
Predictive ACT-R (PACT-R)

Using A Physics Engine and Simulation for Physical Prediction in a Cognitive Architecture

David Pentecost¹, Charlotte Sennersten², Robert Ollington¹, Craig A. Lindley², Byeong Kang¹

Information and Communications Technology¹
Robotic Systems and 3D Systems²

University of Tasmania¹

CSIRO Data 61²
Hobart, Tasmania

Australia
email: davidp12@utas.edu.au

email: charlotte.sennersten@csiro.au

email: robert.ollington@utas.edu.au
email: craig.lindley@csiro.au

email: byeong.kang@utas.edu.au

Abstract Advanced Cognitive Technologies can use cognitive

architectures as a basis for higher level reasoning in Artificial

Intelligence (AI). Adaptive Control of Thought – Rational

(ACT-R) is one such cognitive architecture that attempts to

replicate aspects of human thought and reasoning. The research

reported in this paper has developed an enhancement to ACT-

R that will allow greater understanding of the environment the

AI is situated in. Former research has shown that humans

perform simple mental simulations to predict the outcomes of

events when faced with complex physical problems. Inspired by

this, the research reported here has developed Predictive ACT-
R (PACT-R), based upon integrating a three dimensional (3D)

simulation of the AI’s environment to allow it to predict, reason

about, and then act on, what is happening, or about to happen,

in its environment. Here, it is demonstrated by application in an

autonomous squash player that the predictive version of ACT-

R achieves significantly improved performance compared with

the non-predictive version.

Keywords- Cognitive Architectures; ACT-R; 3D Simulation.

I. INTRODUCTION

What do you do if you are asked to catch a ball that has
been thrown in the air? You make a quick estimate of its
trajectory, predict where you need to be to intercept it, and
then move to that location. What about if it is going to bounce
off a surface? Although there is now a little uncertainty, if you
don’t know the properties of the ball and surface, it is,
nevertheless, not much more difficult to make a good enough
prediction and correct for any errors after the bounce. What
about if the ball has to bounce several times before you reach
it? Now, you are more likely to start looking at the likely chain
of events that will occur to predict the outcomes.

How could a cognitive robot – that is, a robot endowed
with deliberative problem-solving – track and interact with a
fast moving ball or object in a complex environment? How
could a robot interact or take actions in a dynamic situation?

Artificial Intelligence (AI) in robotics commonly uses
either an algorithmic approach, that is, a custom solution to a
specific problem [1], or subsumption-like architectures that
react to the world as it is perceived [2]. The algorithmic
approach is effective for well-understood problems with little
variation, but it is not so good at responding to the unexpected.
Subsumption follows a ‘stimulus and response’ model. It is
good at dealing with immediate problems, like avoiding
obstacles, but can be lacking when it comes to a multi-stage
mission that may require evaluation and decision-making over
several alternative sequences of actions. Cognitive
architectures have been proposed as an alternative that could
be more suitable for accomplishing missions that require
sequences of decisions, rather than more purely reactive
associations between sensor inputs and motor outputs.

The American Physiological Association defines
cognition as, “Processes of knowing, including attending,
remembering, and reasoning; also the content of the
processes, such as concepts and memories.” Cognitive
architectures are based on theories of how the human mind
reasons to solve problems. They are used to create AIs based
on, or inspired by, human cognitive processes that work
through problems in a systematic way [3]. They are based on
a Computational Theory of Mind, which holds that the mind
works like a computer, using logic and symbolic information
to work through, and solve, problems. Symbolic information
is, in a programming context, a textual/verbal approach to
representing knowledge in a way that is abstracted from
sensory data, since the relationships between words and their
referents are conventional. This abstraction supports
potentially complex symbolic reasoning processes, but omits
much detailed information about objects and phenomena that
the symbols refer to in a given context.

Hence cognitive architectures, like other approaches to AI,
have their own limitations. For example, they are similar to
expert systems [4][5][6] in using facts and production rules
that require a human expert to create. They are strong at

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

symbolic reasoning with logic, but the ontological status of
symbols within human cognition is unclear [7], and the
biological foundations of human cognition are very different
from the nature of expert systems and formal logics [8]. In
particular, expert systems and formal logics are technologies,
i.e., inventions of human cognition, rather than its basis. They
may, nevertheless, be useful and even powerful
representations of some human capabilities that are based
upon much lower level biological mechanisms.

