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Abstract— Brain-computer interfaces (BCI) are paradigms 

that offer an alternative communication channel between 

neural activity generated in the brain and the users’ external 

environment. The aim of this paper is to investigate the 

feasibility of designing and developing a multiclass BCI system 

based on a single limb movement due to the factor, high 

dimensional control channels would expand the capacity of 

BCI application (multidimensional control of neuroprosthesis). 

This paper also proposes a method to identify the optimal 

frequency band and recording channel to achieve the best 

classification result. Twenty eight surface 

electroencephalography (EEG) electrodes are used to record 

brain activity from eleven subjects whilst imagining and 

performing right wrist burst point-to-point movement towards 

multiple directions using a high density montage with 10-10 

electrode placement locations focusing on motor cortex areas. 

Two types of spatial filters namely Common average reference 

(CAR) and Laplacian (LAP) filter have been implemented and 

results are compared to enhance the EEG signal. Features are 

extracted from the filtered signals using event related spectral 

perturbation (ERSP) and power spectrum. Feature vectors are 

classified by k-nearest neighbour (k-NN) and quadratic 

discriminant analysis (QDA) classifiers. The results indicate 

that the majority of the optimum classification results are 

obtained from features extracted from contralateral electrodes 

in the gamma band. Based on  a single trial, the average of the 

classification accuracy using LAP filter and k-NN classifier 

across the subjects in predicting intention and direction of 

movement is  68% and 62% for motor imagery and motor 

performance respectively; which is significantly higher than 

chance. The classification result from the majority of subjects 

shows that, it is possible and achievable to develop multiclass 

BCI systems based on a single limb.  

Keywords - Brain computer interface (BCI) ; wrist 

movement; motor imagery; Electroencephalography (EEG); 

intention of movement. 

 

I.  INTRODUCTION  

A Brain Computer Interface (BCI) system applies and 

decodes the brain signature obtained from an 

electroencephalogram (EEG) signal and translates this 

information into a usable signal such as command signals  

to control and/or communicate with augmentative and 

assistive devices [1]. Implementation of a BCI system in 

assisting neurally impaired patients in controlling an 

orthosis device [2], operating functional electrical 

stimulation (FES) [3] or operating spelling device [4] have 

evidently proven that a BCI system can potentially provide 

alternative communication methods for the neurally 

impaired community in particular locked in patients.  

Despite of recent achievements, most existing BCI 

systems are still under development and constrained by 

limitations. For instance, the current BCI system faces a 

challenge when it comes to equip a system with multiple 

independent control channels [5] due to the low dimensional 

control. BCI systems with low dimensional control only 

manage to recognise a limited number of mental tasks as 

control command [6]. Most current BCI systems are based 

on two-class [27]. 

There a number of approaches to overcome the multi-

dimensional control problem; one such approach is by using 

a combination of mental tasks that involve motor imagery of 

more than one limb, e.g., left hand, right hand, left foot and 

right foot [7].  Although this approach increases the control 

dimensionality, but it could be challenging to neurally 

impaired patients as they have limited access/control over 

their limbs and their brain signatures are affected by 

deafferentation and cortical reorganisation of brain regions 

which depend on the duration, level and type of disease [8]. 
The primary goal of this study is to explore the feasibility 

of designing and developing a four-class BCI system based 
on the movement of a single limb; namely the movement of 
the right wrist. The wrist movements are burst point-to-point 
centre-out movements comprising of extension (toward 
direction 3 o’clock), flexion (toward direction 9 o’clock), 
ulnar (toward direction 6 o’clock) and radial (toward 
direction 12 o’clock). This study also investigates the 
optimum frequency band and recording channels across the 
participating subjects that contribute to the highest 
classification accuracy in a motor performance                            
(including motor imagery) paradigm. 
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The rest of the paper is structured as follow: Section II 

describes the implemented experiment protocol and data 

analysis procedure. Sections III presents the results of the 

experiment and section IV elaborates the discussion on 

presented results. The paper end with a conclusion of the 

findings in section V. 

 

II. METHODS 

The set-up of the experiment, data acquisition and the 
data analysis will be explained in this session. 

A. Experimental Setup  

Surface EEG signals were recorded from 11 subjects (9 
males). All subjects had no history of neurologic disease and 
with 20/20 vision or corrected vision. Subjects were 
postgraduate students of the University of Strathclyde with 
average age of 28.91 years.  All subjects have given their 
informed consent.  

