
A Framework for Tutoring Computational Thinking:

Learning Environment and Task Analysis

Kazuhisa Miwa

Graduate School of Information Science
Nagoya University

Nagoya, Japan 464-8601
e-mail: miwa@is.nagoya-ua.jp

Kazuaki Kojima

Learning Technology Lab.
Teikyo University

Utsunomiya, Japan 320-8551
e-mail: kojima@lt-lab.teikyo-u.ac.jp

Abstract—Computational thinking refers to thinking like a com-
puter scientist. In this paper, we posit an approach of class
design to train general university students in computational
thinking. In our class practice, we let participants build a rule-
based model to solve the following problem: There is a robot
in a room with a banana and a box. Build a model with the
knowledge to be given to the robot in order to make the robot
get the banana. Computational thinking has four functions:
decomposition, pattern recognition, abstraction, and algorithm
(procedure). We discuss the participants’ engagement to solve
this problem and the four functions of computational thinking.

Keywords - Computational Thinking; Cognitive Modeling; Tu-
toring

I. INTRODUCTION
Computational thinking refers to thinking like a computer

scientist. In fact, computational thinking has great influence not
only in the natural sciences of physics, chemistry, biology, but
also in psychology, economics, literature, and psychiatry. The
stage of the activity of computer scientists is now spreading
in broad area.

Computational thinking is not reserved only for experts in
these areas, but rather is applicable for anyone who engages in
problem solving. In this respect, various efforts to implement
computational thinking training in education should be em-
phasized. Above all, many attempts to develop computational
thinking in the context of problem-solving education have been
made in K-12 education [1][2].

In this paper, we posit an approach to including com-
putational thinking training into the curriculum for general
university students. In fact, in her paper on computational
thinking, Jeannette M. Wing insists that professors of computer
science should teach university freshmen subjects such as“ a
way to think like a computer scientist” in the department of
computer science but also to other areas of study [3].

We have developed a framework called “ Learning by
Building Cognitive Models” in which general university
students build rule-based cognitive models [4]-[7]. We devel-
oped a production system architecture for education, DoCoPro
(Production system for anytime and anywhere), as learning
environment for that purpose [8][9].

The first learning effect obtained there is the promotion
of theory-based thought, which tries to understand the data
in relation to the theory. For many university students, it is

easy to explain data descriptively, but difficult to interpret
data on a theoretical basis. As such, there is a gap between
the data and the theory. A model is built by refining the
theory, while predicting the data. That is, a model has the
function of bridging theory and data. Based on this perspective,
building a model to explain the data will promote activities to
theoretically interpret the data [10].

The second learning effect is the refinement of the mental
model and the improvement of mental simulation [11]. When
behavior is observed, it is difficult to infer the mental model
behind it. In our approach, when the result of calculation
including error was observed, it was requested to identify the
mental model behind it, i.e., the bug model. In doing so,
participants were required to create a cognitive model that
simulates the behavior (the result of the calculation including
the error). By creating a cognitive model, participants can
more clearly understand bugs that cause errors in cognitive
procedures. In addition, using the mental model, simulating
error generation becomes possible [12].

These efforts support that Learning by Building Cognitive
Models can be used as a learning framework for fostering
computational thinking. Based on this insight, this paper
examines the following:

• In DoCoPro as learning environment, we propose
an available learning task for fostering computational
thinking.

• We examine that the proposed learning task is useful
for fostering computational thinking based on the task
analysis.

In Section 2, we indicate four core functions of computa-
tional thinking. In Section 3, we introduce a task and learning
environment to test our approach. In Section 4, we discuss how
computational thinking is specified in the task referring to the
definition of computational thinking in this paper. Section 5 is
our conclusions.

II. FOUR ELLEMENTS OF COMPUTATIONAL
THINKING

Jeannette M. Wing posits that thinking like a computer
scientist means more than just being able to program a
computer, which requires multiple levels of abstract thought
[3]. Computational thinking has several definitions; however,

52Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications



computational thinking is consistently said to have the follow-
ing four functions [13].

1) Decomposition
Disassemble complex problems so they can be
solved.

2) Pattern Recognition
To see periodicity and law.

3) Abstraction
Cut out branches and leaves and extract only impor-
tant elements.

4) Algorithm (Procedure)
Step by step, to clarify the problem-solving proce-
dure.

We test if participants engage in cognitive activities with
the four functions in our class practice.

III. TASK AND LEARNING ENVIRONMENT

We assessed whether participants engaged in cognitive
activities using the four functions in our class practice.