An aspect of human cognition that is not captured in most
cognitive architectures is simulation. Imagination, and the use
of imagined visualisations, constitutes a conscious result of
simulation within human cognition. An example of the use of
simulation in an artificial cognitive system is the Intuitive
Physics Engine (IPE), which uses simulation to understand
scenes [7]. This method uses a fast approximate simulation to
make a prediction of the outcome of a physical event or action,
like the toppling of a stack of blocks.

In synthesizing a world, simulation provides a cognitive
system with the richness of a sensed world, with far more
detail than that which can easily be captured in higher level
symbolic world descriptions alone. Simulating a 3D world and
aspects of its physics involves using mathematical models of
world structure, kinematics, dynamics and object interactions
in which complex behaviours can be synthesized from a
relatively small set of structural and physical equations. The
quantisation of space and time in a simulation can be
represented, e.g., to double floating point precision, resulting
in an extremely large space of possible simulated world states
and histories. The level of abstraction involved in declarative
or symbolic representations is usually much higher than a
simulated world state description, since it is expressed at a
level suitable to specific decision processes, meaning that
many simulation states can be compatible with a single
declarative representation. That is, a declarative statement can
provide a succinct and abstracted representation of a large set
of world state denotations. For example the first order
predicate ‘is_above(A,B)’ can apply to any object in a
simulation that is above another object. But to represent all of
those possible individual denotations (every possible situation
and variation of positions in which one object is above
another) declaratively would be practically impossible. The
declarative level of decision processing can be linked to the
simulation state, e.g. via spatiotemporal operators linked to
the simulation structure, such as testing for the relative 3D
positions and sizes of objects A and B as a basis for assigning
a truth value to the statement ‘is_above(A,B)’. Hence there is
a useful balance between what can be represented and
reasoned about most effectively using declarative
representations, and the large number of potential states
having small differences represented by a simulation. These
are complementary modeling methods. This paper describes
an experiment designed and implemented to further test the
theory that simulation is a powerful component of cognition.
The motivating research question asked was: “How can
simulation and prediction improve decision quality in a
cognitive architecture?” In the experiment designed to address
this question, a predictive module was added to a cognitive
architecture, and the performance of the predictive and non-

predictive versions of the architecture were tested for
controlling automated players of a virtual game. The
predictive module used a 3D physics simulation engine to
model the environment of an embodied AI, so that it could
function in a dynamic situation without explicit coding of
decision rules for all possible interactions in the environment.
The simulation engine mathematically models interactions
with the environment so that the cognitive module can handle
physical events and actions with a reduced and simplified rule
set.

An existing cognitive architecture, Adaptive Control of
Thought – Rational (ACT-R) [10][11][12], was chosen for the
research and extended with a novel predictive module. Two
virtual robots were implemented to play a competitive game
of squash (Figure 1). Squash is a racket and ball sport played
in an enclosed room between two players. It was chosen
because it provides both a physics challenge (tracking and
hitting the ball), and a cognitive challenge (playing a good
tactical game to out-manoeuver an opponent).

Figure 1. Squash Simulation showing AI controlled players and ball path
(grey track).

Squash is a racquet sport played in a closed room between
two players. The ball is free to bounce around the walls, and a
player is free to hit the ball against any wall as long as it
reaches the front wall before its second bounce on the floor.
The opponent also has to reach the ball and play a shot before
the second bounce.

The game has been described as physical chess, since it is
both physically demanding and highly tactical. The physical
challenge is a result of the continuous explosive acceleration
needed to react to, and retrieve, an opponent’s shot.

The tactical element of the game plays out in the shot
selection and how this can be used to apply pressure to the
opponent. When deciding when and where to hit the ball the
player is faced with many choices. Do they take the ball early
before it reaches a wall? Do they wait and give themselves
more time to play a better shot, but also give the opponent
more time to move to a stronger court position? Is a shot to
the front of the court the right shot? It puts the opponent under

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

more physical pressure, but if they reach it with a bit of time
to spare it opens up a lot of attacking shots.

Squash is also a game of angles, much like a real-time
game of snooker. Judging and playing the angles is an
important part of the game.

Using squash as the test scenario provides a known rule
set for the game and existing tactical knowledge for
implementing the AI models.

Two predictive elements were added to the existing ACT-
R architecture. The predictive module always provided a
prediction of the ball’s flight path for the purpose of
intercepting and hitting the ball. A further predictive element
was added that allowed the AI model to evaluate its own
possible actions with a simulation to determine the likely
outcome of those actions. Essentially, the model was able to
ask very simple “what if?” questions about how its own
actions might play out in the future. Performance change due
to the ability to simulate and predict actions was the metric for
answering the research question.

