
A Study of Deep Learning Robustness Against Computation Failures

Jean-Charles Vialatte1,2 and François Leduc-Primeau1

1Electronics Dept., IMT Atlantique, Brest, France
2Cityzen Data, Guipavas, France

emails: {jc.vialatte, francois.leduc-primeau}@imt-atlantique.fr

Abstract—For many types of integrated circuits, accepting
larger failure rates in computations can be used to improve
energy efficiency. We study the performance of faulty imple-
mentations of certain deep neural networks based on pessimistic
and optimistic models of the effect of hardware faults. After
identifying the impact of hyperparameters such as the number
of layers on robustness, we study the ability of the network to
compensate for computational failures through an increase of the
network size. We show that some networks can achieve equivalent
performance under faulty implementations, and quantify the
required increase in computational complexity.

Index Terms—Deep learning; quasi-synchronous circuits;
energy-efficient computing.

I. INTRODUCTION

Deep neural networks achieve excellent performance at
various artificial intelligence tasks, such as speech recognition
[1] and computer vision [2]. Clearly, the usefulness of these
algorithms would be increased significantly if state-of-the-
art accuracy could also be obtained when implemented on
embedded systems operating with reduced energy budgets. In
this context, the energy efficiency of the inference phase is
the most important, since the learning phase can be performed
offline.

To achieve the best energy efficiency, it is desirable to design
specialized hardware for deep learning inference. However,
whereas in the past the energy consumption of integrated
circuits was decreasing steadily with each new integrated
circuit technology, the energy improvements that can be
expected from further shrinking of CMOS circuits is small
[3]. A possible approach to continue improving the energy
efficiency of CMOS circuits is to operate them in the near-
threshold regime, which unfortunately drastically increases the
amount of delay variations in the circuit, which can lead to
functional failures [4]. There is therefore a conflict between
the desire to obtain circuits that operate reliably and that
are energy efficient. In other words, tolerating circuit faults
without degrading performance translates into energy gains.
Neural networks are interesting algorithms to study in this
context, because their ability to process noisy data could also
be useful to compensate for hardware failures. It is interesting
to draw a parallel with another important class of algorithms
that process noisy data: decoders of error-correction codes.
For the case of low-density parity-check codes, it was indeed
shown that a decoder can save energy by operating unreliably
while preserving equivalent performance [5].

Of course, a perhaps more straightforward way to decrease
the energy consumption is to reduce the computational com-
plexity. For example, [6] proposes an approach to decrease the

number of parameters in a deep convolutional neural network
(CNN) while preserving prediction accuracy, and [7] proposes
an approach to replace floating-point operations with much
simpler binary operations while also preserving accuracy. The
approach of this paper is the opposite. We consider increasing
the number of parameters in the model to provide robustness
that can then be traded for energy efficiency. The two aims
are most likely complementary, and the situation is in fact
similar in essence to the problem of data transmission, where
it is in many practical cases asymptotically (in the size of
the transmission) optimal to first compress the data to be
transmitted, and then to add back some redundancy using an
error-correction code.

In this preliminary study, we consider the ability of sim-
ple neural network models to increase their robustness to
computation failures through an increase of the number of
parameters. It was shown previously for an implementation of
a multilayer perceptron (MLP) based on stochastic computing
that it is possible to compensate for a reduced precision by
increasing the size of the network [8]. The impact of hardware
faults on CNNs is also considered in [9] using a different
approach that consists in adding compensation mechanisms in
hardware while keeping the same network size. The deviation
models that we consider in this paper attempt to represent
the case in which computation circuits are not protected
by any compensation mechanism. We consider a pessimistic
model and a more optimistic deviation model, but in both
cases the error is only bounded by the finite codomain of
the computations. We show that despite this, increasing the
size of the network can sometimes compensate for faulty
computations. The results provide an idea of the reduction
in energy that must be obtained by a faulty circuit in order to
reduce the overall energy consumption of the system.

The remainder of this paper is organized as follows. Sec-
tion II provides a quick summary of the neural network models
used in this paper, and Section III presents the methodology
used for selecting hyperparameters of the models and for
training. Section IV then describes the modeling of deviations,
that is of the impact of circuit faults on the computations.
Section V discusses the robustness of the inference based on
simulation results. Finally, Section VI concludes the paper.

