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Abstract—The linear assignment problem is a fundamental com-
binatorial problem and a classical linear programming problem.
It consists of assigning agents to tasks on a one-to-one basis,
while minimizing the total assignment cost. The assignment
problem appears recurrently in major applications involving
optimal decision-making. However, the use of classical solving
methods for large size problems is increasingly prohibitive, as it
requires high computation and processing cost. In this paper, a
biologically inspired algorithm using an artificial neural network
(ANN) is proposed. The artificial neural network model involved
in this contribution is a sparse clustered neural network (SCN),
which is a generalization of the Palm-Wilshaw neural network.
The presented algorithm provides a lower complexity compared
to the classically used Hungarian algorithm and allows parallel
computation at the cost of a fair approximation of the optimal
assignment. Illustrative applications through practical examples
are given for analysis and evaluation purpose.

Keywords–assignment problem, artificial neural network, hun-
garian algorithm.

I. INTRODUCTION

Assignment problems are essential among problems in-
volving linear optimization as they are needed in various
fields and applications that involve assigning machines to
tasks, students to groups, jobs to workers, and so on. The
aim is to find the optimum assignment that minimizes the
total cost or maximizes the global benefit. Moreover, many
seemingly different linear optimization problems can be solved
as assignment problems by an accurate transformation [1]. In
addition, the linear assignment problem occurs usually as a
subproblem of more complex problems, such as the traveling
salesman problem [2].

In addition to its theoretical importance, the assignment
problem is applied in many areas ranging from military appli-
cations, such as the well-known weapon to target assignment
(WTA) aiming to maximize the total expected damage done
to the opponent, to economic-industry applications such as
finding the optimal shipping schedule minimizing the shipment
cost. Over the last few years, the linear assignment problem has
received a particular attention in robotics and control theory
due to applications involving task or target allocation [3].

Many algorithms have been proposed to solve this problem,
most of them are based on an iterative improvement of a given
global cost function [4] while the so-called Kunh Hungarian
algorithm [5] was the first algorithm especially designed to
solve the assignment problem given a polynomial complexity.

However, high-performance processing is needed for many
of its applications, in addition to an increasing need of parallel
computing. Recently, contributions have been made to accel-
erate the Hungarian algorithm with an efficient parallelization
using the GPUs [6]. Thus, it is worth to explore more effi-
cient methods, targeting a reduced complexity and distributed
computation.

In this paper, a biologically inspired algorithm using an
artificial neural network is proposed. The artificial neural
network model involved in this contribution is adapted from
the SCN designed by Gripon and Berrou in [7], which is
a generalization of the Palm-Wilshaw neural network [8].
This algorithm has been explored for the similar Feature
Correspondence problem in [9], which can be viewed, just
as the assignment problem, as a graph matching problem.

The proposed algorithm provides a lower computation
complexity compared to the classical Hungarian algorithm and
allows parallel computation at the cost of a fair approximation
of the optimal assignment. However, we do not pretend provid-
ing a complete solving algorithm. We hope that our approach
will be a step forward for further research seeking biologically
inspired algorithms.

This paper is organized as follows. Section II gives a brief
description of the assignment problem and its combinational
and mathematical formulation. Then, the Hungarian algorithm
is described. Section III presents and analyses the proposed
SCN algorithm. Section IV provides three examples of ap-
plication of the assignment problem using both algorithms.
Section V concludes the paper.

II. ASSIGNMENT PROBLEMS AND THE HUNGARIAN
ALGORITHM

A. Assignment problems
Assignment problems describe situations where we have

to find an optimal way to assign n agents to n tasks. They
consist of two components: the assignment as an underlying
combinatorial structure and an objective function modeling the
“optimal way”.

Assume for example that we have n tasks (j = 1, 2, ..., n)
that need to be executed by n machines (i = 1, 2, ..., n). The
ith machine has a different performance regarding the jth task,
for instance, the time required to perform a task depends on
the machine which is assigned to it. Thus, a rating (or cost
cij) is given to each machine-task assignment.