The cognitive models implemented included three
different mechanisms for choosing shots to play during a
game of squash: 1) a pure random shot selection to act as a
base control model; 2) a model that used rules to implement a
shot selection heuristic; and 3) a model that used simulation
to predict shot outcomes before selecting a shot type.

The models were evaluated by playing them against one
another. Data gathered from the squash play/simulation
sessions recorded detailed information about shot selection,
allowing analysis of the behaviour of the models and the
effectiveness of their respective shot selection methods.

Section II, of this paper, gives some background to
cognitive and non-cognitive architectures. In Section III a
description of the research undertaken and methodology used
is given. Section IV describes the AI modelling and how
prediction was incorporated. Section V discusses the results
obtained.

II. COGNITIVE AND NON-COGNITIVE ARCHITECTURES

Cognitive architectures are based on theories of how the
human mind reasons to solve problems. These are AI systems
based on human cognitive processes that work through
problems in a systematic way [3]. They are based on the
Computational Theory of Mind [13], that proposes that the
mind works like a computer running a program, using logic
and symbolic information, to work through, and solve,
problems.

The cognitivist approach follows a rule-based
manipulation of symbols, and uses patterns of symbols, as
designed by humans, to represent the world [14]. A key
characteristic is that the mapping of perceived objects to their
associated symbols is either defined by humans, or learned in
a way that can be viewed and interpreted by humans.
Decisions about which actions to perform are derived by
processing of the internal symbolic representations of the
world.

The ACT-R cognitive architecture is described in detail

below. Laird et al. describe the adaptation of the SOAR
cognitive architecture to robot control [15]. For the robotic
control task, SOAR was extended to include mental imagery,

episodic and semantic memory, reinforcement learning, and
continuous model learning; it also incorporates a

simultaneous localisation and mapping (SLAM) module.
SOAR includes procedural memory encoded as production
rules, and semantic memory implemented as declarative

associations. It uses both symbolic and non-symbolic
representations. A number of architectures similar to SOAR

and ACT-R are reviewed in [16]. [17] take an alternative
approach to cognitive architecture for robotics, proposing a
content-based approach that overcomes the symbol

grounding problem by matching perception and sensor data
to extensive cloud-based and annotated repositories of
images, video, 3D models, etc..

Most operational robots do not use cognitive architectures.
Instead, traditional robotic research and control has focused
on software solutions that solve problems having well
formulated solutions; this can be referred to as the algorithmic
approach [1]. These systems are particularly suited to well-
defined tasks and domains, and form a foundation for robotic
capabilities. However, there is a need for higher level
cognitive abilities to deal with less well defined problem
solving and uncertain situations where the scope for
variability is not sufficiently understood or is too complex, for
the development of algorithmic solutions. It is in these
situations that cognitive architectures might provide an
effective solution.

The subsumption architecture is another alternative to
cognitive architectures for robot control. The subsumption
architecture approaches intelligence from a different
perspective. Rather than rules that lay out a series of steps to
accomplish a task, it uses a very sparse rule set that responds
to sensor values to generate control outputs [18][19][20].
Brooks describes subsumption as a layered finite state
machine where low-level functions, like “avoid obstacles”,
are subsumed into higher-level functions, like “wander” and
“explore”. Each successive layer gives increasing levels of
competences. Lower levels pre-empt the higher levels, such
that a robot can explore, but will avoid obstacles when
necessary.

Key aspects of subsumption are: that it contains no high
level declarative representations of knowledge; no declarative
symbolic processing; no expert systems or rule matching; and
it does not contain a problem-solving or learning module [2].
It responds to the world by reacting directly to sensor inputs,
in order to generate corresponding control outputs. So in a
canonical subsumption architecture, there is no inherent
mechanism for problem-solving in an algorithmic way.

Subsumption can be very powerful. It is based on the
concept that the environment stands for itself, i.e., the
architecture reacts directly to environmental features, without
a mediating representation. It is a functional architecture
without being, or using, a declarative model of the external
world. However, without additional features, like memory and
goals, it is not as straight forward to implement a mission-
orientated task as it would be in a production rule based
architecture. Hence these different approaches are
complementary: the concepts behind subsumption –a layered
set of rules implemented as a finite state machine– are not

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

difficult to implement, and could be easily incorporated into
other cognitive architectures.

Society of Mind proposes a theory that intelligence arises
from the interactions of large numbers of simple functions
[21][22]. This is not an actual architecture, but rather a theory
[23] that argues against the idea that a single unified
architecture or solution can account for intelligent behaviour.

