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Abstract—A standard approach to model retinal ganglion cells
uses reverse correlation to construct a linear-nonlinear model
using a cascade of a linear filter and a static nonlinearity.
A major constraint with this technique is the need to use
a radially symmetric stimulus, such as Gaussian white noise.
Natural visual stimuli are required to generate a more realistic
ganglion-cell model. However, natural visual stimuli significantly
differ from white noise stimuli and are not radially symmetric.
Therefore a more sophisticated modelling approach than the
linear-nonlinear method is required for modelling ganglion cells
stimulated with natural images. Machine learning algorithms
have proved very capable in modelling complex non-linear
systems in other scientific domains. In this paper, we report on the
development of computational models, using different machine
learning regression algorithms, that model retinal ganglion
cells stimulated with natural images in order to predict the
number of spikes elicited. Neuronal recordings obtained from
electro-physiological experiments in which isolated salamander
retinas are stimulated with static natural images are used to
develop these models. In order to compare the performance of
the machine learning models, a linear-nonlinear model was also
developed from separate experiments using Gaussian white noise
stimuli. A comparison of the spike prediction using the models
developed shows that the machine learning models perform better
than the linear-nonlinear approach.

Keywords—Retinal ganglion cells; Natural image stimulus;
Linear-nonlinear models; Machine learning models.

I. INTRODUCTION

It is well established that retinal ganglion cells (RGCs) play
an important role in early stage biological visual processing
by generating action potentials onto the optic nerve, based on
the visual stimulus that falls on the photo-receptors. Various
studies have identified different types of ganglion cells present
in the mammalian retina and much of their functionalities
[1]-[3]. An important step towards developing artificial vision
is to develop computational models of the RGCs in a biological
vision system that accurately replicate biological processing.

The standard approach to model RGCs is to use a
linear-nonlinear (LN) technique, which cascades a linear filter
module and a static nonlinear transformation module [4]. The
main advantage in using the LN technique with a single linear
filter is its ease of obtaining the model parameters, particularly
the shape of the linear filter [5]. However, this advantage arises
from a major constraint: the retina should be stimulated with a
radially symmetric stimulus, usually generated with Gaussian
white noise. Although white noise stimuli are mathematically
simple to analyse, it has been shown that they do not exercise

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

Thomas M. McGinnity

School of Science and Technology
Nottingham Trent University
Nottingham, United Kingdom

Email: martin.mcginnity@ntu.ac.uk

the full range of neuronal behaviour and any model developed
with this stimulus can emulate only a subset of responses from
a biological neuron [6]. These limitations necessitate the use of
natural visual stimuli to develop more realistic computational
models of RGCs. Natural visual stimuli have considerably
different statistical features in comparison to white noise
stimuli. For example, unlike the white noise stimuli, they
are not radially symmetric and have high cross-correlation
between nearby pixels [6]-[8]. Therefore, a more sophisticated
approach than the LN technique is required to accurately model
the visual processing taking place in an RGC under natural
viewing conditions.

An important characteristic observed from existing studies
[91 [10] and evident in the LN technique is the nonlinear
processing that takes place in an RGC. Machine learning
algorithms have proven very capable in modelling complex
nonlinear systems in other domains [11][12]. In this paper,
we report on the development of computational models,
obtained using machine learning based regression algorithms,
of RGCs stimulated with static natural images in order to
predict the number of spikes elicited. In total, we explored
10 different machine learning approaches. Among these,
the extreme learning machine (ELM), Bayesian regularised
neural network (BRNN), support vector regression (SVR) and
k-nearest neighbour (kNN) regression approaches performed
better than others and their results are presented. Neuronal
recordings from electro-physiological experiments, in which
isolated salamander retinas are stimulated using static natural
images, are used to train these models. In order to compare the
performance of these machine learning models, LN models of
the RGCs were also developed. In these LN models, the linear
filters were estimated from the neuronal recordings from a
separate experiment with Gaussian white noise stimuli and the
static nonlinearities were then fitted with the recordings from
the experiments with static natural image stimuli. Additional
modelling experiments were performed to investigate whether
adding more statistical features as inputs to the computational
models can improve the prediction.

