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Abstract—Traditionally, it has been assumed that the 

important information from a visual scene is encoded within 

the average firing rate of a retinal ganglion cell. Many 

modelling techniques thus focus solely on estimating a firing 

rate rather than a cells temporal response. It has been argued 

however that the latter is more important, as intricate details 

of the visual scene are stored within the temporal nature of the 

code. In this paper, we present a model that accurately 

describes the input/output response of a retinal ganglion cell in 

terms of its temporal coding. The approach borrows a concept 

of layout from popular implementations, such as the linear-

nonlinear Poisson method that produces an estimated spike 

rate prior to generating a spiking output. Using the well-

known Izhikevich neuron as the spike generator and various 

approaches for spike rate estimation, we show that the 

resulting overall system predicts a retinal ganglion cells 

response to novel stimuli in terms of bursting and periods of 

silence with reasonable accuracy. 

Keywords-Temporal coding; Spiking; Retinal Ganglion Cell; 

ANN; NARMAX. 

I.  INTRODUCTION 

Visual processing begins within the retina, which is a 

complex, networked organisation of cells comprising of 

photoreceptors, horizontal cells, bipolar cells, amacrine cells 

and retinal ganglion cells (RGCs). The retina contains 

approximately 1 million RGCs, each pooling a signal from 

multiple photoreceptors that define a spatial area known as a 

receptive field (RF). Light, upon entering the eye, is focused 

onto the photoreceptor layer effecting a change in each 

cell’s potential and forming a signal that is communicated 

through the various inter-processing layers to the RGCs. 

Here, the signal is changed into what are known as action 

potentials (spikes) and transmitted via synaptic connections 

to the visual cortex for higher processing. Modelling this 

input/output relationship has been a topic of interest over the 

years as studies have shown that strategies that utilise this 

biological aspect to visual processing outperform various 

machine vision techniques [1] in terms of power, speed and 

performance. 

The biological configuration of the retina makes it an 

ideal system for study as visual information (stimuli) can be 

controlled whilst physiological signals (response) can be 

recorded via a multi-electrode array from multiple RGCs 

before further processing begins [2]. The response for each 

cell is represented by a series of temporal spikes known as a 

spike train, in which the processed information from the 

visual scene is considered to be encoded. Traditionally, it 

has been assumed that the important aspect of this coding is 

the rate at which the neuron fires on average [3] though 

others have argued that it is the temporal nature of the 

spikes, which carry the important information [4]. Evidence 

in support of the latter has been presented in various studies 

at multiple levels of the visual system [3]–[7] though 

depending on the stage of the visual processing, either one 

or a mixture of the two encoding representations may be 

relevant [2][5]. 

In [7], it is however reported that methods based on the 

mean firing rate in RGCs of a Poisson generated spike train, 

fail to account for the efficiency of information transfer 

between the retina and the brain. The emphasis is instead on 

the timing of the first spike across a population of RGCs to 

accurately describe the visual scene. In other work, brief 

bursts of spikes, post saccade (rapid eye movement), are 

thought likely to encode information pertaining to the 

encountered stimulus [2] and that the number of spikes 

within the burst are not necessarily as important as the time 

to the first spike. This would suggest that the importance in 

modelling the relationship between stimulus and response 

lies within matching bursts of spikes with particular 

emphasis on the first spike within the burst. 

Mathematical models of the relationship between 

stimulus and response in terms of the temporal code come in 

many variations with the simplest and most popular method 

stemming from a linear-nonlinear (LN) cascade approach 

using a Poisson process to generate a spiking output [8][9]. 

This method works on the premise that a spike rate 

estimation is generated first, followed by a temporal spiking 

output using a spike generating mechanism. Other variations 

propose the use of a leaky integrate and fire (I&F) neuron 

(or equivalent simplified model) at the latter stage of the 

model as it induces a more realistic comparison of the spike 

count variability, using a free firing rate, in cat and 

salamander RGCs, than that of the Poisson process, which is 

time-varying controlled [6].  