A robotic AI can be created completely within a single
architecture, using rules that control every aspect of the
decision making process, but those architectures are not
always ideal for every style of decision-making. Society of
Mind theory argues for a modular approach to implementing
an intelligence. Implementing simulation as an extension to a
cognitive architecture, but using an external 3D engine to
model the environment, follows this concept. The simulation
is a separate, specialised function for solving problems in
dynamic physical situations.

ACT-R is a hybrid cognitive architecture consisting of
both symbolic and sub-symbolic components [24][25]. It is a
goal-orientated architecture. The symbolic data consists of
facts and production rules. The sub-symbolic data is metadata
about facts and production rules that control which facts are
recalled and which production rules are chosen to fire when
multiple facts and rules are available.

ACT-R consists of a number of modules that interact
through a production system that selects rules to execute,
(Figure 2). Each module has a buffer, which can hold a chunk
of data (a key/value pair structure) representing the current
state of that module.

The matching system looks for patterns in the buffers that
it can use to select a production rule to potentially fire from
amongst those available. Each production rule includes a
pattern that gives the conditions under which it can fire.
Production rules can make requests of the modules, so they
can change their own internal state.

Figure 2. ACT-R structure – modules, buffers and production system.

III. METHODOLOGY

This section describes the research design, and the
implementation of the prediction and simulation extensions to
ACT-R to constitute the Predictive-ACT-R (PACT-R)
architecture.

A. Research Design

The research consisted of developing and implementing a
virtual environment for testing; developing a cognitive
module that implemented the simulation-based cognition
system; and developing AI models to test the system.

An ACT-R cognitive module was developed that mapped
a symbolic representation of a simulated environment into the
ACT-R framework. This module gave the required PACT-R
functionality for interpreting and acting within the
environment, as well as providing simple predictive
capabilities using simulation.

The use of prediction and simulation in ACT-R was
evaluated by comparing the performance of several models
that each implemented different levels of prediction. The aim
was to compare not only their performance, but also how
easy/simple it was to model and use a predictive AI.

B. Implementation

The system implementation consisted of three
components. The first was the design and implementation of
a cognitive module within ACT-R. This predictive module
gave models access to predictions about physical events, as
well as a mechanism to take actions.

The second element was a simulation of the game of
squash implemented in the Unity™ game engine. Parts of the
PACT-R module were also implemented with Unity™, and
communicated with the prediction module in PACT-R. The
Unity™ components of ACT-R were the physics simulation
and prediction engine.

The final element was modelling squash-playing AIs.
Three evaluation models were developed for testing and
cross-comparison.

C. Using Simulation and Prediction within a Cognitive
Architecture

The research investigated the use of a physics engine to
provide prediction for a cognitive architecture. The concept
requires a physics engine that can model and simulate the
environment of a robot controlled by a cognitive AI. The
simulation provides a symbolic representation of the
environment to a cognitive architecture. This gives the
cognitive model (the production rules) the information it
needs to understand and act within its environment.

One way of using this information is to explicitly encode
rules that check for certain conditions, for example, whether
an object is in a certain position, or is moving in a particular
direction; or for the relationships between objects in the
environment, for example, whether an object is to the left of
another object [17][26]. From this, the rules can encode
appropriate actions for the robot to take.

This research explored an alternative approach. Rather
than using explicit rules to interpret and decide actions, a
simulation of the environment was used to test actions. Figure
3 shows a high-level diagram of this approach. An
environment was modelled in the physics engine that provided
a squash environment and state information to a cognitive
model. From the information available, the cognitive model
can determine what actions might be appropriate. Rather than
determining the best, with rules, it passes the choices back to

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

the physics engine to be simulated, which then generates a
prediction of the outcome of that action. The results of each
prediction are passed back to the cognitive model, which then
decides which one is the most appropriate, and will therefore
be used.

Figure 3. Overview of PACT-R concept, environment is modelled and

simulated actions are tested under the control of a cognitive model.

D. PACT-R Module Implementation in ACT-R

The prediction system is implemented as an ACT-R
module that both controls a robot and does a simulation of the
robot’s environment, for the purpose of interpreting what is
happening in that environment. The module is, logically, a
single system, but in the implementation it is broken into two
functional parts: one residing in the ACT-R framework, and
the other inside the Unity™ game engine, which includes a
physics engine and also hosts the virtual world the robots exist
in (Figure 4).

Figure 4. PACT-R (in red) within the ACT-R and Unity.

The ACT-R component of the system maintains the
current simulation and prediction state for use by the AI
models, while the Unity™ component of the system contains
a customised physics engine that can simulate both the squash

ball’s path, and the outcome of shots played by the robot. The
two components of the module connect via a Universal
Datagram Protocol (UDP), a standard part of the Internet
Protocol (IP).