The remainder of this paper is organised as follows. Section
IT discusses existing studies related to the topic presented in
this paper. Details of the electro-physiological experimental
setup and various data pre-processing stages are discussed
in Section III. Results from the modelling experiments are
presented in Section IV. Section V concludes the paper and
explores possible future research directions.
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II. RELATED WORKS

System identification techniques, such as the Wiener
theory [13] and Wiener-Volterra method [14] were used
in earlier studies to develop computational models of
visual processing in the retina. Owing to the increased
computational complexities of these approaches with higher
order kernels [15], the nonlinear auto-regressive moving
average with exogenous inputs (NARMAX), a parametric
system identification technique, has been used to model
components of biological vision systems in more recent
studies [16][17]. Modular models in the form of cascaded or
parallel configurations have been used extensively to overcome
limitations of the Volterra-Wiener models. Although different
configurations of the modular models, such as linear-nonlinear
(LN) [4], nonlinear-linear (NL) [18] and linear-nonlinear-linear
(LNL) [19] exist, the LN technique with a single linear filter
module has been widely used, due to the ease of obtaining the
model parameters. An alternative to the system identification
and modular methods is to use a machine learning based
nonparametric regression algorithm to model the nonlinear
visual processing taking place in the biological visual systems.
Although multi-layer feed-forward neural networks have been
used to model neurons in the visual cortex [20], few studies
have explored their performance in comparison to the standard
modelling techniques. This is one of the aspects addressed in
this paper.

Many of the existing studies involving modelling of
RGCs primarily focus on stimulation using white noise
visual stimulus [5][21]. While white noise and other random
patterned (e.g., moving gratings) visual stimuli enable the
cell type to be distinguished (e.g., ON-cells, OFF-cells,
ON-OFF cells, etc.) [22] and also specific functionalities (e.g.,
approaching motion detection cell, lateral motion detection
cell, directionally sensitive cell, etc.) [23], they do not test
the full range of neuronal behaviour [6]. It has been shown
that natural images are more effective in stimulating complex
cells in the primary visual cortex, while evoking low spike
time variability, than when using artificial random stimuli
[6] [15] [24]. This could be because our vision systems may
have been evolutionarily adapted to the natural visual stimuli;
furthermore natural image stimuli have considerably different
statistical features in comparison to the artificial visual stimuli.
For example, natural scenes have high spatial correlation,
and their intensity distribution has considerable skewness and
kurtosis [7][8], which could have substantial influence on a
visual neuron’s response. However, only a limited number of
existing studies [18] have modelled the visual processing of
natural images by RGCs. Thus, the study presented in this
paper focuses specifically on developing computational models
of RGCs stimulated with natural images. The influence of
different statistical features of the stimuli on the neuronal
responses has also been evaluated, i.e., how the computational
model inputs are selected in order to improve their prediction
results.

III. ELECTRO-PHYSIOLOGICAL EXPERIMENTAL SETUP
A. Experimental Setup

Neuronal recordings were obtained from retinas
of dark-adapted adult axolotl salamander (Ambystoma
mexicanum) using in vitro electro-physiological experiments
[25]. The retina was isolated and placed with the
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Figure 1. Stimulus updates during experiments with natural image stimuli. In
each trial, an image was shown for 200ms followed by gray screen to
recover from any adaptation to the natural image.

Figure 2. Binary checker board flicker. Each stimulus pattern is shown for
33.33ms.

ganglion-cell-side down on a planar multi-electrode array for
extracellular recordings. To visually stimulate the retina, the
screen of a gamma-corrected miniature organic light-emitting
diode (OLED) monitor was focussed onto the photoreceptor
layer of the retina. The stimulus screen was updated with a
frame rate of 60Hz. Action potentials were recorded from the
RGCs using the multi-electrode array, and were sampled at a
frequency of 10kHz.

Each trial with a natural image involved the stimulation
of the retina for 1000ms, in which the natural image was
displayed for 200ms followed by a full-field gray image for
800ms (see Figure 1). The full-field gray image helps the
ganglion cells to recover from any adaptation to the natural
image. In total, 300 natural images were used to stimulate
the retina and each image was repeated in 13 such trials to
observe the variations in the spiking behaviours. The spikes
recorded within a time period of 300ms from the onset of the
natural image to 100ms after the image is replaced with the
gray screen, allowing for the processing delay of the RGC, is
considered to be in response to the natural image.