The experimental procedure was approved by the 
Departmental Ethics Committee of the Biomedical 
Engineering Department of the University of Strathclyde. 

Each subject was comfortably seated on a wheelchair 

facing a LCD monitor at a distance of 1 meter from the 

screen. As it can be seen in Figure 1 that    a manipulandum 

placed on the right side of the wheelchair, which allows the 

movement of the wrist in multi-direction. During the data 

recording process, subjects were required to hold the 

manipulandum and attempt, perform and imagine 

(kinesthetic imagery) performing right wrist burst, point to 

point center out movement towards four directions (3, 6 , 9 

and 12 o'clock) triggered by a visual cue showing the target 

direction on the monitor. On reaching the target position, 

subjects had to hold the manipulandum for as long as the 

cue remained visible on the screen and later reposition the 

manipulandum to the neutral position (0) according to the 

cue. While in the neutral position, subjects were instructed 

to stay calm and relaxed. 
The participating subjects manage to complete all trials 

for motor imagery and motor performance. Each experiment 
comprised of trials of both motor imagery and motor 
performance towards four different directions, establishing 
50 repetitions per direction. 

 

 
Figure 1. Experimental Recording Set Up 

Figure 1 shows the implemented set up during recording 
session. Subject is seated on the wheelchair and made to face 
a LCD monitor screen at distance of 1 m with a 
manipulandum attached to him on his right side. Neuroscan  
Synamp system was used for EEG and EMG signal 
recording. Movement signal was recorded from 
manipulandum using Cambridge Electronic Design 1401 
(CED). All systems were synchronized during recording 
process. 
 

B. Data Recording Set Up 

EEG, surface electromyography (sEMG) and movement 
signals were recorded simultaneously during the trials. EEG 
signal was recorded using 28 electrodes (earlobe reference) 
placed in a high density montage on the scalp according to 
10-10 system and the EMG signal was recorded from flexor 
carpi radialis, extensor carpi ulnaris, extensor carpi radialis 
brevis and extensor carpi radialis longus muscles. The sEMG 
signal was recorded in order to make sure that there is no 
movement during motor imagery experiments. Both EEG 
and sEMG were recorded using Curry Neuroimaging Suite 
7.0.8 XSB software with NeuroScan

TM 
Synamps

2
 at a 

sampling frequency of 2 KHz.  
The movement signal was recorded using two precision 

servo potentiometers that are attached to the manipulandum 
in order to detect the onset and the direction of movement. It 
was recorded by Spike2 software through CED 1401 
(Cambridge Electronic Design, United Kingdom) at a 
sampling frequency of 100Hz. 

 
C. Data Preprocessing  

The recorded data from motor imagery and motor 
performance experiments were processed offline using 
MATLAB. EEG was epoched using EEGLAB toolbox 
version 12 [9] based on type of experiments (motor imagery 
and motor performance) and categorised according to the 
direction toward 3, 6, 9 and 12 o’clock. For instance, in the 
motor performance data, the EEG signal was epoched 3 
seconds before and 3 seconds after the onset of movement 
whereas, for the motor imagery, the EEG signal was epoched 
3 seconds before and 3 seconds after the visual cue 
presentation. 

The epoched EEG was filtered by a notch filter to 
remove any 50 Hz power line interference [10] and a high 
pass filter with cutoff 0.5 Hz in order to extract EEG 
component signal such as delta/δ (1-4 Hz), theta/θ (5-7 Hz), 
alpha/α (8-12 Hz), beta/β (13-30 Hz) and gamma/γ (31+ Hz) 
[11].  Common average reference (CAR) [12] and Laplacian 
(LAP) [13] spatial filtering methods to improve localisation 
were applied before any further processing of the data. 

 

D. Features Extraction and Classification  

In this study, we are interested in extracting salient 
features from: (1) Event Related Spectral Perturbation 
(ERSP) which is a 2D frequency-by-latency map, and (2) the 
distribution of Power spectrum. ERSP is a generalisation of 
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Event Related Desynchronisation (ERD)/Event Related 
Synchronization (ERS) which visualizes the entire spectrum 
in the form of baseline-normalised spectrogram. ERD refer 
to the decrease in synchronisation of firing neuron that cause 
a decrease of power in specific frequency band and can be 
identified by a decrease in signal amplitude. On the other 
hand, ERS is characterised by an increase of power in 
specific frequency band due to the increased in 
synchronisation of firing neuron and can be identified by 
increase in signal amplitude. ERSP is computed where each 
epoch was divided into a number of overlapping windows 
and spectral power is calculated for each window. The 
calculated spectral power was then normalized (divided with 
the baseline spectra calculated from the EEG immediately 
before each event) and averaged over all the trials.  This 
whole process was done using EEGLAB software version 12 
[14] [15]. Power Spectrum indicates the distribution level of 
the signal power for each of the frequency and latency. The 
Power Spectrum in the δ-, θ-, α-, β- and γ- bands from the 
ERSP was computed using code adapted from the EEGLAB 
version 12. 