In this work, extending from a previous comparison 

involving the I&F neuron [10], we propose to use the 

Izhikevich (IZK) neuron as the spike generating mechanism 

as it is more suited to reproducing spiking and bursting type 

behaviours [11], which can be finely tuned using a number 

of parameters. It differs from the I&F model in that the IZK 

model does not contain a constant firing threshold. This 
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infers a behaviour that is closer to real neurons; therefore 

the IZK model is better equipped, than the I&F model, to 

incorporate the critical regime of spike generation. 

Moreover, parameters in this model are tuned with a genetic 

algorithm ensures that the spiking behaviour of the IZK 

neuron is as close as possible to the RGCs behaviour. This 

is supported by an investigation into various methods for the 

estimated spike rate computation beginning with the 

standard LN cascade approach [12]. Results from the overall 

system show good performance in predicting the temporal 

code of a RGC, when presented with novel stimuli, in terms 

of bursts of spikes and periods of silence. 

In Section II, an overview of the experimental procedure 

used for the physiological experiments is provided along 

with data pre-processing techniques used to create an input-

output dataset suitable for modelling. Methods used for 

spike rate estimation, spike generation, parameter tuning 

and temporal code analysis are presented in Section III with 

results for each phase presented in Section IV. Finally, 

Section V summarises the findings with a concluding 

statement. 

II. EXPERIMENTAL OVERVIEW 

A. Data Collection 

Physiological data were collected experimentally (in vitro) 

from adult axolotl tiger salamanders. Preparation involved 

isolating the dark-adapted retina, splitting into two halves 

and placing cell-side down onto a multi-electrode array, 

submersed in a chemical solution to prolong activity. 

Varying types of image stimulus inputs from a small OLED 

display were then focused onto the retina. Cell activations 

(via the multi-electrode array) were sampled at 10 KHz with 

spike times quantified with respect to the beginning of the 

stimulus presentation. Further details on the experimental 

setup and procedures can be found in [13][14]. 

 

 
Figure 1. Spatio-temporal checkerboard pattern. 

In this work, artificial spatio-temporal stimuli (Figure 1) 

were used to determine the size, shape and location of each 

RGCs’ receptive-field through reverse correlation. The 

spatially arranged checkerboard patterns contain no spatial 

or temporal order and were presented to the retina at 

approximately 33 ms intervals. In total, the stimulus 

presentations numbered 258000 non-repeated samples to 

assemble a dataset large enough to ascertain characteristics, 

such as the Spike-Triggered Average (STA) and to ensure 

that a sufficient number of varied stimuli are presented in 

order to evoke cell responses. Furthermore, an additional 

dataset comprised of 1200 samples was presented to the 

same cell for testing purposes once initial characteristics had 

been formulated. This smaller dataset was presented 

repeatedly to the retina 43 times and could be used to 

observe the typical variance in neural responses from trial to 

trial. Both the physiological preparation and data collection 

were carried out at University Medical Center Gӧttingen, 

from which 36 RGCs were supplied with the identified size, 

shape and location of each RF.  

B. Data pre-processing 

As a pre-processing stage the stimulus values must first be 

extracted from each checkerboard pattern, illustrated in a 

stepwise procedure in Figure 2. To approximate the 

processing that occurs between the photoreceptors and 

RGCs, each checkerboard (Figure 2(a)) is fitted with a 2D 

Gaussian filter (Figure 2(b)), which accentuates the contrast 

levels within the visual scene [15]. Only pertinent values 

located either inside or on the border of the RF are extracted 

(Figure 2(c)) and summed to form an input dataset for 

modelling purposes. 

 
Figure 2. Pre-processing step that shows how the local stimulus pertaining 
to a cell’s receptive field is weighted with a 2D Gaussian filter. (a) Local 

stimulus for a cells receptive field. (b) 2D Gaussian used to weight the 

stimulus intensities. (c) Weighted image of the local stimulus intensities.  

The sampled neural response for each RGC is binned to 
match the frequency at which the stimulus is updated. For 
the non-repeated dataset, this formed the basis for model 
targets and output comparisons while for the smaller dataset 
the average of 43 trials was utilised as the output. 