An optimal assignment is one which makes the sum of the
costs (e.g., execution time) a minimum. There are n! possible
assignments. This corresponds to a permutation φ of a set
N = {1, 2, ..., n}. So, a straightforward method to solve the
assignment problem is to consider all the permutations with
their corresponding cost. But as the computation complexity
increases terribly with n, it is not worth to consider it as a
solving method.

There are different ways to model assignment problems
depending on the targeted application. In the following, we
give a mathematical model which represents the assignment
problem by a matrix that we will call the cost matrix.

The following mathematical description is adopted from
[10]. Mathematically an assignment is a bijective mapping of
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a finite set into itself, i.e., a permutation. Assignments can be
modeled and visualized in different ways: every permutation
φ of the set N ∈ {1, ..., n} corresponds in a unique way to
a permutation matrix Xφ = (xij) with xij = 1 for j = φ(i)
and xij = 0 for j 6= φ(i). We can view this matrix Xφ as
adjacency matrix of a bipartite graph Gφ = (V, V ′;E), where
the node sets V and V ′ have n nodes, i.e., |V | = |V ′| = n, and
there is an edge (i, j) ∈ E if j = φ(i). Thus, the assignment
problem can be formulated as a graph matching problem, as
shown in Figure 1, in this case n = 4.

1 Assignments

Assignment problems deal with the question how to assign n items (e.g. jobs) to n machines
(or workers) in the best possible way. They consist of two components: the assignment as
underlying combinatorial structure and an objective function modeling the ”best way”.

Mathematically an assignment is nothing else than a bijective mapping of a finite set
into itself, i.e., a permutation. Assignments can be modeled and visualized in different
ways: every permutation φ of the set N = {1, . . . , n} corresponds in a unique way to a
permutation matrix Xφ = (xij) with xij = 1 for j = φ(i) and xij = 0 for j ̸= φ(i). We can
view this matrix Xφ as adjacency matrix of a bipartite graph Gφ = (V,W ;E), where the
vertex sets V and W have n vertices, i.e., |V | = |W | = n, and there is an edge (i, j) ∈ E iff
j = φ(i), cf. Fig. 1.

φ =

(
1 2 3 4
3 2 4 1

)

Xφ =

⎛
⎜⎜⎜⎝

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟⎠

4

1

2

3

4

1

2

3

Figure 1: Different representations of assignments

The set of all assignments of n items will be denoted by Sn and has n! elements. We
can describe this set by the following equations called assignment constraints

n∑

i=1

xij = 1 for all j = 1, . . . , n

n∑

j=1

xij = 1 for all i = 1, . . . , n (1)

xij ∈ {0, 1} for all i, j = 1, . . . , n

Let A be the coefficient matrix of the system of equations (1). Matrix A is totally unimodu-
lar , i.e., every square submatrix of A has a determinant of value +1, −1 or 0. By replacing
the conditions xij ∈ {0, 1} by xij ≥ 0 in (1), we get a doubly stochastic matrix . The set of
all doubly stochastic matrices forms the assignment polytope PA. Due to a famous result
of Birkhoff [36], the assignment polytope PA is the convex hull of all assignments:

Theorem 1.1 (Birkhoff [36], 1946)
The vertices of the assignment polytope correspond uniquely to permutation matrices.

Differently said every doubly stochastic matrix can be written as convex combination of
permutation matrices. Further properties of the assignment polytope are summarized in
the following theorem:

Theorem 1.2 (Balinski and Russakoff [22], 1974)
Let PA be the assignment polytope for assignments on a set N with n elements. Then

3

Figure 1. Different representations of assignments.

Thus, we can model the problem as follows: let cij be the
cost (performance rating). A set of elements of a matrix are
said to be independent if no two of them lie in the same line
(the word “line” applies both to the rows and to the columns
of a matrix). The goal is to choose a set of n independent
elements of the cost matrix C = (cij) so that the sum for these
elements is maximum or minimum depending on whether it’s a
maximization or minimization problem. We assume, for this,
model that the elements of C are integers. The sum of the
assigned elements of C in the final assignment is its cost. So,
the assignment permutation matrix Xφ is constituted by 1 in
the independent assigned elements (in C) and zeros elsewhere.

