — 2.31 6.31 5
absent 6.50 8.28 2.70 2.57 1
...
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FreqL is a measure of the words’ frequency in the
corpus formed by collecting all the words from the game
dictionaries definitions.

V. EXPERIMENTS

We now describe the experiment we conducted, the result-
ing observations, and end with a short discussion.

A. Objectives and Method
The goal of this study is to understand the underlying

structure of the game produced dictionaries. Specifically, since
the game asks the players to construct dictionaries with a
minimal number of words, we focused on the ”winning”
strategies. To provide such insights, we aim to extract co-
occurrences between psycholinguistic and structural features
in the dictionaries. To present these co-occurrences we use a
dedicated formalism, the association rules [26]. Such rules are
pairs Y → Z, where Y and Z are sets of features respectively
called antecedent and consequent, and state that any object
presenting all the Y features, has also all the Z features.
Associations are typically assessed by metrics, such as the
rules support (proportion of objects incident to Y ∪ Z) and
confidence (proportion of objects with Z among those with
Y ). For clarity, we also provide the antecedent support, the
proportion of objects presenting all the antecedent features.
For instance, Rule #4 in the Table VII states that 35% objects
(dictionaries) are numV (lo) (low number of vertices), 29%
objects are numV (lo) and dens(hi) (high density), and finally,
84% objects that are numV (lo) are also dens(hi).

To limit redundancy and maximize informativity, we focus
on associations of a special form, called concise association.
Such association are written Y → Z − Y , where Y ⊆ Z and
there is no sets of features U, V such as U ⊆ Y , Z ⊆ V , where
the rule U → V has the same support or confidence than Y →
Z−Y [27]. To produce these specific associations rules, we use
RCA [4]. FCA is a method that reveals the concise association
rules of objects × attributes datasets (called formal context),
such as the table dict in Figure 2, by expliciting, in a lattice,
the hidden conceptual structure [5]. RCA extends FCA to the
case where relations exists between objects, such as described
in Example 3. The input of RCA is called a Relational Context
Family (RCF), i.e., a pair composed of a set of contexts and
a set of binary relations between these concepts.

Example 3. Consider Figure 2. The dict table depicts a set of
the dictionaries 1 to 5 with 6 features : three levels of vertices
number numV (lo), numV (med) and numV (hi) along with
three seed words horse, clock and person. Crosses indicate
that the object has the given attribute, so dictionary 1 has
many vertices and has been started with the seed word clock.
Such a table, composed with a set of objects (the dictionaries),
a set of attributes (the features) and an incidence relation
(the set of couples represented by the crosses) is called a
formal context. The wd table presents the formal context
of words A to D with the attributes “young Brisbaert age
of acquisition”, “high concretude” and “lowest P-frequency”.
These two contexts can both be analyzed separately through
FCA. RCA enrich each context with the use of relations, such
as the one represented by the ct table (ct stands for “contains”),
linking the dictionaries to the words by specifying which word
exists in which dictionary.

dict nu
m

V
(h

i)

nu
m

V
(m

ed
)

nu
m

V
(l

o)

ho
rs

e

cl
oc

k

pe
rs

on

1 × ×
2 × ×
3 × ×
4 × ×
5 × ×

ct A B C D

1 × × ×
2 × ×
3 ×
4 × × × ×
5 × ×

wd A
O

A
B

(y
ou

ng
)

C
on

c(
hi

)

Fr
P(
q 1

)

A ×
B × ×
C ×
D × ×

Figure 2. A sample RCF drawn from the dictionary game dataset.

TABLE IV. EXTENDED PROBLEM CONTEXT.

dict+ 1 2 3 4 5

∀∃ct : (>) × × × × ×
∃60%ct : (AOA(young)) × × ×
∀∃ct : (AOA(young), FrP(q1)) ×
∀∃ct : (Conc(hi)) ×
∀∃ct : (AOA(young), Conc(hi))

On such data, RCA iteratively performs multiple FCA
tasks, one per context in the RCF. In doing that, relational links
between objects are translated into special type of attributes,
called relational, by a dedicated propositionalization mecha-
nism [28]. It applies a variety of scaling operators mimicking
role restrictions from description logics thus yielding attributes
of the shape q r : (Y ) where q is the operator (e.g., ∃, ∀, ∀∃),
r is a relation name (e.g., ct) and Y is a set of attributes
from the range context of r (wd for r =ct in our RCF). To
avoid circularity and reduce redundancy, only maximal sets of
attributes computed in anterior RCA iteration are considered,
as suggested in [29]. An attribute q r : (Y ) refines the
descriptions of the objects from the domain context of r (dict
for ct), i.e., it becomes an additional column in the ×-table,
whereby its incidence to an object o is function of object’s
image, r(o) = {ō|(o, ō) ∈ r}, and the objects having the
attributes Y in the range context. The exact function is defined
by the operator q, e.g., ∀∃ tests r(o) 6= ∅ and if every objects
of r(o) has Y while ∩≥60% checks if at least 60% objects of
r(o) has Y . Table IV presents some of the attributes generated
by scaling upon ct with operators ∀∃ and ∩60%.