In order to obtain the linear filter parameters for the LN
models, neural responses were recorded from the retina when
stimulated with a binary checker-board flicker stimulus (a
spatio-temporal artificial stimulus, Figure 2). The stimulus
update rate in this experiment was different from that used
for the natural images experiments. The stimulus was updated
at a rate of 30Hz, meaning a new stimulus pattern was
presented approximately every 33.33ms. The recorded spikes
for this stimulus were binned at the stimulus rate, i.e., a
bin corresponds to a time period of 33.33ms. Data from
this experiment consisted of 64500 samples of stimulus and
corresponding binned spike recordings for a timespan of nearly
36 minutes.

B. Stimulus Pre-processing

Both visual stimuli (natural images and checker-board
flickers) used to stimulate the retina vary spatially in light

67



COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

Figure 3. Stimulus pre-processing for Cell-14: (a) 2D Gaussian weighting
used, (b) Local stimulus (natural image), (c) Gaussian weighted local
stimulus (natural image), (d) Local stimulus (checker-board flicker) and (e)
Gaussian weighted local stimulus (checker-board flicker).

intensity. Depending on the spatial arrangement of a pixel
(of the visual stimulus) in the receptive field (RF) region of
an RGC, the effect of light intensity on the RGCs spiking
behaviour differs. This is usually a maximum at the centre
and reduces gradually as it moves towards the periphery of
the RF region. In order to emulate this, the local stimulus (the
area of the visual stimulus that falls within the RF region)
of each RGC is weighted using a 2D Gaussian filter (with a
support of 30). Two examples, one each for the natural image
stimulus and the checker-board flicker stimulus, showing the
Gaussian weighting are presented in Figure 3.

IV. MODELLING EXPERIMENTS

Computational models were developed to predict the rate of
spikes generated by the RGCs for each natural image stimulus.
The mean response from 13 repeated trials (spikes per trial) is
selected as the target spike rate for training the computational
models. The selection of input parameters to the computational
models is discussed in Section IV-A. Details of the modelling
techniques used for developing the computational models are
briefly discussed in Section IV-B and the results from the
modelling experiments are discussed in Section IV-C.

A. Selection of Inputs to the Models

Natural images have considerably different statistical
features in comparison with artificial visual stimuli, which are
generally used to stimulate the retina in electro-physiological
experiments. From the Gaussian weighted local stimulus
different statistical features, namely the mean, standard
deviation, skewness and kurtosis, were extracted and their
correlation with the neuronal response was analysed to identify
the input parameters to the models. Only those RGCs with the
30 RF region falling within the image boundary and having
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Figure 4. Correlation between local mean stimulus intensity and mean spike

rate (spikes/trial): (a) for Cell-14 with good correlation and (b) for Cell-15

with poor correlation. R? values are also given as a measure of correlation.
The red line represents the best linear fit for the points.
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Figure 5. Correlation between local stimulus intensity deviation and mean
spike rate (spikes/trial): (a) for Cell-14 with good correlation and (b) for
Cell-15 with poor correlation. R? values are also given as a measure of

correlation. The red line represents the best linear fit for the points.

elicited spikes for a majority of the images were selected for
modelling. A general consensus among existing studies on the
modelling of RGCs is that the spiking behaviour correlates
with the mean intensity or mean contrast. In our analysis,
the majority of the RGCs had substantial correlation between
mean intensity and neuronal spiking, while others had very
poor correlation. An example is shown in Figure 4 for two
randomly selected sample cells, Cell-14 with good correlation
(Figure 4(a)) and Cell-15 with poor correlation (Figure 4(b)).

Among the cells with good correlation between the mean
intensity and the spike rate, the local stimulus intensity
deviation also had good correlation with the spike rate. This
is shown in Figure 5 for Cell-14 and Cell-15. It was found
that the skewness and kurtosis, although quite different from
that observed in random artificial stimuli, had little correlation
with the neuronal spiking. The scatter plots showing this are
presented in Figure 6.

From this analysis, only the mean and standard deviation
of local stimulus intensity were identified to be important in
predicting the cell’s response. Only those cells that showed
good correlation between the local mean stimulus intensity
and the spike rate were selected for modelling. Two sets
of computational models were developed to check whether
including more input parameters would improve the overall
prediction performance. The first set was developed with the
local mean stimulus intensity as the only input parameter to
the models. The second set was developed with the local mean
stimulus intensity and the local stimulus intensity deviation as
the input parameters to the models.
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Figure 6. Correlation between and mean spike rate (spikes/trial) and (a) local
stimulus intensity skewness, and (b) local stimulus intensity kurtosis and
mean spike rate (spikes/trial). The red line represents the best linear fir for
the points.