The assignment problem can be expressed as the minimiza-
tion of an objective function z(X):

minimize z(X) =

N∑

i=1

N∑

j=1

cijxij (1)

This minimization is subject to the assignment constraints:

n∑

i=1

xij = 1 for j = 1, ..., n

n∑

j=1

xij = 1 for i = 1, ..., n

xij ∈ {0, 1} for all i, j = 1, ..., n

(2)

If the cost matrix is not a square matrix, which means that
the two graphs to match don’t have the same number of nodes,
we can simply wrap the matrix with the needed number rows
or columns of its maximum value (minimization problem) or
minimum value (maximization problem). This is equivalent
to assigning a worker to a fictive job for which we suppose
a performance that doesn’t influence the global cost. Typical
problems of this type are treated in Section IV.

B. The Hungarian algorithm
The Hungarian algorithm was developed and published in

1955 by Harold Kuhn [11], who gave the name “Hungarian
method” because the algorithm was largely based on the earlier
works of two Hungarian mathematicians: Dnes Knig and Jen
Egervry. James Munkres reviewed the algorithm in 1957 [12]
and observed that it is (strongly) polynomial [3].

The Hungarian method is an algorithm which finds an
optimal assignment for a given cost matrix C. In our case, we
consider the Hungarian algorithm for a minimization problem
where the goal is to find the assignment which minimizes the
cost.

It is worth to mention some of the mathematical founda-
tions on which the Hungarian algorithm is based.

Theorem 1 [13]: If a number is added to or subtracted
from all of the elements of any row or column of a cost matrix
C, then on optimal assignment for the resulting cost matrix is
also an optimal assignment for the original cost matrix.

Theorem 2 [14]: If m is the maximum number of indepen-
dent zero elements merits of a matrix C, then there are m lines
(each line covering a column or a row) which contain all the
zero elements of C.

The algorithm consists of the six steps below. The first
two steps are executed once at the beginning, while Steps 3, 4
and 5 and are repeated until an optimal assignment is found.
Then, step 6 is executed to find this assignment. The input of
the algorithm is an n by n cost matrix C with only positive
elements.

Step 1: Subtract row minimum.
Subtract the lowest element in each row from all the

elements of its row.
Step 2: Subtract column minimum.
Similarly, for each column, subtract the lowest element of

each column from all the elements in that column.
Step 3: Cover all zeros with a minimum number of lines.
Cover all zeros in the resulting matrix using a minimum

number of lines, each line covers one row or one column.
Step 4: Check the number of lines.
If n lines are required, an optimal assignment exist among

the zeros. Go to step 6. If less than n lines are required, return
to Step 3.

Step 5: Create additional zeros.
Find the smallest element that is not covered by a line in

Step 3. Subtract it from all uncovered elements, and add it to
all elements that are covered twice and return to step 3.

Step 6: Find the independent zeros.
Find the n independent zeros in the resulting matrix. The

positions of these independent zeros correspond to the optimal
assignment in the cost matrix.

III. SPARSE CLUSTERED NEURAL NETWORK ALGORITHM

In this section, we describe our ANN model and specify
the details of the assignment problem-solving algorithm it im-
plements. We also study its complexity and accuracy compared
to the classical Hungarian algorithm.
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A. Algorithm description
The neural network we propose for solving assignment

problems is constructed, initially, on the cost matrix C. The
architecture of this network is adapted from the SCN in [7],
which was proposed as a generalization of Palm-Wilshaw
networks [8].