II. BACKGROUND AND NAMING CONVENTIONS

A neural network is a neural representation of a function f
that is a composition of layer functions fi. Each layer function
is usually composed of a linear operation followed by a non-
linear one. A dense layer is such that its inputs and outputs are

65Copyright (c) IARIA, 2017. ISBN: 978-1-61208-531-9

COGNITIVE 2017 : The Ninth International Conference on Advanced Cognitive Technologies and Applications

vectors. Its linear part can be written as a matrix multiplication
between an input x and a weight matrix W : x 7→ Wx. The
number of neurons of a dense layer refers to the number of
rows of W . A n-dimensional convolutional layer is such that
its inputs and outputs are tensors of rank n. Its linear part can
be written as a n-dimensional convolution between an input x
and a weight tensor W of rank n+2: x 7→ (

∑
p
Wpq ∗n xp)∀q ,

where p and q index slices at the last ranks and ∗n denotes
the n-dimensional convolution. The tensor slices indexed by
p and q are called feature maps. A pooling operation is often
added to convolutional layers to scale them down.

An MLP [10] is composed only of dense layers. A
CNN [11] is mainly composed of convolutional layers. For
both network types, to perform supervised classification, a
dense output layer with as many neurons as classes is usually
added. Then, the weights are trained according to an optimiza-
tion algorithm based on gradient descent.

III. NEURAL NETWORK MODELS

We consider two types of deep learning models and train
them in the usual way, assuming reliable computations. To
simplify model selection, we place some mild restrictions on
the hyperparameter space, since we are more interested in the
general robustness of the models, rather than in finding models
with the very best accuracy. As described below, we restrict
most layers to have the same number of neurons, and the
same activation function. We also try only one optimisation
algorithm, and consider only one type of weight initialization.

The first model type that we consider is an MLP network
composed of L dense layers, each containing N neurons, that
we denote as MLP–L–N . The activation function used in all
the layers is chosen as the rectified linear unit (reLU) [12].
In fact, since a circuit implementation (and particularly, a
fixed-point circuit implementation) can only represent values
over a finite range, we take this into account in the training
by using a clipped-reLU activation, which adds a saturation
operation on positive outputs. We note that such an activation
function has been used before in a different context, in order
to avoid the problem of diverging gradients in the training
of recurrent networks [13]. The use of the tanh activation
was also considered, but reLU was observed to yield better
accuracy.

The second model type is a CNN network composed of L
convolutional C ×C layers with P ×P pooling of type pool,
ultimately followed by a dense layer of 200 neurons [11].
This class is denoted as CNN–L–C–P–F–pool, where F is
the number of feature maps used in each convolutional layer.
Clipped-reLU activations are used throughout. The type of
pooling pool can be either “max” pooling or no pooling.

For simplicity, we opted to train the networks on the task of
digit classification using the MNIST dataset [14]. In addition
to the layers defined above, each model is terminated by a
dense “softmax” layer used for classification, and containing
one neuron per class. Initialization was done as suggested in
[15]. To prevent overfitting during training, a dropout [16]

of 25% and 50% of the neurons have been applied on
convolutional and dense layers, respectively, except on the first
layer. We used categorical crossentropy as the loss function
and the “adadelta” optimizer [17]. The batch size was 128
and we trained for 15 epochs. The saturation value of the
clipped-reLU activation is chosen as 1 as this provides a good
balance between performance and implementation complexity.
Note that as the range is increased, more bits must be used to
maintain the same precision, leading to larger circuits.

IV. DEVIATION MODELS

We consider that all the computations performed in the in-
ference phase are unreliable, either because they are performed
by unreliable circuits, or because the matrix or tensor W is
stored in an unreliable memory. We do, however, assume that
the softmax operation performed at the end of the classification
layer (i.e. the output layer) is performed reliably. We assume
that each layer is affected by deviations independently, and
that deviations occur independently for each scalar element of
a layer output.

We are interested in circuits with a reasonably low amount
of unreliability, and therefore it is useful to partition the
outcome of a computation in terms of the occurrence or non-
occurrence of a deviation event. We say that a deviation event
occurs if the output of a circuit is different from the output that
would be generated by a fully reliable circuit. The probability
of a deviation event is denoted by p.

Obtaining a precise characterization of the output of a circuit
when timing violations or other circuit faults are possible
requires knowledge of the specific circuit architecture and
of various implementation parameters. We will rely here on
two simplified deviation models. We assume that the circuits
operate on fixed-point values defined over a certain range,
which is motivated by the fact that fixed-point computations
are much simpler than floating-point ones, and reducing circuit
complexity is the obvious first step in trying to improve energy
efficiency. The first deviation model is a pessimistic model that
assumes that when a deviation occurs, the output is sampled
uniformly at random from the finite output domain of that
circuit. We call this deviation model conditionally uniform.
The second model is more optimistic, and assumes that the
occurrence of a deviation can be detected. Therefore, when a
deviation occurs, we replace the output by a “neutral” value,
in this case 0. We call this deviation model the erasure model.