For PACT-R, the cognitive module represents implicit
knowledge of the sort that a squash player learns over many
years. Part of this implicit knowledge is the muscle memory
that allows a player to move correctly and hit a ball properly.
Another part is an implicit understanding of the tactical
situation. Coding this implicit knowledge into an AI model
would be difficult and counterproductive. A squash player
does not think about this, but rather uses it as a base to decide
what they should do next. Essentially, the difference resides
between ‘how do you do something?’ and ‘what you should
do?’. Implicit knowledge encodes the ‘how’, while the
simulation provides a basis for deciding ‘what’.

The PACT-R module has to work through ACT-R
modules and buffers. The extended prediction module is,
therefore, implemented as an additional cognitive module that
provides two buffers, one that commands are sent to, and the
other that gives the model access to a simplified view of the
environment. The prediction module communicates with the
simulation engine to both receive predictions and to request
predictions based on possible actions of the AI model. Figure
4 shows the modified ACT-R framework with the additional
prediction module.

IV. AI MODELLING AND PREDICTION

This section presents the outline of the AI models at a
conceptual level, rather than dealing with the details of
modelling them in ACT-R. Then, the implementation of the
prediction module in ACT-R is presented, together with its
interactions with the AI models, followed, by a description of
the evaluation and analysis framework for these models.

A. Prediction Models

The simulated task, playing squash, that the AI has to
perform is dynamic; the ball is in continuous motion, and can
follow complex paths as it interacts with the walls and floor.

Likewise, the AI’s robotic avatar is moving, as is the
opponent.

ACT-R is designed to look for, and respond to, patterns in
information in its buffers. The buffers hold information
representing both the external world, and the AI model’s
internal state. ACT-R can work with values and do simple
comparisons, but doing complex calculations and
relationships is not its forte (although it is possible to call Lisp
functions if required). Ideally, the modules should do the hard
work of breaking a situation into a simple symbolic
representation that the AI model can reason about, by
searching for patterns and relationships.

For a complex dynamic situation this may present a
problem, since an AI model requires deliberation (i.e.,
“thinking”) time. That is, it needs time to recognise a pattern
and fire a production for the situation the pattern represents.
For a dynamic situation, by the time a pattern has been
recognised and acted upon, the situation may have already
changed to something different.

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

The simulation-based module described here abstracts
away the details of the environment into a simple set of
relationships and events representing the elements in the
scene. This abstraction is highly domain specific; in the
implemented PACT-R, the abstraction focuses on the
specifics of the game of squash.

For squash, PACT-R identifies three actors: self, opponent
and ball. The module provides the AI model with information
about the approximate locations of these actors within the
squash court and information about what is happening, is
about to happen, or what might happen. Conspicuously absent
from the information is real coordinates and vectors of motion.
While ACT-R can work with this sort of information, it would
lead to a set of rules with a lot of spatial relationship
calculations and conditions that might not be processed
rapidly enough for real-time performance.

For this research, a baseline capability of the prediction
module included a prediction about the immediate known ball
flight path that the AI model could use to intercept the ball, at
an appropriate court position, in order to play a shot. This
prediction was made following the opponents shot when the
ball’s position and velocity could be determined. The ball’s
path was simulated in the physics engine, which tracked
where the ball would travel as it bounced against the walls and
floor. The path was calculated until it was determined that the
ball would have bounced on the floor for a second time. This
projected ball path was then used in the prediction module to
determine locations where the player could intercept and hit
the ball, based on their own movement ability.

The intercept positions were placed in the prediction
module buffer used by the AI model, which allowed the
models to intercept the ball without any further processing.
The intercept position could have been under AI control, but
this would have introduced more complexity to the modelling
and introduced more independent variables to the test, making
it difficult to determine cause and effect. For this reason, AI
control and reasoning was limited only to the shot selection
strategy.

To know where the ball and the player were within the
squash court, the squash court was broken into strategic zones
and all positions were given zone numbers. The squash
strategy implemented in the models was also based on zones,
with a limited selection of shots available for each zone. The
AI models selected a shot from those available in the zone
where the ball was intercepted. The zones and shots are based
on squash training drills commonly used to teach players basic
strategy.

B. Evaluation and Analysis

Three models were developed and evaluated. The first
model was a basic random shot selection model that
functioned as the base line to determine whether shot selection
by the other models was better than random chance.

The second model was a heuristic model that had an
explicit shot selection rule-set derived from the human
developer’s experience of playing squash. This model’s
purpose was to provide an alternative method to the prediction
model.