As a result of the scaling, dictionary descriptions is refined
with respect to the properties of the words they comprise,
e.g., 2 and 3 are both small-sized, yet 2 contains only highly
concrete words which is not true for 3. When RCA terminates,
a last FCA task is launched to generate the association rules
from the final and extended contexts.

B. Model
As presented, RCA allows association rules extraction on

a ×-table dataset. Therefore, dictionaries and words attributes
need to be discretized into categorical attributes to enable the
use of this method. For example, we can observe in Table V the
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TABLE V. EXAMPLE OF DISCRETIZATION FOR THE numVGRAPH
CHARACTERISTIC: Seed: SEED WORD USED TO BUILD THE DICTIONNARY,

NbDicts: NUMBER OF DICTIONARIES BUILT USING THE SEED WORD,
Lo/Med/Hi UPPER/LOWER LIMITS USED TO ESTABLISH THE CATEGORY

Seed NbDicts Lo Med Hi

clock 47 [39, 71] [72, 111] [112, 433]
horse 24 [40, 107] [108, 136] [137, 407]

person 13 [40, 108] [109, 158] [159, 243]
thing 10 [35, 103] [104, 162] [163, 288]

TABLE VI. DISCRETIZATION OF PSYCHOLINGUISTIC VARIABLES

Words

Property Range Category

AOAB [2.3, 6.6] young
[6.7, 9.2] middle
[9.3, 16.2] older

AOAC [1.3, 3.74] young
[3.75, 4.70] middle
[4.71, 11.0] older

CONC [1.1, 2.3] lo
[2.4, 3.6] med
[3.7, 5.0] hi

FREQP [0.02, 3.56] lo
[3.57, 25.52] med
[25.53, 6161.41] hi

FREQL [0, 1] Q1
[2, 3] Q2
[4, 8] Q3
[9, 87] Q4

minimum and maximum values for discrete categories for the
numV property which equates to the number of vertices. For
the clock seed word, the dictionaries whose numV is less than
72 are assigned to category lo, to category med if it is 72 or
more but less than 111, and to category hi if it is 112 or more.
We proceeded in a similar manner to subdivide the words
into categories according to the value of their psycholinguistic
properties, as shown in Table VI.

Using this discretization, we designed an RCF such as the
one presented in Figure 3. The words formal context describes
the words present in at least one of the dictionary with the
discretized attributes presented in Table VI. The dict formal
context describes the dictionaries using the seed words and
the discretization, as shown in Table V, of every structural
variable presented in Table II. Along with these two contexts,
we use the relations contains (ct) that specify which words a
dictionary contains and the inverse relation in that indicates in
which dictionary a word is. An excerpt is presented in Figure 2.

To highlight special word classes, the relation in is scaled
with the propositionnalization operator ∀∃. A word hav-
ing an attribute ∀∃in : (Y ) can be interpreted as being
used exclusively in dictionaries presenting all the features
of Y . On the other side, the relation the relation in is
scaled with the propositionnalization operators ∩≥p% for
p ∈ {40, 50, 60, 70, 80, 90, 100}. A dictionary having an at-
tribute ∩≥p% can be interpreted as being composed of at

dict words
in

ct

Figure 3. RCF schema used in our experiment

TABLE VII. SOME ASSOCIATION RULES PRODUCED BY THE RCF OF
FIGURE 3

# Antecedent Consequent Antecedent Rule Confidence
Support Support

1 ∩≥60% ct : FrL(q4) ∀∃ ct : (>) 65% 65% 100%
2 ∀∃ ct : (>) ∩≥40% ct : FrL(q4) 100% 96% 96%

3 numV(lo) ∩≥60% ct : FrL(q4) 35% 27% 79%
4 numV(lo) dens(hi) 35% 29% 84%
5 dens(hi) numV(lo) 32% 30% 93%

6 dens(lo) numV(hi) 35% 31% 88%
7 numV(hi) ∩≥40% ct : FrL(q4) 33% 31% 94%

8 lSCC(lo) ∩≥50% ct : FrL(q4) 35% 35% 100%
9 lSCC(lo) ∩≥60% ct : FrL(q4) 35% 27% 79%
10 lSCC(lo) numV(lo) 35% 32% 94%

11 ∀∃in : (numV(hi)) FrL(q1) 37% 27% 76%
12 FrL(q1) ∀∃in : (numV(hi)) 47% 28% 59%
13 ∀∃in : (numV(lo)) FrL(q1) 6.5% 6.2% 94%
14 FrL(q1) ∀∃in : (numV(lo)) 47% 6% 13%

least p% words presenting all the features of Y . Note that
∩≥100% = ∀∃. This choice is done because a granularity of 0.1
seems sufficient and below 40% an attribute does not present
relevant information (characterizing a dictionary that has at
least one word learned at young age does not bring substantial
information).