B. Modelling Techniques

The LN technique [5] to model an RGC separates the
model into a linear filter and a nonlinear function, which
are cascaded to estimate the spike rate corresponding to each
visual stimulus. The LN technique used here involves only
one linear filter, although multiple filters are possible [26]. The
shape of the linear filter is approximated by the spike triggered
average (STA) stimulus for the neuronal recording using the
Gaussian white noise checker-board flicker stimulus. The STA
is defined as the average stimulus preceding a spike in the cell.
This can be mathematically represented as:

thTzlmﬁ

STA = 1
Y fi M

where T is the total time period in which spikes were recorded,

5:(7) is the sequence of mean stimulus intensity (mean of the
Gaussian weighted local stimulus intensity, Figure 3(e)) from
time (f — T) to time ¢, and f; is the number of spikes recorded
at time ¢. In this work, the value of T was identified as 21 time
bins. The static nonlinearity is represented by a parameterised
form of a cumulative normal density function [5]. In order to
fit this nonlinearity, the target spike rate was approximated by
the total number of spikes in a time bin.

The LN models were developed with only the local mean
stimulus intensity as input. Although not addressed here, two
options to include more than one input parameter are to have
the same number of linear filters as the number of input
parameters, and to combine the input parameters linearly or
nonlinearly to form a single parameter.

Machine learning based regression algorithms used here
include ELM, BRNN, SVR and kNN regression. The
ELM [27] is based on single hidden layer feed-forward
networks. The back-propagation technique used for training
in feed-forward neural networks is replaced in the ELMs by
random assignment of weights of the hidden layer neurons
and analytical assignment of weights of the output layer
neurons to speed up the training process. The BRNN [28] is
a feed-forward neural network, which incorporates Bayesian
regularisation into the training process to reduce potential
overfitting and overtraining which commonly occur in the
back-propagation technique. The SVR [29] is an extension
of the popular support vector machine (SVM) classifier to
regression problems. In this, a complex nonlinear relationship
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TABLE I. MAXIMUM MEAN SPIKE RATE OF THE SELECTED RGCs

Cell-ID  Spike Rate Cell-ID  Spike Rate ~ Cell-ID  Spike Rate
Cell-07 10.231 Cell-31 13.462 Cell-39 13.615
Cell-14 6.462 Cell-32 9.615 Cell-42 5.923
Cell-16  8.308 Cell-33 14.692 Cell-47 17.538
Cell-23 14.000 Cell-34 13.615

in the original space is transformed to a linear relationship
in a higher-dimensional feature space. In the kNN regression
algorithm [30], the value corresponding to an input is predicted
as the average of its closest k neighbours from the training
samples in a feature space. The parameters of the machine
learning models were estimated using five-fold cross validation
with five repeats.

C. Results

Among the 300 natural images, neuronal recordings for
150 images were selected for training the models, while
the neuronal recordings for the remaining 150 images were
used for testing. In order to compare the performance of
these models three metrics, namely root mean square error
(RMSE), coefficient of determination (R?) and Kendall’s rank
correlation coefficient (Tau) between the actual spike counts
observed in the electro-physiological experiments and the
model predictions, are used. Smaller values of RMSE, and
larger values of R? and Tau are desired. Modelling results from
11 different RGCs are presented here. The maximum spike rate
from these RGCs are given in Table I, while they all had a
minimum spike rate of zero.

The first set of models was developed with the local mean
stimulus intensity as the only input using the LN, ELM,
BRNN, SVR and kNN techniques. Performances of these
models for the test samples are compared using the three
metrics — RMSE in Table II, R? in Table III and Kendall’s Tau
in Table IV. In general, it can be seen that the machine learning
models performed better than the LN technique in terms of
RMSE and R?, while the LN technique performed better
in terms of Kendall’s Tau for majority of the RGCs. From
these results, although the improvement in the performances
is marginal, it can be observed that the machine learning
algorithms provide a good alternative to the standard LN
technique in modelling RGCs stimulated with natural images.