The network grid structure corresponds to the 2D config-
uration of the cost matrix C, this means that each neuron is
initialized to its corresponding value in the cost matrix C.
Neuron values are represented in a matrix Y , as shown in
Figure 2. As in SCNs, we impose a grouping configuration on
the network neurons in the form of clusters; neurons of the
same row are grouped into one cluster, and the same holds
for neurons of the same column. Thus, each neuron belongs
to two clusters as shown in Figure 2. Within each cluster,
a winner-takes-all (WTA) activation constraint is imposed;
only one neuron per cluster can be active at the end of the
network activity with a binary activation level (0 or 1), which
corresponds to the assignment matrix Xφ. However, during the
network activity, and before the network matrix Y reaches its
final state, this constraint is relaxed into a relaxed-winners-
take-all (rWTA) constraint, this constraint is relaxed into a
soft winner-takes-all where the highest value is maintained
and the others are decreased. Thus, we allow the network to
temporarily contain real values. Each neuron is connected to
all the other neurons despite those in the same cluster, no
connections exists between neurons of the same cluster as in
SCNs.

The WTA and rWTA constraints we impose within clusters
are meant to encourage the bijective matching constraint
between the two graphs V and W .

It is worth to mention that the below description of the
algorithm is for a maximization assignment problem. We can
use the exact same method by, for example, multiplying the
starting cost matrix by -1.

The network activity starts by assigning to each neuron its
unary affinity value (yij ← cij). Then, within each row cluster,
every neuron receives the max-pooled propagated activity of
all other neurons to which it connects as shown in Figure 2.

yij	row cluster i	

column cluster j	

Figure 2. The architecture of the proposed
neural network.

This means that each neuron receives the sum of the
maximum values of each row (assuming we are processing
the row clusters) of the sub-matrix constituted by all the
elements of the network matrix despite those containing the

processed value. It is worth noting that the max-pooled activity
is received in parallel for all neurons, as shown in (3).

yt+1
ij ←

∑

k∈A

max
m∈B

(ytkm)

with A = {1, ..., n}\i and B = {1, ..., n}\j
(3)

Where the superscript t denotes the current iteration. The
activity values within this cluster are then normalized to their
maximum. Then, an rWTA operation is applied. This means
that the neurons of the same cluster, despite the maximum
value of the cluster (of index (iCmax, jCmax)), are penalized
using a certain activation function that we note h(.). Thus
this penalization function doesn’t apply to the normalized
maximum, which means that h(1) = 1. The aim of this
penalization is to converge to a certain assignment.

yt+1
ij ← h(ytij)

for (i, j) ∈ {1, ..., n}2\(iCmax, jCmax)
(4)

An iteration is finished when both row clusters and column
clusters are alternatively processed once as up-described. No-
tice that for row clusters, max-pooling and rWTA are applied
row-wise, while they are applied column-wise for column
clusters.

Figure 3. Proposed Sparse Neural Network Algorithm.

Input : Cost matrix C
Output: Assigned matrix Y

1 Y ← C
2 repeat
3 foreach i ∈ {1, ..., Nrows} do
4 foreach j ∈ {1, ..., Ncol} do
5 yt+1

ij ←∑
k∈Amaxm∈B(y

t
km)

6 end
7 end
8 foreach i ∈ {1, ..., Nrows} do
9 foreach j ∈ {1, ..., Ncol} do

10 yt+1
ij ← yt+1

ij /max(yt+1
ik )k∈{1,...,Ncol}

11 yt+1
ij ← h(yt+1

ij )
12 end
13 end
14 foreach j ∈ {1, ..., Ncol} do
15 foreach i ∈ {1, ..., Nrows} do
16 yt+1

ij ←∑
m∈B maxk∈A(y

t
km)

17 end
18 end
19 foreach j ∈ {1, ..., Ncol} do
20 foreach i ∈ {1, ..., Nrows} do
21 yt+1

ij ← yt+1
ij /max(yt+1

kj )k∈{1,...,Nrows}
22 yt+1

ij ← h(yt+1
ij )

23 end
24 end
25 until Y converges OR last iteration attained;

Finally, we obtain a processed matrix with final values of
yij . An activation threshold is applied, where only neurons
with a maximal activation value are kept active (yij ← 1)
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while others are deactivated (yij ← 0). A WTA operation is
then applied within every row and column cluster; if more than
one neuron is active in a given cluster, we choose randomly
one neuron to activate while we deactivate the others in
order to give (at least) a partial assignment, meaning that the
assignment is not complete and some tasks may have not been
assigned to some machines. The obtained partial-assignment
is part of a fair approximation assignment.