In a synchronous circuit, the deviations can be observed
in the memory elements (registers) that separate the logic
circuits. By changing the placement of these registers, we
can in effect select the point where deviations will be taken
into account. Note however that register placement cannot be
arbitrary, as we also seek to have similar logic depth separating
all registers. When considering the effect of the deviations on
the inference, we noticed that robustness can be increased if
deviations are sampled before the activation function of each
layer. This is not surprising, since these activation functions
act as denoising operations. All simulation results presented in
this paper therefore consider that deviations are sampled before

66Copyright (c) IARIA, 2017. ISBN: 978-1-61208-531-9

COGNITIVE 2017 : The Ninth International Conference on Advanced Cognitive Technologies and Applications

0 1 2 3 4 5

·10−3

1

2

3

4

5

6

·10−2

p

er
ro
r
ra
te

1-layer mlp
2-layer mlp
3-layer mlp
4-layer mlp
5-layer mlp

Fig. 1. Error rate of MLP under conditionally uniform deviations with
prob. p. (Best viewed in color.)

the activation function. In the case of convolutional layers,
the pooling operation is also performed after the sampling of
deviations.

V. RESULTS

A. Effect of some hyperparameters on robustness

Robustness refers to the ability to maintain good classifica-
tion accuracy in the presence of deviations. A model has better
robustness if it achieves a lower classification error at a given
p. We investigated the impact of several hyperparameters on
the robustness of the inference. We evaluated the performance
using the clipped-reLU and tanh activation functions, and
found robustness to be similar in both cases. For CNN models,
we also evaluated the impact of the choice of pooling function.
In this case, we found that using no pooling, rather than
max pooling, provided a slight improvement in robustness.
Finally, we considered the impact of the number of layers L.
The effect of L on classification error is shown in Figure 1
for an MLP-L-N network and in Figure 2 for a CNN-L-
C-P -F -pool for the case where the inference is affected
by conditionally uniform deviations. For each value of L,
we select the 5 best models based on their deviation-free
performance to show the variability of the model optimization.
In the case of MLP models, the number of layers does not
have a clear impact on robustness. However, while the 2-
layer models minimize error under reliable inference, we see
that models with more layers sometimes minimize error when
the deviation probability increases. However, in the case of
CNN models, we can see that increasing the number of layers
usually improves robustness.

B. Fault tolerance

Since neural networks are designed to reject noise in their
input, we might expect them to also be able to reject the
“noise” introduced by faulty computations. We investigate this
ability for networks trained with standard procedures, in order
to provide a baseline for future targeted approaches.

We first choose an error rate target that we want the network
to achieve. We then consider various deviation probability

0 1 2 3 4 5

·10−3

0

2

4

6

8

·10−2

p

er
ro
r
ra
te

1-layer CNN
2-layer CNN
3-layer CNN

Fig. 2. Error rate of CNN under conditionally uniform deviations with
prob. p. (Best viewed in color.)

values, and for each, look for a model with the smallest
number of parameters that can achieve or outperform the
performance target under the deviation constraint. For MLP
networks, the results are shown in Figure 3 for the case
of conditionally uniform deviations, and in Figure 4 for the
case of erasure deviations. Similarly, Figures 5 and 6 show
the results for CNN networks, respectively for conditionally
uniform and erasure deviations.

We consider deviation probabilities on the order of 10−3,
which are already considered quite large for digital circuit
design. We can see that in all cases, there are indeed many
performance targets at which it is possible to compensate
computation failures by increasing the number of parameters
in the model. However, if one wishes to obtain the best
performance achievable by deviation-free inference under con-
ditionally uniform deviations, there is no parameter increase
that can compensate for p ≥ 10−3 within the model sizes that
were considered. On the other hand, all performance targets
can be achieved under erasure deviations.

Finally, we can note that the CNN models are much more
robust than MLP models. For instance, under conditionally
uniform deviations and with an error rate target of 0.024, an
MLP requires a 318% increase in the number of parameters
to tolerate a deviation probability p = 10−3, while a CNN can
achieve an error rate target of 0.023 at p = 10−3 with only a
0.2% increase in the number of parameters.