The third model used the predictive features of PACT-R
to test shots for their likely outcome.

In order to evaluate the performance of the three models,
a large amount of automatic data gathering and logging was
conducted from the virtual environment. This data gave both
comparative performance of the models, and an insight into
how they won or lost.

The data collected from the experiment was the result of
player to player rallies between two competing AI models.
The models were tested over a large number of rallies to
produce data for a statistical analysis of the relative
performance of the models.

For each test session the only variables were the shot
selection strategies of the two competing AI models.

Test sessions consisted of two AI models (out of three)
loaded into the ACT-R environment, playing against each
other over a series of rallies. A rally is where the two players
alternate shots until one is unable to retrieve or return the shot,
and therefore loses. Data recorded included shot selection and
state during the rally, and the final results of each rally. This
was repeated for a fixed time (from three to eight hours) to
generate a large sample set of data.

Squash starts with a serve from one player to another. For
a test run, the serve was alternated so there was no bias or
advantage to either model. Player 1 always s tarted on the
forehand side (right), and player 2 on the backhand. The
players were ambidextrous with no advantage to either side
(unlike human squash players).

V. RESULTS AND DISCUSSION

The three models discussed here all follow the same base
strategy. They have to choose from three or four shots
available for the zone where the ball is to be hit. The basic
model did not use any additional logic to choose a shot. The
other two models tried to choose a shot that would force the
opponent to have to travel the furthest to reach the ball in order
to play their next shot.

A. Basic Random Shot Selection Model

The first AI model developed was a random shot selection
model. This created a setup with three or four equally possible
shots for each court zone for ACT-R to choose with its
production rules. With no additional conditions in the rules,
other than the court zone, a shot would be chosen at random
from those available.

This model acted as a baseline control. It was also the only
model used during development and balancing of the
simulation and physics engine.

B. Heuristic Selection Model

The second model was a heuristic model that used ACT-
R production rules that implemented a simple squash strategy,
which tried to choose shots that would be directed to an area
of the court where the opponent was not present. For example,
if the opponent was deep in the court (i.e. close to the front
wall of the court), it would favour a short shot; and if the
opponent was on the forehand side, it would favour a
backhand shot. Shot selection rules for each zone were

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

implemented using this simple strategy. In real squash, this
approach is a good starting point for any human player.

Figure 5 is a flow chart representation of part of the
heuristic model, although it only shows one shot selection
choice, rather than the many that were required to model shots
for all court zones. It should be noted that for ACT-R
production rules, matching and firing does not proceed in a
step-by-step fashion like a flow chart. The flow chart
representation is used to show the logic, rather than the
functioning of the models.

(p take-shot-z22-z23-StHi-OpSh
 =goal>
 ISA playing-mode
 state 2 ; play mode
 ?command>
 state free
 =predictive> ; PACT-R module
 ISA predictive-state ; correct chunk type
 special 5 ; shot selection mode
 > intercept-zone-width 1 ; position wide
 intercept-zone-depth 2 ; position mide
 > op-zone-depth 2 ; op at front of court
 ==>
 +command>
 ISA command-packet
 req-cmd 4 ; Set Shot to play
 :req-param 51 ; Long High Straight
)

Figure 5. Heuristic AI shot selection model flow chart and an example
rule showing a single zone selection.

Each diamond and rectangle pair in Figure 5 corresponds
to a production rule. The heuristic model consisted of 45
production rules for shot selection, plus another 5 to
implement the functionality required for starting and ending a
rally, and for returning to a central court position when not
returning a shot.

C. Predictive Selection Model

The third AI model was the predictive model. The random
and heuristic models both had access to a prediction of the
balls’ path that they could use to determine where to go to hit
the ball, and, consequently, what shots they should be playing,
based on where the shot was to be taken.

The predictive model went a step further in predicting the
outcome of shots the AI model might take. This was done by

allowing the AI model to choose a possible shot before
passing that information to the prediction module for
simulating and predicting its consequences. The module
would simulate how the shot would play out to predict where
the opponent would be when the shot was played, and how
much difficulty they would have in then retrieving it and
playing a counter shot. The prediction was based on the same
strategy as the heuristic model, trying to find a shot that was
as far from the opponent as possible.

The prediction system has one advantage over the
heuristic: as it is calculating the path of the shot under test, it
sometimes found situations it could not solve for the opponent
to intercept with the ball. In essence, it had found winning
shots that the opponent could not return. This result was
passed back to the AI, which allowed the predictive model to
find, and choose, these occasional winning shots.