III. SPIKE GENERATION MODELLING 

The aim of the work is to develop a biologically plausible 

spike generation model, i.e., one that will generate spikes at 

the same times as the actual RGC for the same stimulus. 

 

 

Figure 3. Overview of spike generation model. 
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In the widely used linear-nonlinear-Poisson (LNP) cascade 

model, spike generation is normally represented by a 

Poisson process [8][12][16], which is driven by the 

estimated spike rate. To this end, a cascade-type model 

(Figure 3) is developed to process the spatio-temporal 

stimulus and produce a spiking output in a two-stage 

process where initially an estimated spike rate is computed, 

which is then used to drive a spiking neuron. However, in 

this work instead of the Poisson process, a spiking neuron 

model is explored to further develop a biologically plausible 

spike generation model. Extending from previous work [25], 

we explore two well-known black-box methods and two 

transparent methods as a means for spike rate estimation.  

A. Spike Rate Modelling 

This section summarises the computational methods 

explored to model the estimated spike rate that drives the 

spike generation phase of the overall system.  

1) Linear-Nonlinear: The linear-nonlinear (LN) model 

is one of the most popular methods for estimating a 

neuron’s spike rate as it is simple and efficient to implement 

[17]. It is computed by applying a linear filter to the input 

followed by a static nonlinear transform. Calculating the 

linear filter is typically achieved by computing STA, which 

is simply the average stimulus preceding each spike [12]. 

The main drawback is that the computed parameters of the 

model have no direct relationship to the underlying 

biophysics.  

2) Artificial Neural Networks: Artificial Neural 

Networks (ANN) have been used extensively in the field of 

image processing, computer vision and similarly in the field 

of the biological vision system [15][18]. Designed as a 

network of artificial neurons to model task related properties 

of the cognitive process [19], they excel in pattern 

recognition and classification problems. An important goal 

of an ANN is to have good generalisation over its input-

output mapping so that it can easily manage data that are 

slightly different to those upon which the network was 

trained [19]. One of the main drawbacks however is that, 

with too many training examples, the network may over fit 

the training data, meaning it can memorise specific traits of 

the training dataset, which are otherwise absent from further 

examples presented for testing resulting in poor 

performance. Bayesian Regularised Neural Networks 

(BRNNs), on the other hand, attempt to limit this inhibiting 

feature by restricting the magnitude of the weights to 

provide structural stabilisation [20][21]. Overly complex 

networks are thus reduced by effectively driving 

unnecessary weights to zero and calculating an effective 

number of parameters [21].     

3) Self-Organising Fuzzy Neural Network: Another way 

of reducing overfitting is to use less neurons within the 

network. This can further complicate matters by introducing 

the need to regulate the network size, as well as the number 

of effective parameters unless the network is self-

organising. In this work, we utilise the Self-Organising 

Fuzzy Neural Network (SOFNN) described in [22], which is 

a flexible, data driven model. This SOFNN was first 

introduced in [23], extended in [24], and is capable of self-

organising its architecture by automatically adding and 

pruning neurons as required depending on the complexity of 

the dataset. This alleviates the requirement for 

predetermining the model structure and estimation of the 

model parameters as the SOFNN can accomplish this 

without any in-depth knowledge of neural networks or fuzzy 

systems. 
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Figure 4. SOFNN Architecture 

The architecture of the SOFNN is comprised of five 

layers (Figure 4) that include an input layer, ellipsoidal basis 

function (EBF) layer, normalised layer, weighted layer and 

output layer. The EBF layer neurons do not need to be pre-

configured as they are organised by the network 

automatically. In this layer, neurons are added or pruned 

during the learning process to achieve an economical 

network size. With each EBF neuron being a T-norm of 

Gaussian membership function (MF) attributed to the 

networks inputs, the if-part of the fuzzy rule is observed. 