VI. CONCLUSION

In this paper, we have considered the effect of faulty
computations on the performance of MLP and CNN infer-
ence, using a pessimistic and an optimistic deviation model.
We showed that using standard training procedures, it is in
many cases possible to find models that will compensate for
computation failures, when the deviation probability is on the
order of 10−3 and at the cost of an increase in the number of
parameters. This increase is generally small for CNNs or when
modeling deviations as erasures, but quite large for the case
of MLP models under conditionally uniform deviations. These

67Copyright (c) IARIA, 2017. ISBN: 978-1-61208-531-9

COGNITIVE 2017 : The Ninth International Conference on Advanced Cognitive Technologies and Applications

0 0.5 1 1.5 2

·10−3

0

1

2

3

4
·106

p

n
b
o
f
p
a
ra
m
s

error=0.016
error=0.017
error=0.018
error=0.019
error=0.02
error=0.021
error=0.022
error=0.023
error=0.024
error=0.025
error=0.026
error=0.027
error=0.028
error=0.029
error=0.03

Fig. 3. Number of model parameters needed to achieve error rate target
using MLP under conditionally uniform deviations.

0 1 2 3 4 5

·10−3

0

0.2

0.4

0.6

0.8

1

·106

p

n
b
of

p
ar
am

s

error=0.017
error=0.018
error=0.019
error=0.02
error=0.021
error=0.022
error=0.023
error=0.024
error=0.025
error=0.026
error=0.027
error=0.028
error=0.029
error=0.03
error=0.031

Fig. 4. Number of model parameters needed to achieve error rate target
using MLP under erasure deviations.

results provide a baseline for future work seeking to identify
systematic ways of designing robust deep neural networks.

REFERENCES

[1] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in
english and mandarin,” CoRR, vol. abs/1512.02595, 2015. [Online].
Available: http://arxiv.org/abs/1512.02595

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[3] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: Reclaiming Moore’s law through energy
efficient integrated circuits,” Proc. of the IEEE, vol. 98, no. 2, pp. 253–
266, Feb. 2010.

[4] M. Alioto, “Ultra-low power VLSI circuit design demystified and
explained: A tutorial,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 59, no. 1, pp. 3–29, 2012.

[5] F. Leduc-Primeau, F. R. Kschischang, and W. J. Gross, “Modeling
and energy optimization of LDPC decoder circuits with timing
violations,” CoRR, vol. abs/1503.03880, 2015. [Online]. Available:
http://arxiv.org/abs/1503.03880

[6] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360

[7] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet classification using binary convolutional neural
networks,” CoRR, vol. abs/1603.05279, 2016. [Online]. Available:
http://arxiv.org/abs/1603.05279

0 1 2 3 4 5

·10−3

1.14

1.16

1.18

·105

p

n
b
o
f
p
a
ra
m
s

error=0.007
error=0.011
error=0.015
error=0.019
error=0.023
error=0.027
error=0.031
error=0.035
error=0.039
error=0.043
error=0.047
error=0.051
error=0.055
error=0.059
error=0.063

Fig. 5. Number of model parameters needed to achieve error rate target
using CNN under conditionally uniform deviations.

0 1 2 3 4 5

·10−3

1.17

1.18

1.18

1.19

·105

p

n
b
of

p
ar
am

s

error=0.007
error=0.008
error=0.009
error=0.01
error=0.011
error=0.012
error=0.013
error=0.014
error=0.015
error=0.016
error=0.017
error=0.018
error=0.019
error=0.02
error=0.021

Fig. 6. Number of model parameters needed to achieve error rate target
using CNN under erasure deviations.

[8] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“VLSI implementation of deep neural network using integral stochastic
computing,” IEEE Trans. on VLSI Systems, 2017, to appear.

[9] Y. Lin, S. Zhang, and N. R. Shanbhag, “Variation-tolerant architectures
for convolutional neural networks in the near threshold voltage regime,”
in 2016 IEEE International Workshop on Signal Processing Systems
(SiPS), Oct 2016, pp. 17–22.

[10] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[12] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in International Conference on Artificial Intelligence and
Statistics, 2011, pp. 315–323.

[13] A. Y. Hannun et al., “Deep speech: Scaling up end-to-end speech
recognition,” CoRR, vol. abs/1412.5567, 2014. [Online]. Available:
http://arxiv.org/abs/1412.5567

[14] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of
handwritten digits,” 1998.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International conference on artificial
intelligence and statistics, 2010, pp. 249–256.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[17] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR,
vol. abs/1212.5701, 2012. [Online]. Available: http://arxiv.org/abs/1212.
5701

68Copyright (c) IARIA, 2017. ISBN: 978-1-61208-531-9

COGNITIVE 2017 : The Ninth International Conference on Advanced Cognitive Technologies and Applications