B. Algorithm analysis
The main advantage of the proposed method is its lower

complexity compared to the classical Hungarian approach. An-
other advantage is that our approach implements a cooperative
algorithm, meaning at each neuron needs only to know about
the activity of few neighboring neurons, which allows the
algorithm to run in a parallel fashion.

As Munkres has shown in [12], the Hungarian algorithm
solves the assignment problem in O(n3) time and demon-
strated that the final maximum on the number of operations
needed is (11n3 + 12n2 + 31n)/6.

The proposed artificial neural network algorithm attains its
final solution either by converging or after Niter iterations in
O(n2) time. This can be done by implementing it in a slightly
different way from the proposed version. In fact, in order to
avoid the three nested loops when carrying the max-pooling
step, we can first calculate the two maximums of each row
(resp. column) keeping their index, and then process the max-
pooled propagated activity. Considering an operation as one
iteration in the loop, we need n2 operations to calculate the
maximums with their respective index. Then, n2 operations
to process the max-pooled propagated activity. Finally, n2
operations to carry out the penalization. Thus, processing the
rows costs 3n2 and 3n2 for the columns. All this is executed
Niter times. The overall number of operations is

Figure 4 shows the worst-case complexity curves of each
method referenced to the total number of operations.
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Figure 4. Worst-case complexity of the
Hungarian and the proposed algorithms.

However, even though the proposed algorithm enjoys a
O(n2) complexity and a high parallelism level, it gives only
a partial assignment of the overall approximate assignment.

In some cases, the artificial neural network algorithm
gives an exact solution. For example, if the final optimal
assignment corresponds to the maximum value of each row

(or column), respecting the independence constraint, we can
easily notice that the solution is attained by the neural networks
algorithm in one iteration. This because the activity of the most
active neuron increases with the max-pool propagation while
decreasing the activity of the other neurons by penalizing them.
As in this case, every most active neuron is in an independent
cluster, the result is directly obtained.

In a more general case, an interesting way to use the
proposed algorithm is to implement it as a preprocessing before
the Hungarian algorithm. This combined “ANN-Hungarian”
approach, is worth to be considered. In fact, the preprocessing
with the neural network algorithm of a given cost matrix
Cn outputs a partially assigned matrix. This means that we
can remove the assigned rows and columns and process the
resulting partial sub-matrix Cp of size p < n to find the
rest of assignments. The overall resulting assignment Xn is
a fair approximation of the optimal assignment. This approach
is illustrated in Figure 5.

ANN 
algorithm	

Hungarian	
algorithm	Cp	

Cn	 Xn	

Figure 5. The proposed Artificial Neural
Network used as a preprocessing for the

Hungarian algorithm.

An experimental study of the accuracy of this combined
method is shown in Figure 6. It has been made on a normally
distributed matrix of size n = 4 for increasing standard
deviation values, in the context of a maximization assignment
problem. The accuracy is calculated as the ratio between the
optimal cost and the approximate cost given by this combined
approach. The used penalization function h() for the ANN
algorithm is a simple multiplication by a penalization factor
h(x) = 0.5x. In this experiment, we used only one iteration.
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Figure 6. Experimental study of the
proposed model’s accuracy for randomly

generated cost matrix of size n = 4.

From these experimental results, we can confirm that
the approximation of the combined method is worth to be
considered. Especially, for high values matrix because the
gap between values due to the penalization function is more
significant for high values. Thus, the approximation is more
fairly made and the approximate assignment provides a cost
close to the optimal one.
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IV. APPLICATIONS

In this section, three major applications of the assignment
problem are illustrated through practical examples. A compar-
ison is made in each case between the Hungarian algorithm’s
optimal cost and the result obtained by the proposed neural
network approach combined to the Hungarian algorithm.