Also, MFs found to share the same centre during the 

learning process can be combined into a single function, 

which allows the network to reduce the overall number of 

rules created. The consequent then-part, upon being 

normalised in the third layer, is processed by the weighted 

layer. The weighted layer is fed by two inputs: one from the 

previous layer and the other from a weighted bias. The 

product of these layers translates as the output to the final 

layer that contains a single neuron representing a summation 

of all incoming signals. Further detailed information on the 

SOFNN’s online learning capability can be reviewed in 

[23]–[25]. 

4)  Nonlinear Autoregressive Moving Average with 

Exogenous Inputs: Another popular method used when 

attempting to model the nonlinear relationship between 

input and output (stimulus and response) is the Nonlinear 

Autoregressive Moving Average with Exogenous Inputs 

(NARMAX) approach. The modelling is achieved by 

representing the problem as a set of nonlinear difference 

equations and is an expansion of past inputs, outputs and 
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noise. Since its conception in 1981, the NARMAX 

modelling approach has come to represent a philosophy for 

nonlinear system identification consisting of the following 

steps [26]: 

1) Structure Detection: determine the terms within the 

model. 

2) Parameter Estimation: tune the coefficients.  

3) Model Validation: analyse model to avoid overfitting. 

4) Prediction: output of the model at a future point in time.  

5) Analysis: analyse model performance and determine the 

underlying dynamics of the system. 

Determining the structure of the model is critical and 

there exists a range of possibilities to approximate the 

function including polynomial, rational and various ANN 

implementations [27]. The polynomial models offer the 

most attractive implementation concerning visual systems 

modelling, as they allow for the underlying dynamical 

properties of the system to be revealed and analysed. 

Further details on the NARMAX approach and how it is 

implemented with respect to biological vision data can be 

found in [18][25] 

B. Spike Timing Model 

1) Izhikevich Neuron: The Izhikevich (IZK) neuron 

model [11], which is both computationally efficient and 

variable in terms of response patterns, is used in this work 

as a method of spike generation. Variable response patterns 

can be initiated by configuring the parameters (𝑎, 𝑏, 𝑐 and 
𝑑) of the IZK neuron, which can be set to obtain different 

types of neuronal responses, such as bursting, chattering or 

fast-spiking (Figure 5) that have been observed in real 

neurons [28].  

 
Figure 5. Small sample of spiking behaviours capable with the IZK neuron 

We envisage that such a range of behaviours will be 

useful for modelling RGCs and we find that a combination 

of Intrinsically Bursting and Regular Spiking behaviours 

performs best based on the visual inspection of the neuronal 

recordings from the electrophysiological experiments [29]. 

A full review of the biological behaviour of single neuron 

can be found in [3]. 

2) Parameter Tuning (Genetic Algorithm): A further 

improvement to the spike generation model was achieved 

through configuring the parameters of the model to best 

match the response patterns of the RGC. Given the range of 

possible combinations for each of the parameters in the IZK 

neuron, a genetic algorithm (GA) implemented from the 

DEAP toolbox [30] was utilised to search for the optimum 

parameters on the training data. As this method aims to tune 

a single IZK neuron as a one-time process, the GA is well 

suited as it is simple to implement and removes the need for 

manually tuning the parameters.  

To form the input of the GA, the real response was binned 

to form a spike rate and used to drive the IZK neuron. For 

one generation, the parameters for the neuron were drawn 

from a population size of 500 individuals using the 

tournament selection method, which involves running a 

tournament for several individuals and selecting the one 

with the best fitness for crossover or mutation. Each 

individual comprises the four parameters (a – d), which are 

randomly generated within the confines of each parameters 

limit as described by [11]. 