Features were extracted based on the type of response, 
either predicting the intention of movement or the direction 
of movement. For the former response, we identify the 
subject’s intention to move by distinguishing whether the 
subject is static or moving his/her right wrist. For the latter 
response, we try to predict the direction of the movement in 
addition to the intention of movement.  

Predicting the intention of movement required 
identifying features extracted during both motor imagery and 
the motor performance for all four directions. Features were 
extracted from a 500ms window before onset of wrist 
movement (t=0).  On the other hand, for motor imagery, 
features were extracted from a 500ms window after cue 
presentation (t=0) [16].   

Conversely predicting intention and direction of 
movement required further analysis which involved 
statistical testing.  In order to determine whether a 
statistically significant difference exists in the extracted 
features between the four directions, analysis of variance 
(ANOVA) has been implemented [17]. Repeated measure of 
ANOVA was applied across the four directions through 
ERSP at each time and frequency point with p value was set 
at 0.05.  The Power Spectrum from the ERSP with p-value 
<0.05 was concatenated to form the feature vectors.  

 To reduce the dimensionality of the feature vectors, 
Principal component analysis (PCA) has been used [18]. The 
principal components that represent 90% (PCA is set to 90% 
in order to get a balance between features dimension, 
computational time, complexity of classification process and 
computation demands) variance of the original data formed 
the new reduced dimension feature vector for the 
classification. The new features vectors were randomly split 
into training and testing data sets [19]. The training and 
testing datasets were randomly selected using the MATLAB 
function k fold cross validation (where k=10 was chosen) 
[20] and fed to the classifier as input. We used two different 
classifiers for comparison and verification: k-Nearest 

Neighbours (k-NN) (where k=7) [21] and quadratic 
discriminant analysis (QDA) classifiers [22].  

III. RESULTS 

A. Results of Event Related Spectral Perturbation (ERSP) 

Figures 2 and 3 show a typical ERSP results of subject 
S1 for both motor imagery and motor performance 
respectively. The top four panels represent the average ERSP 
maps for all four directions and the ANOVA result for the 
electrode C3 using CAR. Although both of the figures using 
CAR, still they demonstrated different mapping results.  

For instance, in Figure 2, ERD was detected 
approximately 300ms post visual cue presentation (t=0) and 
this is illustrated by the presence of a blue region in all four 
directions. ERD is evidently detected in the β- (in all four 
directions 3, 6, 9 and 12 o'clock) and the γ- (in all four 
directions 3, 6, 9 and 12 o'clock) band. 

On the other hand, in Figure 3, the appearance of ERD is 
detected approximately 400ms preceding onset of movement 
(t=0) in the β- (in directions 3, 6, 9 and 12 o'clock) and in the 
γ- (directions 3 and 9 o'clock) band. In this study, the 
detection of the ERD prior to onset of movement indicates 
the intention of movement (planning phase).   
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Figure 2. ERSP and p value of channel C3 for detection of motor imagery 
using CAR Method.  
 

     Referring to Figure 2, vertical axes represent the 
frequency of signal and horizontal axes represent the time. 
Top four represent the ERSP for direction towards 3, 6, 9 
and 12 o’clock respectively (blue shows ERD and red shows 
ERS) and the bottom one represent p value (blue indicate 
significance area in ERSP among four directions). t=0 
signifies the display of the visual cue. 
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Figure 3. ERSP and p value of channel C3 for detection intention of 
movement using CAR Method.  
 

     Referring to Figure 3, vertical axes represent the 
frequency of signal and horizontal axes represent the time. 
Top four represent the ERSP for direction towards 3, 6, 9 
and 12 o’clock respectively (blue shows ERD and red shows 
ERS) and the bottom one represent p value (blue indicate 
significance area in ERSP among four directions). t=0 
signifies the display of the visual cue. 