A. Military application
In military operations, problems in planning and scheduling

often require feasible and close to optimal solutions with
limited computing resources and within very short time pe-
riods [15]. Especially the weapons developed in contemporary
technology give very less chance to defend friendly assets as
enemy forces execute complex saturated attacks. Therefore,
quick and efficient reactions to subsidize these attacks become
very vital to survive in the combat arena. Thus, assigning
the limited resources (own weapons) to the hostile targets to
achieve certain tactical goals [15] becomes an important issue
called as Weapon Target Assignment (WTA) problem.

Nowadays, there are more and more algorithms being ap-
plied in military affairs to design those advanced equipments.
The Hungarian algorithm is also attractive enough to solve the
problems of how to assign tasks to one’s own limited number
of weapons and obtain a maximum gain. For example, the
Hungarian algorithm has already been used for distributing
missions to an array of radars. Each radar in one’s own array
can emit interference signal to interfere each radar in enemy’s
array, but the coefficients of these effects of interference for
different enemy radars are different. So, that it needs to find
the best combination to finish this interfere mission to get a
maximum effect of interference. Thus, this radar assignment
problem is modeled by a graph matching problem and solved
with the Hungarian algorithm. In this case, as quick decisions
have to be made, it can be interesting to consider using the
neural networks proposed algorithm as a more time-efficient
alternative as it allows a lower time complexity and a better
level of parallelism.



0.0384 0.3818 0.0165 0.1033 0.2596 0.2281 0.0229 0.0227
0.0181 0.2689 0.0117 0.0497 0.2818 0.0179 0.1084 0.1450
0.0692 0.2526 0.1153 0.2433 0.1697 0.1013 0.0705 0.0967
0.0261 0.4215 0.1693 0.0953 0.0316 0.0244 0.2169 0.0917
0.0146 0.1314 0.2029 0.1619 0.0863 0.2202 0.1170 0.0242
0.0187 0.3480 0.0282 0.0507 0.3440 0.0011 0.2469 0.1423
0.0459 0.3464 0.1236 0.1844 0.0574 0.1774 0.0493 0.1037
0.0352 0.1748 0.1020 0.0806 0.3111 0.1871 0.0715 0.0585
0.0262 0.2309 0.0026 0.2004 0.2028 0.1989 0.0394 0.0856




(5)

In one case, there are 9 radars in our own side when there
are 8 in enemy’s side to interfere. According to the properties
of each radar, a jamming effective matrix can be built as
the matrix (5). The Hungarian algorithm aims to obtain the
minimum result of the best combination. In our case, we want
to obtain from this jamming effective matrix is the maximum
effect of interference. Thus, the matrix can not be treated by
the Hungarian algorithm directly because the matrix is not a
square matrix and is not adapted for minimization version of
the Hungarian algorithm previously described.

To build the final matrix, the first step is to use the
maximum value 0.4215 and subtract it from all the elements
of the matrix in order to build a new matrix whose size is
9× 8. The matrix needed for a minimization problem is built,
with respect to Theorem 1 in Section II. The second step is
to add a new column whose values are all 0.4215 so that the

in-existent radar won’t change the final result in order to have
a 9× 9 square matrix. The final built cost matrix is:




0.3831 0.0397 0.4050 0.3182 0.1619 0.1934 0.3986 0.3988 0.4215
0.4034 0.1526 0.4098 0.3718 0.1397 0.4036 0.3131 0.2765 0.4215
0.3523 0.1689 0.3062 0.1782 0.2518 0.3202 0.3510 0.3248 0.4215
0.3954 0.0000 0.2522 0.3262 0.3899 0.3971 0.2046 0.3298 0.4215
0.4069 0.2901 0.2186 0.2596 0.3352 0.2013 0.3045 0.3973 0.4215
0.4028 0.0735 0.3933 0.3708 0.0775 0.4204 0.1746 0.2792 0.4215
0.3756 0.0751 0.2979 0.2371 0.3641 0.2441 0.3722 0.3178 0.4215
0.3863 0.2467 0.3195 0.3409 0.1104 0.2344 0.3500 0.3630 0.4215
0.3953 0.1606 0.4189 0.2211 0.2187 0.2226 0.3821 0.3359 0.4215


 (6)

Finally, all of the essential requirements have been met
and the assignment matrix (7) is obtained using the Hungarian
algorithm. From this matrix, it can be found that the 9th radar
in our side is assigned to interfere the additional in-existent
radar. So, that the 9th radar will not participate in this mission.