The second set of models was developed with the mean
and standard deviation of the local stimulus intensity as the
input parameters. As the LN technique used in this work has
only one linear filter, the mean and standard deviations could
not be used simultaneously as inputs. As the machine learning
algorithms performed on par or marginally better for the first
set of models, only these approaches were used to develop
the second set of models. Performances of these models for
the test samples of the same RGCs are compared using the
same three metrics - RMSE in Table V, R? in Table VI
and Kendall’s Tau in Table VII. A comparison between the
corresponding metric comparison tables (RMSE in Tables II
and V, R? in Tables III and VI, and Kendall’s Tau in Tables
IV and VII) shows that adding the local stimulus intensity
deviation as an additional input has not resulted in any major
improvement for majority of the modelled RGCs. This could
be because of the high correlation between the mean and the
standard deviation of local stimulus intensity (Figure 7). Due
to this, both these inputs could be feeding in similar and thus
redundant information to the models.
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TABLE II. RMSE BETWEEN ACTUAL SPIKE RATE AND PREDICTED SPIKE
RATE FROM THE FIRST SET OF MODELS. SMALLER VALUES INDICATE
BETTER PERFORMANCE.

Cell-ID LN SVR ELM kNN
Cell-07 1.114  1.133 1.120  1.127 1101
Cell-14 1.042  1.031 1.030  1.035  1.026
Cell-16 1.703 1.679 1.646 1.669  1.645
Cell-23 2419 2443 2401 2381 2.39
Cell-31 1.666  1.801 1.853 1772 1.724
Cell-32 1.836  2.050 1739 1.871 1.900
Cell-33  2.639 2.680  3.131 2.665  2.631
Cell-34 2996 2837 2.681 2.824  2.684
Cell-39 2951  3.241 3.035 3.084  3.030
Cell-42 1.662 1.581 1.568 1595  1.568
Cell-47 2956 2981 2950 2961 2937

TABLE III. R? BETWEEN ACTUAL SPIKE RATE AND PREDICTED SPIKE
RATE FROM THE FIRST SET OF MODELS. LARGER VALUES INDICATE
BETTER PERFORMANCE.

Cell-ID LN SVR ELM kNN
Cell-07  0.778  0.771 0773 0.769  0.780
Cell-14  0.630 0.626  0.627  0.621 0.630
Cell-16 0294 0331 0324 0294  0.325
Cell-23 0241 0225 0220 0237 0.222
Cell-31 0.637 0.587 0543  0.578  0.601
Cell-32 0411 0.460 0456  0.371 0.343
Cell-33  0.608 0.576 0506 0.570  0.588
Cell-34  0.256 0341 0352 0282 0.349
Cell-39  0.265 0270 0.262 0206  0.260
Cell-42  0.105 0.121 0.117 0.100 0.117
Cell-47 0299 0.287 0282 0279  0.286

TABLE IV. KENDALL’S TAU BETWEEN ACTUAL SPIKE RATE AND
PREDICTED SPIKE RATE FROM THE FIRST SET OF MODELS. LARGER
VALUES INDICATE BETTER PERFORMANCE.

Cell ID LN SVR ELM kNN
Cell-07  0.671 0.631 0.654 0.668  0.668
Cell-14  0.542 0536 0536  0.538  0.537
Cell-16 0416 0410 0407 0385  0.407
Cell-23 0355 0342 0351 0376  0.340
Cell-31 0.501 048 0485 0505  0.502
Cell-32 0374 0359 0375 0367 0.329
Cell-33  0.565 0.519 0548  0.534  0.542
Cell-34 0271 0319 0326 0266 0.337
Cell-39 0358 0343 0341 0271  0.340
Cell-42 0225 0237 0244 0223 0244
Cell-47 0397 0362 0376 0.374  0.376

V. DISCUSSION AND FUTURE WORK

Ganglion cells are the first spiking neurons in the visual
pathway, and accurately modelling them is an important step
towards a refined understanding of retinal functions in natural
visual environments and the development of a biologically
inspired artificial vision system. Most of the existing studies
that addressed this have used an artificial visual stimulus to
evoke spikes from the RGCs. As the artificial visual stimuli
have different statistical features and cannot generate the same
range of neuronal responses in comparison with the natural
image stimuli, realistic models of RGCs should be derived
from neuronal responses to natural image stimuli. This has
been addressed in the work presented by applying different
machine learning approaches to develop computational models
of RGCs, which have been stimulated with natural images.
From the results it can be seen that the machine learning
approaches provide a good alternative to the standard LN
technique in modelling RGCs. The modelling experiments
were performed in two stages. Initially the mean intensity of
the local stimulus region of each RGC was selected as the
input parameter to the models. Further modelling experiments
used the standard deviation of the local stimulus intensity as
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TABLE V. RMSE BETWEEN ACTUAL SPIKE RATE AND PREDICTED SPIKE
RATE FROM THE SECOND SET OF MODELS. SMALLER VALUES INDICATE
BETTER PERFORMANCE.