Even though the mapping results of ERSP of four 
directions are different between the Figures 2 and 3, both 
figures share a similarity when it comes to the ANOVA 
results. The ANOVA results that is presented by the p-value 
(p<0.5 for the blue region) indicate that there are significant 
differences in the ERSP among four directions.  
 

B. Predicting Intention and Direction of Movement 

The classification results in predicting intention and 
direction of movement for both of motor imagery and motor 
performance are based on single trial classification and 
presented in Figures 4 and 5, respectively. Tables 1 and 2 
show the detail of the results for each figure including the 
frequency band (b) and channel (Ch) associated with the 
maximum classification accuracy for motor imagery and 
motor performance respectively.  

Figure 4 and Table 1 present the results of predicting 
intention and direction of movement for the motor imagery 
scenario using k-NN and QDA classifier for both spatial 
filters, namely CAR and LPA. The classification results lie 
between 35% - 95% using a combination of CAR filtering 
and a k-NN classifier (36% of the maximum classification 
results are contributed to features in the γ band and 64% are 
associated with contralateral electrodes) and lie between 
40% - 80% using the QDA classifier (27% of the maximum 
classification results are contributed to both δ and γ band, 
and 73% of it are recorded from the contralateral electrodes).  

On the other hand, the classification results of LAP 
filtering combined with classifiers k-NN and QDA dwell 
within the range of 38% - 96% (54% of the maximum 
classification results are contributed by γ band, and 73% of it 
recorded from contralateral electrodes) and 41% - 76% (45% 
of the maximum classification results are contributed by γ 
band, and 55% of it recorded from ipsilateral electrodes) 
respectively.  

Distribution of the classification results show that, only 
subject three give a consistence and high classification result 
for both spatial filters (CAR and LAP) using k-NN and QDA 
classifier. Moreover, it also indicates that LAP has higher 
average classification accuracy compared to CAR using both 
of the classifier namely k-NN and QDA.   

 

 
Figure 4. Classification results in predicting intention and direction of 
movement for motor imagery.  
 

Apart from that, LAP and CAR have same thing in 
common, that is k-NN classifier offer higher average 
classification over QDA. Besides that, the highest 
classification accuracy contributed by the high density 
electrodes highlight the importance of the high density 
montage used.  
 
TABLE I. FREQUENCY BAND AND CHANNEL ASSOCIATED WITH 
CLASSIFICATION RESULTS IN PREDICTING INTENTION AND 
DIRECTION OF MOVEMENT  

 
S 

CAR LAP 

k-NN QDA k-NN QDA 

b ch % b ch % b ch % b ch % 

S1 γ FC4 90 δ CZ 61 γ CFC1 89 α CFC3 70 

S2 θ C4 61 β C4 58 γ CP4 38 γ CP4 61 

S3 γ CFC4 83 γ CZ 80 γ CFC1 96 β C4 76 

S4 β FC3 62 δ FC3 64 δ FC4 54 α CFC5 50 

S5 α C3 49 θ C3 40 θ CCP5 65 γ FC2 41 

S6 α FC5 37 α FC5 42 γ FC4 71 γ FC4 76 

S7 α CFC3 55 α FC1 54 γ FC1 73 θ CP3 76 

S8 β C5 64 δ CFC3 41 θ CCP5 67 δ CCP5 68 

S9 δ CFC4 45 γ CCP5 45 α CP4 47 γ C4 64 

S10 γ CP5 35 γ CFC4 43 β C5 49 γ FC5 55 

S11 γ FC3 95 β FC1 41 γ CFC3 94 β CP2 46 

 
Figure 5 and Table 2 indicate the classification result for 

CAR filtering dwell within the range of 30%-82% when 
using a k-NN classifier (55% of the maximum classification 
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results are contributed by γ band and 82% of it recorded 
from contralateral electrodes) and 25% - 72% when using 
QDA classifier (46% of the maximum classification results 
are contributed by β band and 91% of it recorded from 
contralateral electrodes).  

On the other hand, classification results of LAP filtering 
when using k-NN and QDA classifiers within the range of 
48% - 84% (55% of the maximum classification results are 
contributed by γ band, and 100% of it recorded from 
contralateral electrodes) and 31% - 76% (46% of the 
maximum classification results are contributed by β band 
and 64% of it recorded from contralateral electrodes) 
respectively. 

 

 
Figure 5. Classification results in predicting intention and direction of 
movement for motor performance.  