0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1




(7)

In this example, the optimal cost obtained by the Hungarian
algorithm is 1.8446 and the one obtained by the ANN-
Hungarian combined approach is 1.087, which corresponds to
an accuracy of 59%. This result can be explained by Figure
6. In this case, the mean of the matrix (6) is too low so that
the combined method gives an average accuracy.

B. Express company application
Assignment problems have various economic-industry ap-

plications such as finding the optimal shipping schedule min-
imizing the shipment cost.

The assignment problem is a particular case of the well
known transportation problem which deals with problems
involving several product sources and several destinations of
products. The assignment problem that we consider in this
case is a balanced transportation problem where all supplies
and demands are equal to 1. The cost considered between
sources and destinations is for example the shipment time and
the problem is to assign each source to one destination.

In the following example, we consider an express company
in France which aims to send fast mail to capitals of other
European countries every day through shipment points in
different cities in France. The problem is to assign each
shipment point to a destination in Europe. So, the cost of the
assignment is the time of time of travel between each 2 cities.
The objective is to find the assignment that minimizes this
global cost. A matrix of the transport time between different
cities is built as the cost matrix C as shown in the matrix
(8). Where cij = time from i to j. These values have been
estimated using Google map for illustrative purpose.




70 95 105 70 195 110 120 190 95 135 205 130
90 110 135 100 345 90 115 160 100 245 220 200
95 200 255 115 360 75 100 160 120 265 330 235
75 130 220 95 235 130 95 200 125 270 330 265
90 145 240 105 320 110 75 190 140 285 355 275

110 135 235 110 300 105 80 180 130 280 325 235
105 235 135 120 350 85 245 280 235 270 380 275
215 210 240 95 260 140 105 355 215 280 330 290
190 175 195 75 155 230 140 315 85 235 295 210
100 395 375 235 400 330 305 355 340 410 490 380
90 335 420 255 520 355 350 440 305 455 515 405

115 120 135 120 305 70 115 150 100 175 215 140




(8)

73Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-531-9

COGNITIVE 2017 : The Ninth International Conference on Advanced Cognitive Technologies and Applications



The matrix shows how many minutes are needed
to get to different destinations from different cities.
For each column, the table describe the time
for getting to “London”,“Berlin”, “Copenhagen”,
“Amsterdam”, “Bern”, “Roma”,“Madrid”,“Athens”, “Prague”,
“Stockholm”,“Moscow”,“Warsaw”. And for each rows,
the table shows those principal French cities “Paris”,
“Lyon”, “Marseille”, “Nantes”, “Bordeaux”, “Toulouse”,
“Montpellier”, “Rennes”, “Strasbourg”, “Limoges”, “La
Rochelle” and “Nice”. It can be found that when we need
to send a mail to Bern, the capital of Switzerland, there is
no through-flight so in such a situation, it will be faster to
transport by car. The resulting optimal assignment provided
by the Hungarian algorithm is shown in the following Table:

TABLE I. Optimal assignment

Paris to Stockholm Lyon to Moscow
Marseille to Roma Nantes to Prague
Bordeaux to Amsterdam Toulouse to Berlin

Rennes to Madrid Montpellier to Copenhagen
Strasbourg to Bern La Rochelle to London

Limoges to Athens Nice to Warsaw

The optimal cost obtained for this assignment is 1422.
The cost resulting from the ANN-Hungarian combination is
1582.This corresponds to an accuracy of 90%. In this case,
the combined method offers an acceptable result as the mean of
the matrix (8), which represents the average time of traveling
in minute, is high enough to ensure a fine accuracy.