Figure 6 shows the prediction model as a flowchart, and a
sample rule. Unlike the heuristic model’s 45 rules, this model
only requires 26 rules for shot selection. Each rule defines a
shot to be tested for a particular zone of the court.

(p take-shot-z22-z23-StHi
 =goal>
 ISA playing-mode
 state 2 ; in play mode
 ?command>
 state free
 =predictive> ; PACT-R module
 ISA predictive-state ; correct chuck type
 special 5 ; in prediction mode
 < prediction-count 4 ; more testing allowed
 - registered-shot 51 ; not already tested
 > intercept-zone-width 1 ; court pos wide
 intercept-zone-depth 2 ; and mid depth
 ==>
 +command>
 ISA command-packet
 req-cmd 5 ; Test Shot (predict)
 :req-param 51 ; Long High Straight
)

Figure 6. Predictive AI shot selection flow chart and sample rule.

The predictive system works by allowing the AI model to
test shots that are available to play. This allowed the prediction
system to usually come up with the best shot available within
the limits of the prediction resolution. Figure 7 shows the
progression of the shot testing as the cyan player moves to
intercept the shot. The grey track shows the ball’s current path

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

in the top right frame. In subsequent frames blue tracks appear
which represent possible shots. In the final frame the cyan
player has played the best shot found which, is another straight
shot down the left hand side (shown in grey again).

Figure 7. Time lapse of predictive shot selection showing test predictions
(blue tracks) for cyan robot.

This sequence of shots takes place over a period 800ms,
Figure 8 shows an abbreviated trace of the ACT-R rules firing
for the sequence in Figure 7. Prediction tests are 150 ms apart,
which corresponds to ACT-R’s default cycle time for rule
firing. The first shot tested scored the highest and is selected
as the shot to play in the FINAL-SHOT-SELECTION rule
fired at the end of the trace.

9.050 PRODUCTION-FIRED TEST-SHOT-Z22-Z23-STHI

Testing shot 51 0
better predicted value 2 for 51

9.200 SET-BUFFER-CHUNK SPATIAL SPATIAL-STATE45
9.200 SET-BUFFER-CHUNK SITUATIONAL-STATE45
9.250 PRODUCTION-FIRED TEST-SHOT-Z22-Z23-BODF

Testing shot 23 1
predicted value 1 for 23

9.400 SET-BUFFER-CHUNK SPATIAL SPATIAL-STATE46
9.400 SET-BUFFER-CHUNK SITUATIONAL-STATE46
9.450 PRODUCTION-FIRED TEST-SHOT-Z22-Z23-CRHI

Testing shot 52 2
predicted value 1 for 52

9.600 SET-BUFFER-CHUNK SPATIAL SPATIAL-STATE47
9.600 SET-BUFFER-CHUNK SITUATIONAL-STATE47

…
9.850 PRODUCTION-FIRED FINAL-SHOT-SELECTION

Figure 8. ACT-R trace of a test and prediction sequence of rules being
fired

D. Performance

Figure 9 shows the player to player performance of all
three models. When playing identical models against each
other the results are even, as would be expected. Both heuristic
and predictive models win over the basic random selection
model. The predictive model also wins over the heuristic
model, with a score of 312 to 228. The binomial test p-value
for this is 0.0003, showing that this is unlikely to be due to
random chance.

Figure 9. Head to head scores for all models over six hour duration

games.

When developing the models, there was a clear advantage
to the basic and predictive models over the heuristic model in
the reduced number of rules required to implement the shot
selection strategy. The basic and predictive models required
25 and 26 rules, respectively. The heuristic model required 45
rules to implement a simple shot selection strategy. The
predictive system did have a disadvantage in the time it took
to select a shot; it was not always able to complete its shot
selection, and in that case it reverted to a random choice.

The three models that were developed could all play
squash. The heuristic and predictive models both
outperformed the basic model. The predictive system also
outperformed the heuristic model, despite some limitations in
its implementation.

VI. CONCLUSION

The research question asked “How can simulation and
prediction improve decision quality in a cognitive
architecture?”. The results show that, within the limitations of
the experiment, a predictive model – with an ability to use
simulation to test its own actions to determine and evaluate
their possible outcome – held a clear advantage over a model
that used heuristics to test relationships between objects in a
simulated scenario.

It is not, perhaps, surprising that an approach that glimpses
at the future, however imperfect, would have an advantage
over reasoning about a situation based only on where objects
are, how they were moving, etc., in the moment. The results
of the investigation indicated that prediction provided a more
effective appraisal of the value of an action, without requiring
detailed rules.