C. Results
We now present the result of our experiment. They are

summarized by association rules extracted by RCA.
Based on RCA’s results after one iteration, we discovered

interesting rules on the words (24 954 rules) as well as on the
dictionaries (206 476 rules). Some of these rules are presented
in Table VII. The rules are indexed in the first column. Other
columns are described at the beginning of subsection V-A.

It is worth mentioning that we focused our rules extraction
on the those related to the size of the dictionary (numV). Rules
found in Table VII can be interpreted as follows:

#1 65% of the dictionaries contain more than 60% of words
frequently used by the players (FrL(q4)).

#2 96% of the dictionaries contain more than 40% of fre-
quently used words (FrL(q4))

Already, those two first rules suggest that players tend to
use a significant set of common words.

#3 79% of the small dictionaries (numV(lo)) contain more than
60% of frequently used words (FrL(q4)).

#4 85% of small dictionaries (numV(lo)) are dense (dens(hi)).
#5 93% of dense (dens(hi)) dictionaries are small (numV(lo)).

On one hand, these three rules show that, among the dense
dictionaries, the probability of having 60% of frequent word
(FrL(q4)) increase when compared to the same probability for
all dictionaries (79% against 65%). Moreover, there is a strong
correlation between small and dense dictionaries.

#6 88% of sparse dictionaries (dens(lo)) are large (numV(hi))
and contain more than 60% words frequently used
(FrL(q4)).
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#7 94% of large dictionaries (numV(hi)) contain more than
40% of frequently used words (FrL(q4)).

Conversely, large dictionaries are sparse. Moreover, since
there is no rule of the form numV(hi)→ ∩>50% ct : FrL(q4) is
produced, we can state that 94% of large dictionaries contain
more than 40% , but less than 50% of frequent words.
#8 All dictionaries having a small largest SCC (lSCC(lo)) have

at least half of their words frequently used (FrL(q4)).
#9 79% of dictionaries having a small largest SCC (lSCC(lo))

have at least 60% of words frequently used (FrL(q4)).
#10 94% of dictionaries having a small largest SCC (lSCC(lo))

are small (numV(lo)).
Roughly speaking, a small largest SCC signifies that used

words are more frequent and smaller.
#11 76% of words used only in large dictionaries (numV(hi))

are unfrequent (FrL(lo)).
#12 59% of rarely used words (FrL(lo)) are exclusively used

in large dictionaries (numV(hi)).
#13 94% of words used exclusively in small dictionaries

(numV(lo)) are unfrequent.
#14 13% of words unfrequent (FrL(lo)) words are exclusively

used in small dictionaries (numV(lo)).
Hence, words exclusive to large dictionaries are unfrequent,

and so are those exclusive to small dictionaries. However,
unfrequent words are more characteristic to large dictionaries.

VI. DISCUSSION AND CONCLUDING REMARKS

From those observations, it seems that the following latent
scenario is followed. For a given seed word, there are ideal
sets of words that should be chosen. These ideal sets form a
dictionary by minimizing the number of words, by exploiting
a stronger density and, in particular, the density of the largest
strongly connected component. However, players sometimes
have difficulty to formulate those more complex definitions,
and then diverge from these ideal sets of words. Two ten-
dencies seem to prevail. In most of the cases, when a player
hesitates over a definition, this definition loses concision and
several definitions must be produced to compensate. There is
no special reason to expect these divergences on the same
words for different players. Words exclusive to small dictio-
naries suggest the existence of another answer from the players
when facing more complex definitions: the players fall back
on synonymy (see Figure 1) to avoid providing a complete and
unambiguous definition.

One surprising discovery we made in the experiment was
the absence of significant association rules related to the
two other psycholinguistic variables (age of acquisition and
concreteness). Almost all extracted rules have either weak
antecedent support or weak rule support. It is also important
to mention some limits of our experiments. First, the variable
numV seems to be a rough and convenient statistic to measure
the quality of a strategy for the dictionary game. However, it
does not take into account the concision, the precision and the
pertinence of the definitions. Moreover, the seed word seems
to play a significant role in the observations. Consequently, in
a future experiment, we intend to normalize the frequencies
with respect to their seed words. In the same spirit, we plan
to verify if the seed word is, by itself, important, or if it is
only its psycholinguistic category that impacts the dictionary
structure.
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