In our class practice, we requested that participants build
a rule-based model to solve the following problem. There is a
robot in a room with a banana and a box (Figure 1). Build a
model with the knowledge to be given to the robot to retrieve
the banana (Figure 2). In order to retrieve the banana, move the
robot to the same place as the banana. The robot can move to
a high place by standing on the box. The robot can also move
the box.

Figure 1. Initial state (stage (a))

Figure 2. Goal state (stage (b))

DoCoPro was used as learning environment for building
models. Below is a screenshot of DoCoPro (Figure 3). Rep-
resentations of the states observed during the problem-solving
processes are shown in the working memory in the left frame.
The students created their models by editing rules in the editor
in the right frames and simulating and evaluating problem-
solving processes by executing the models with the controller
in the upper frame.

Figure 3. An example screenshot of DoCoPro as learning environment

The participants confirm that the robot can grasp the banana
properly from this initial condition according to the model that
they create.

Subsequently, the participants address the following prob-
lems in the next learning stage. The participants are presented
with the scenario (as four new initial stages (c) to (f)) presented
in Figure 4. If the conditions and operations are successfully
set, the model can reach the goal state and stop even from any
of the four newly presented initial states, or the model will be
improved for reaching the goal.

IV. TASK ANALYSIS
Next, we discuss the participants’ engagement in solving

this problem and the four functions of computational thinking.

A. Decomposition
In order for the robot to acquire the banana, the participants

are required to break down and assess the problem. To reach
the target state (Figure 2) from the initial state (Figure 1),
this problem is typically decomposed into the following four
sub-problems.

• The robot moves toward the box.
• The robot moves the box under the banana.
• The robot stands on the box.
• The robot retrieves the banana.

B. Pattern recognition
See the initial stages (a) and (d). The initial knowledge for

each situation is as follows.
Rule for (a):

53Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications



Figure 4. Four initial stages for model expansion: (c), (d), (e), and (f)

IF

Position of robot is RIGHT

Position of box is CENTER

THEN

Move robot to CENTER

Rule for (d):
IF

Position of robot is LEFT

Position of box is CENTER

THEN

Move robot to CENTER

If the participants can find the commonality of this knowl-
edge, the following rule is drawn:

Rule for (a) and (d):
IF

Positions of robot and box are
different

THEN

Move robot to the position of box

C. Abstraction
The level of abstraction is represented in the if-clause of

each rule. For example, the above rule for (a) and (d) is too
abstract because it fires at the condition of the initial state (f),
even though it should not because the robot does not need to
go up on the box because the banana is on the floor. On the
other hand, the above rules for (a) and (d) are too specific.

The adequate rule is as follows:
IF

Positions of robot and box are
different

Banana hangs from the ceiling

THEN

Move robot to the position of box

D. Automation
The crucial nature of our practice is that models are built

as computer programs in DoCoPro. The participants can test if
the model behaves as expected. The participants can improve
the model while observing the behaviors of the model.

V. CONCLUSION

In this paper, we examined our learning framework to
foster computational thinking for university students. We have
established an educational production system architecture, Do-
CoPro, as learning environment. Our task analysis based on
the four functions of computational thinking implies that our
framework expect to work well for the educational setting.

The primary objective of this paper is to establish the
foundation of our approach by formalizing the functions of
computational thinking and analyzing the training task used in
our approach. Additionally, we have begun to make an initial
challenge for examining the utility of our framework through
class practices.

We performed a preliminary class practice for evaluating
our learning framework. The results indicated that the rules
described in the pretests omitted many conditions in the
pretests, whereas the presence of the conditions improved in
the posttest. More detailed results were found in Kojima and
Miwa, 2018 [14].

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 18H05320 and 15H02717.

54Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications



VI. APPENDIX

Our production system, DoCoPro, is a specific notation of
stages and rules. The following is the specific description of
the two stages (a) and (b) seen in Figures 1 and 2.

Initial State (a) in Figure 1:
(Robot DOOR LOW)

(Box WINDOW LOW)

(Banana CENTER HIGH)

Goal State (b) in Figure 2:
(Robot CENTER HIGH)

(Box CENTER LOW)

(Banana CENTER HIGH)

The following is an example complete set of rules for
solving the task. When the set of rules is applied to the initial
stage (a): the robot moves to the box located in the window
side by rule 1, the robot moves to the center of the room with
the box by rule 2, the robot goes up to the box by rule 3,
and the robot grasps the banana by rule 4. Through the above
process, the goal state (b) is reached.