Cell-ID  SVR ELM kNN
Cell-07 1.109 1.298 1.147 1.322
Cell-14 1.047 1.171 1.024  1.034
Cell-16 1.662  1.625 1.658 1.635
Cell-23 2414 2368 2447 2380
Cell-31 1.678 1.744  1.848 1.797
Cell-32 1.930 1.871 1.906  1.865
Cell-33 2588 2452 2696 2472
Cell-34 2829 4.663 2769 2771
Cell-39 3321  3.045 3.043 3.067
Cell-42 1.581 1.581 1.614  1.579
Cell-47  3.092 2948  3.108  2.921

TABLE VI. R? BETWEEN ACTUAL SPIKE RATE AND PREDICTED SPIKE
RATE FROM THE SECOND SET OF MODELS. LARGER VALUES INDICATE
BETTER PERFORMANCE.

Cell-ID  SVR ELM kNN BRNN
Cell-07  0.774 0.712 0766  0.691
Cell-14  0.602 0576 0.616  0.623
Cell-16 0346 0370  0.309  0.340
Cell-23  0.230 0235 0.210  0.229
Cell-31 0.638 0.599  0.561 0.575
Cell-32 0389 0366 0353 0371
Cell-33  0.601 0.632  0.566  0.634
Cell-34 0315 0.053 0.307  0.300
Cell-39 0211 0233 0242 0225
Cell-42  0.114 0122 0.082  0.104
Cell-47 0238 0276 0213 0.293

TABLE VII. KENDALL’S TAU BETWEEN ACTUAL SPIKE RATE AND
PREDICTED SPIKE RATE FROM THE SECOND SET OF MODELS. LARGER
VALUES INDICATE BETTER PERFORMANCE.

Cell-ID  SVR ELM kNN BRNN
Cell-07  0.656  0.623  0.669  0.598
Cell-14 0541  0.572 0543  0.556
Cell-16 0426 0437 0422 0421
Cell-23 0374 0359 0369  0.360
Cell-31 0.490  0.504 0484  0.490
Cell-32 0279 0375 0376  0.345
Cell-33 0539 0.572 0528  0.584
Cell-34  0.334 0338 0.337 0303
Cell-39 0306 0331 0309 0324
Cell-42 0242 0.244  0.182  0.246
Cell-47 0376  0.406  0.341 0.395

an additional input parameter, which marginally improved the
prediction results for some RGCs.

There are many future directions to this research. An
obvious one is to move from static images to temporal
image sequence of natural images (movies). However, further
improvements could be made to the current models before
that - (i) by using a better estimate of the RF region and
(i) by considering the lateral interconnections that could
affect the spiking behaviour. A contributing factor towards
the marginal performance improvements of the machine
learning models could be the crude approximation of the
RF region with 30 support and then weighting it with
the 2D Gaussian. An alternative way to estimate the RF
region is given in [18]. However, further experiments are
necessary to compare these two methods. The modelling
experiments presented in this paper treat the neuronal spiking
behaviour of each cell individually. However, this is not
the case in a biological system. There are many lateral
interconnections in the retina through horizontal and amacrine
cells that could result in an excitatory or inhibitory effect
on nearby RGCs [31] and could be more evident for a
natural image stimulus. Further modelling experiments are
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Figure 7. Correlation between local mean stimulus intensity and local
stimulus intensity deviation: (a) for Cell-14 and (b) for Cell-15. R? values
are also given as a measure of correlation. The red line represents the best

linear fit for the points.

necessary to include such spatio-temporal correlations into
the RGC models. Furthermore, it is difficult to identify a
single machine learning approach that works for all RGCs.
Depending on the type of the RGC (e.g., approach motion
detection, lateral motion detection, etc.), the features in the
image that stimulate the cell vary and a machine learning
algorithm may perform best for a specific type of RGC. In
future modelling experiments, we will also be looking into
this.
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