 
TABLE II. FREQUENCY BAND AND CHANNEL ASSOCIATED WITH 
CLASSIFICATION RESULTS IN PREDICTING INTENTION AND 
DIRECTION OF MOVEMENT FOR MOTOR PERFORMANCE  

 
S 

CAR LAP 

k-NN QDA k-NN QDA 

b ch % b ch % b ch % b ch % 

S1 
γ FC4 

49 
β CPZ 

46 
γ CCP5 

56 
β CCP2 

54 

S2 γ FC5 55 δ FC5 45 α C3 50 δ FC5 43 

S3 
δ FC5 

82 
γ C1 

72 
γ FC5 

75 
γ FC4 

75 

S4 γ CP1 46 β C1 36 γ C1 54 γ CCP1 42 

S5 
γ C3 

47 
β FC5 

26 
δ CCP5 

60 
β CP3 

74 

S6 δ FC5 47 β CP5 25 γ CFC5 48 β CP3 51 

S7 γ C5 39 θ CFC3 28 γ CP3 60 δ FC1 67 

S8 β CFC5 65 α CCP3 32 β CCP5 84 γ CP2 76 

S9 
γ C4 

37 
δ CP5 

26 
γ C5 

51 
β FC5 

54 

S10 δ FC1 30 β CP5 34 γ CP3 50 β FC5 53 

S11 
β CFC5 

57 
δ C3 

30 
δ CFC5 

67 
δ CP4 

31 

     
Dissemination of the classification result demonstrate that, 

subject three give a consistence and high classification result 
for both spatial filters (CAR and LAP) using k-NN and QDA 
classifier. Additionally LAP has higher average classification 
accuracy compared to CAR using both of the classifier 
namely k-NN and QDA. Subsequently for both spatial filters 
(CAR and LAP) k-NN classifier has higher average 
classification accuracy compared to QDA. 

IV. DISCUSSION  

Based on the classification’s result criteria, this study 

demonstrates that the proposed methodology and features 

extraction approach are capable of increasing and providing 

multiple control signals using single limb. It is undeniable 

that, detecting and discriminating the motor imagery and/or 

motor performance within the same limb is a challenging 

task. This is because of the motor tasks actives regions have 

very close representations on the motor cortex area [23] 

[24].  

Although it is difficult - but not impossible,   Liao et al. 

[25] managed to distinguish right hand finger movements 

(thumb, index, middle, ring and little) using power spectral 

changes as features. Thus, we apply centre out right wrist 

movement (flexion, extension, ulnar and radial) and power 

spectrum as features with the hypothesis that there is a 

difference in distribution of power spectrum among the four 

different directions. The hypothesis is tested using ANOVA 

and the results showed that there is significance difference 

with p value < 0.05 among the different directions. 

The classification results from motor imagery and motor 

performance experiments indicate that, the maximum 

classification electrodes dominantly from contralateral 

electrodes. This is because movement related neural activity 

is lateralized where a significance occurrence of ERD over 

contralateral side whereas a significance occurrence of ERS 

over ipsilateral side of the brain during planned and 

terminated movements respectively [26]. Apart from that, 

the maximum classification electrode can be either the same 

or the nearest neighbour of that electrode when classified by 

different classifier. This is would be an advantage for the 

BCI design because, improper placement of BCI cap would 

not have much effect to the BCI system itself. 

 

V. CONCLUSION  

In this paper, we have demonstrated the feasibility of 

developing a single trial four class BCI systems based on a 

motor performance of a single limb, namely the wrist 

moving in four different directions using a single trial. This 

is evidently supported by detecting ERD and ERS in both of 

motor imagery and motor performance for all four 

directions extracted from ERSP maps. Additionally, the p 

values estimated from ANOVA test verify that there is 

significant difference of the extracted features among the 

four directions. 

Moreover, the classification results of predicting 

intention of movement for both of motor imagery and motor 

performance emphasised that, the majority of the maximum 

classification accuracy are recorded from contralateral 

electrodes and from γ band features. 

Subsequently, the classification results from both of 

motor imagery and motor performance in predicting 

intention and direction of movement highlighted that, all of 

the maximum classification accuracy are contributed by 
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contralateral electrodes. The majority of the maximum 

classifications are associated with features from the γ band.  

The findings from this study highlight the importance of 

using high density montage electrodes placement and shows 

with experimental evidence that LAP is superior to CAR in 

terms of source localisation. 
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