- name: Robot moves

if:

- (Robot ?x LOW)

- (Box ?y LOW)

- (Banana ?z HIGH)

- (*test-not-equal ?x ?y)

then:

- (*delete (Robot ?x LOW))

- (*deposit (Robot ?y LOW))

- name: Move box

if:

- (Robot ?x LOW)

- (?z ?x LOW)

- (Banana ?y HIGH)

- (*test-not-equal ?x ?y)

then:

- (*delete (Robot ?x LOW))

- (*deposit (Robot ?y LOW))

- (*delete (?z ?x LOW))

- (*deposit (?z ?y LOW))

- name: Ride on box

if:

- (Robot ?x LOW)

- (Box ?x LOW)

- (Banana ?x HIGH)

then:

- (*delete (Robot ?x LOW))

- (*deposit (Robot ?x HIGH))

- name: Getting banana

if:

- (Robot ?y ?z)

- (Banana ?y ?z)

- (Hand EMPTY)

then:

- (*delete (Hand EMPTY))

- (*deposit (Hand Banana))

REFERENCES
[1] A. Yadav, C. Mayfield, N. Zhou, S. Hambrusch, and J. T.

Korb, “Computational thinking in elementary and secondary teacher
education,” Trans. Comput. Educ., vol. 14, no. 1, Mar. 2014, pp.
5:1–5:16. [Online]. Available: http://doi.acm.org/10.1145/2576872

[2] S. Grover and R. Pea, “Computational thinking in k-12: A review of
the state of the field,” Educational Researcher, vol. 42, no. 1, 2013, pp.
38–43.

[3] J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, 2006, pp. 33–35.

[4] K. Miwa, “A cognitive simulator for learning the nature of human
problem solving,” Journal of Japanese Society for Artificial Intelligence,
vol. 23, no. 6, 2008, pp. 374–383.

[5] K. Miwa, J. Morita, R. Nakaike, and H. Terai, “Learning through in-
termediate problems in creating cognitive models.” Interactive Learning
Environments, vol. 22, 2014, pp. 326–350.

[6] K. Miwa and K. Terai, H.and Shibayama, “Understanding procedural
knowledge for solving arithmetic task by externalization,” in Proceed-
ings of ITS 2016, ser. LNCS, vol. 9684, 2016, pp. 3–12.

[7] K. Miwa and H. Terai, “Learning by building cognitive models that
reflect cognitive information processing: A preliminary class exercise,”
in Proceedings of the ninth International Conference on Advanced
Cognitive Technologies and Applications (Cognitive 2017), 2017, pp.
50–53.

[8] R. Nakaike, K. Miwa, J. Morita, and H. Terai, “Development and
evaluation of a web-based production system for learning anywhere,” in
Proceedings of 17th international conference on computers in education,
2009, pp. 127–131.

[9] K. Miwa, R. Nakaike, J. Morita, and H. Terai, “Development of
production system for anywhere and class practice,” in Proceedings of
the 14th International Conference of Artificial Intelligence in Education,
2009, pp. 91–99.

[10] H. Saito, K. Miwa, N. Kanzaki, H. Terai, K. Kojima, R. Nakaike, and
J. Morita, “Educational practice for interpretation of experimental data
based on a theory,” in Proceedings of 21th international conference on
computers in education, 2013, pp. 234–239.

[11] K. Miwa, J. Morita, H. Terai, N. Kanzaki, K. Kojima, R. Nakaike, and
H. Saito, “Use of a cognitive simulator to enhance students’ mental
simulation activities,” in Proceedings of ITS 2014, ser. LNCS, vol. 8474,
2014, pp. 398–403.

[12] K. Miwa, N. Kanzaki, H. Terai, K. Kojima, R. Nakaike, J. Morita, and
H. Saito, “Learning mental models on human cognitive processing by
creating cognitive models,” in Proceedings of AIED 2015, ser. LNCS,
vol. 9112, 2015, pp. 287–296.

[13] J. Krauss and K. Prottsman, Computational Thinking and Coding for
Every Student The Teacher’s Getting-Started Guide. CORWIN: A
SAGE Company, 2017.

[14] K. Kojima and K. Miwa, “Preliminary study on fostering computational
thinking by constructing a cognitive model,” in Workshop Proceedings:
26th International Conference on Computers in Education, 2018, pp.
272–277.

55Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-705-4

COGNITIVE 2019 : The Eleventh International Conference on Advanced Cognitive Technologies and Applications