Finally, the evaluation of the neurons output is carried 

out using Dspike as the fitness function. Dspike [31] is a metric 

used as a numerical estimator of the similarity between the 

target (real) and estimated neural response. This algorithm 

essentially penalises a non-overlapping spike and/or 

penalises the necessity to insert a spike where if none exist 

in the estimated trace but does in the target response. Thus, 

Dspike is sensitive to the timing of the individual spikes and 

is calculated using a two-step process. The first step consists 

of inserting or deleting a spike to match the estimated spike 

train to the real spike train and involves a cost=1. The 

second step consists of moving a single spike and defines 

the sensitivity to spike timing. The cost associated with 

moving the spike is proportional to the time period by which 

the spike is moved. For example, if two spike trains A and B 

are identical except for a single spike that occurs at tA in A 

and tB in B, then c(A,B) = q|tA – tB| where c is the cost and q 

is a parameter specifying the cost per unit of time to move a 

spike. The Dspike can then be calculated as the total cost 

associated with the transformation path from A to B. If 

moving a spike by a time period  has the same cost 

as deleting it completely, it can be seen that the value of q 

determines the relative sensitivity of the metric to spike 

count and spike timing. In the implementation, a value of 

0.25 is selected for q corresponding to the size of time bins 

(four).  

IV. RESULTS 

A. Spike Rate Estimation 

We present results for two cells from the data collected; one 

OFF type and one ON type. Table1 and Table 2 outline the 

results for the OFF and ON type respectively, which were 

obtained for the spike rate estimation, which constitutes the 
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first stage of the overall model. Results from machine 

learning methods were validated using 5-fold cross 

validation, with parameters selected using a grid search 

approach. Model accuracy is presented in terms of the 

RMSE between the predicted and actual binned spike rate. 

As observed, the BRNN and LN perform similarly with the 

BRNN presenting better training results for the ON type cell 

and both training and testing for the OFF type cell. 

Although the NARMAX and SOFNN do not perform quite 

as well as these two methods, they do provide the capability 

of analysing the underlying system dynamics to gain a better 

understanding of what is actually happening. This is because 

one can interpret both the fuzzy rules of the SOFNN [25] 

and the estimated polynomial function of the NARMAX 

[18] method. An overall performance increase in RMSE for 

all methods is observable for the novel dataset. As the dataset 

is comprised of the average of 43 trials, this increase can be 

attributed to the removal of noise in terms of naturally 

occurring spontaneous spikes [28]. Further analysis on these 

results are shown in Table 3, as an example, where a 

statistical t-test has been performed between the various 

methods employed to show that the difference between the 

BRNN and LN methods, when compared to the SOFNN and 

NARMAX methods is significant for the OFF type cell. The 

test is based on the errors observed between estimated spike 

rate versus the actual spike rate. A small p-value in this case, 

below 0.05 indicates that the difference in performance is 

significant. As observed, the p-values from this statistical test 

when comparing the LN and BRNN methods are high, 

indicating that both methods are similar thus the null 

hypothesis, that the errors observed in both are similar, cannot 

be rejected. However, when comparing either the LN or 

BRNN methods with the SOFNN or NARMAX, the p-values 

are below 0.05 indicating that the null hypothesis can be 

rejected as the difference in performance is significant.  

B. Spike Count Estimation 

The purpose of the spike count estimation within this 

work is to evaluate the performance of the GA in tuning the 

parameters of the IZK neuron. Each model (for both ON and 

OFF type cells) had the parameters tuned using 100 

generations of a population size of 500 using both crossover 

and mutation as forms of manipulation of the individuals. 

The resulting spike counts produced by both models are 

shown in Table 4. 

 

TABLE 1. SPIKE RATE ESTIMATION RESULTS FOR OFF TYPE CELL 

RMSE for OFF type cell 

Model Model Training/Testing on 

Non-repeated dataset 

Novel 

Dataset 

Training Testing Testing 

LN 0.35 0.35 0.27 

BRNN 0.34 0.35 0.27 

SOFNN 0.36 0.37 0.30 

NARMAX 0.35 0.36 0.28 

 

TABLE 2. SPIKE RATE ESTIMATION RESULTS FOR ON TYPE CELL 

RMSE for ON type cell 

Model Model Training/Testing on 

Non-repeated dataset 

Novel 

Dataset 

Training Testing Testing 

LN 0.38 0.38 0.24 

BRNN 0.37 0.36 0.23 

SOFNN 0.39 0.38 0.27 

NARMAX 0.39 0.38 0.25 

 

TABLE 3. COMPUTED P-VALUES FOR THE NOVEL DATASET FOR THE OFF 

TYPE CELL (TABLE 1). 