C. Students to projects assignment
A classical problem in various areas is to assign tasks to

agents. We provide the following example using a real case
situation to illustrate the solving process.

The students of a university, namely Telecom Bretagne,
are asked to make their semester projects preference. Each
student chooses 5 projects from a range of 25 and rank them
from 1 to 5 depending on his preference. There are 108
students and no more than 5 students are assigned to each
project. The goal is to find a combination of students-project
that maximizes the global satisfaction. This means that every
student may not have its first choice, but globally all the
students get a fair project assigned based on their preference.
This situation is modeled by table II where Stu stands for
student and P for project. The data used in this section has
been provided by Telecom Bretagnes project committee.

TABLE II. Choices of students

P1 P2 P3 P4 P5 P6 ... P19 P20 21 22 ... 24 25

Stu 1 ... 4 3 ... 5 ... 2
Stu 2 4 ... 5 2 ... 3 ... 1
Stu 3 5 ... 4 2 1 ... 3 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Stu 108 4 ... 3 ... 1 5 2 ...

This is a typical asymmetric assignment problem, meaning
that the graphs to match are not of the same size and the cost
matrix not a square matrix. We have 108 students to match
with 25 projects. A couple of transformations are needed to
model it as an assignment problem.

A matrix of 108 × 25 is built from Table II to show these
108 students different preferences. For the other projects that
a student did not choose, the matrix needs to be filled with an
integer of a bigger value than 5 in order not to compromise
the preferences and to represent this students unwillingness. In
our experiment, we choose the integer 100. Then, to embody
that each project will be filled with 5 students, the columns
of this matrix needs to be extended. We do this by repeating
each column 5 times building 125 columns. This means that
each project corresponds to 5 students. The size of the matrix
is then 108×125, but as we need a square cost matrix, another
17 inexistent students are added with all preferences set to 100.
Their affectation to a project is considered empty and will not
affect the global assignment. Thus this final 125 × 125 cost
matrix, as shown in the matrix (9) is processed by the solving
algorithms.

(
100 100 100 100 100 ... 2 2 2 2 2 1 1 1 1 1
100 100 100 100 100 ... 1 1 1 1 1 100 100 100 100 100
100 100 100 100 100 ... 100 100 100 100 100 100 100 100 100 100
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

100 100 100 100 100 ... 100 100 100 100 100 100 100 100 100 100

)
(9)

The real assignment made by the university has a cost of
181, which means that the unsatisfactoriness rate is 181 - 108 =
73. The Hungarian algorithm gives a final optimal assignment
with a cost of 146, which means that the unsatisfactoriness
rate is 38. The artificial neural network algorithm combined
with the Hungarian algorithm gives a fair cost of 151 with an
unsatisfactoriness rate of 43. The obtained results correspond
to an accuracy of 96.7%. The ANN-Hungarian works better in
this case because for row 109 to row 125, choices of students
will all be filled with the high value 100 as for row 1 to row
108, only 25 columns represent student’s real choices of each
row will not be 100. So, the mean of the matrix (9) is high
(≈ 814) while the variance (≈ 75) is enough to ensure a high
accuracy. Therefore, ANN-Hungarian method is a good choice
to solve this problem.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach for treating
assignment problems using artificial neural network. We pre-
sented the classical Hungarian algorithm to point the need
for a reduced complexity and parallel computing. The pro-
posed algorithm satisfies these needs at the cost of a partial
assignment solution and a fair approximation of the cost. Even
though the solution might not be complete, it is worth to
consider this approach either for specific cases where final
winners match with the correct assignment or seek to use
it as a preprocessing with the Hungarian algorithm. Finally,
we presented some examples of application of the assignment
problem using both approaches. Further development of our
model will include trying different penalization functions such
as sigmoid functions. We shall also study the theoretical
evolution of the accuracy in order to give a more precise
evaluation of the advantage of using this neural network model
for solving the assignment problem.
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