Model LN BRNN SOFNN NARMAX 

LN -- 0.85 0.0057 0.00024 

BRNN 0.85 -- 0.012 0.0079 

SOFNN 0.0057 0.012 -- 0.70 

NARMAX 0.00024 0.0079 0.70 -- 

 

TABLE 4. SPIKE COUNT OF EACH RATE ESTIMATION METHOD AS A MEASURE 

OF THE GA’S PERFORMANCE. 

Model Spike Count 

 OFF type cell ON type cell 

Actual Experimental 

(Average of 43 trials) 

41.16 65.56 

LN 37 68 

BRNN 41 69 

SOFNN 46 77 

NARMAX 47 69 

As illustrated in Table 4, the spike counts for both the 

ON and OFF type cells are similar to the average spike 

count of 43 trials pertaining to the real response for the LN 

and BRNN approaches. Resulting spike counts for the 

SOFNN and NARMAX approaches are not as accurate 

however; they provide better transparency in terms 

underlying model dynamics [25].  
 

TABLE 5. DSPIKE
 PERFORMANCE MEASURE OF THE TEMPORAL OUTPUT FOR 

EACH RATE ESTIMATION MODEL. 

Model OFF type cell ON type cell 

LN 42.23 63.38 

BRNN 45.17 62.14 

SOFNN 51.33 67.73 

NARMAX 49.45 66.03 

C. Temporal Coding 

The novel testing dataset, with the 43 repeated trials was 

used to test the spike generation performance. TABLE 55 

outlines the main results in terms of the Dspike metric, which 

indicate that the IZK neurons driven by both the BRNN and 

LN methods are the top performers with the LN driven 

neuron performing better for the ON type cell and the BRNN 

driven neuron performing better for the OFF type cell. Figure 6 

shows the predicted response plotted, for these two methods, 

in combination with a raster plot of all 43 individual trials for 

the OFF type cell.  
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Figure 6. Raster plot of real neural response shown alongside the outputs of 
the LN and BRNN driven IZK neurons. 

Visual analysis indicates the predicted spikes correlate well to 

the overall real neural response in terms of periods of non-

activity and periods of burst activity. Both methods perform 

almost identically except for the initial spikes that were 

missed by the LN approach and picked up by the BRNN 

approach. This negligible difference, which was absent within 

the spike rate estimation results, could be attributed to the 

Dspike
 configuration where the moving of a spike is only 

allowed if the spike, to be moved, resides within 4 time steps 

of its intended location, otherwise it must be deleted and 

reinserted. In terms of cost, this means that the deletion and 

reinsertion of a spike for the BRNN approach equates to 2 

points whilst with the LN approach, there is only the need for 

a spike insertion. Also worth noting is that the IZK neurons 

driven by any method will retain repeatability in terms of 

producing the same spike trains each time. Since the IZK 

model is deterministic in nature, it lacks the ability to 

accurately reflect the random variability inherent in real 

biological systems, often observed as variations in spike times 

from trial to trial [3]. 

V. CONCLUSION AND FUTURE WORK 

In this paper, an investigation into the creation of a two-

stage temporal coding model has been presented where first a 

spike rate is estimated followed by a spike generation stage. 

The computational models reported for spike rate estimation 

were used to explore the development of a biologically 

plausible spike generation technique for spatio-temporal 

visual stimulus where the BRNN and LN methods were 

found to perform best though as the methods are opaque, 

further analysis of the underlying system dynamics is not 

possible. We evaluated the performance of the IZK neuron 

model cascaded with the spike rate estimation models and 

used both the spike count and Dspike
 metric as a measure of 

performance. The resulting temporal code, again for the 

BRNN and LN methods, compared well against the real 

output though it is noticeable that the performance of the 

spike generation method is directly related to the performance 

of the machine learning approaches in predicting the spike 

rate, as they are cascaded. 
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