There is a caveat here though: the evaluation of the
heuristic model was an evaluation of its specific rule set, and
it could have been developed further. Its rule set was not very
complicated, and it is entirely possible that with a larger rule
set, and more detailed situational knowledge, it could have
out-performed the predictive model. Indeed, both the heuristic
and predictive models could have been developed further, to
leapfrog each other in a virtual arms race.

However, there was another aspect to the modelling. The
predictive model only required 26 rules versus the 45 rules of

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

the heuristic model. Not only were there less rules, they were
simpler. Each rule simply stated a possible shot to test, and
required no expert knowledge of how, or when, that shot
might be used. In comparison, the heuristic rules required an
understanding of squash strategy, and each rule had to be
carefully considered as to how it would play out.

While both models could have been extended, the effort
required to do so would have been considerably different. The
heuristic model would require a lot of expert knowledge. The
predictive model would have required only fixing some
design issues and, perhaps, increasing the fidelity of the
predictions. Of course, the predictive model does require a
simulation engine that can predict outcomes of actions,
however imperfectly. Developing the simulation does not
require expert knowledge of squash either, but it does require
being able to model the physics of the scenario. This is not an
inconsiderable task and, even in the simple scenario used in
this research, more time was spent developing the simulation
than was required for the creation of the AI rule set.

VII. FUTURE WORK

The research described above only looked at a highly
discrete problem, and the solution was very domain specific.
The PACT-R cognitive model gave a scene description and
predictions in a very squash-centric way. Continuing this
methodology of creating a custom model and simulation for
every scenario is time consuming, and it would be desirable to
accelerate the process by finding a more generic way of
describing physical relationships and actions within an
environment.

It is unlikely that any solution could be truly generic. Such
a solution would have to be able to model and simulate a large
and arbitrary amount of the real world. Rather, a practical
improved implementation of PACT-R would provide a
generic framework that could be extended and adapted for
specific scenarios.

Another area of ongoing research is to use PACT-R in
physical robotics. PACT-R is intended for robotics and
embodied AI. Taking this system into the real world presents
the considerable challenge of perceiving and simulating at
least a small part of the real world. For constrained situations
this might not be so difficult. For example, in real-world
squash, if you can detect and track the ball, it is then relatively
easy to predict where it will go in the rectangular room that
squash is played in. The bigger challenge would be predicting
the outcome of shots, since this is not as clear-cut in the real
world as it was in the simulation, since the simulated shots
were simplified, and the virtual robots were able to play them
more accurately than any real robot would be able to.

The research also highlighted some issues when working
with ACT-R that could be an interesting topic of future work.
ACT-R’s reinforcement learning mechanism did not work for
this task. What alternative learning mechanisms could have
been used? Could some form of tagging (marking key rules in
the decision process) be used so that rewards and penalties are
given to the correct rules? How would the modelling need to
change to make use of learning?

In modelling within ACT-R values, rules are tested with a
basic set of comparative operators (>, <, =, etc.) While this is

suitable for a lot of modelling, when implementing the squash
strategy it would have been convenient to have been able to
model in fuzzy logic, where instead of yes /no answers,
cold/cool/warm/hot answers were possible. The matching
would bias the rule selection, rather than simply excluding or
including specific rules. Giving ACT-R a fuzzy logic
matching system would allow it to work better in situations
where there is not a simple black or white answer.

ACT-R also has a declarative memory system (long term
memory). This was not used in this research, since it supports
a different learning mechanism that did not fit with modelling
squash. The mechanism is based on a principle of spreading
activation, where recently used memories are more likely to
be recalled, and memories that share similar content are also
more likely to be recalled (this is the spreading activation).
Recently recalled, or similar, memories do not apply to
squash, since all shots and outcomes need to be considered
equally. However, without the learning, declarative memory
could have played a role in the rules in encoding combinations
of zones and shots. It was not done this way, since when the
decision was made to implement the models as explicit rules,
reinforcement learning was still in consideration as a
mechanism for improving shot selection.

If declarative memory had been used, how could it have
been used, and what sort of learning mechanisms could have
been applied? Could reinforcement learning be used with
memories? Could there be negative and positive memories, a
sort of ‘positive memories’ that are easily recalled, and
‘negative memories’ that are suppressed? These
considerations may be crucial for applying simulation-based
prediction in different robotic applications.

REFERENCES

[1] U. Kurup and C. Lebiere, “What can cognitive architectures

do for robotics?,” Biol. Inspired Cogn. Archit., vol. 2, 2012,
pp. 88–99.

[2] H. Q. Chong, A. H. Tan, and G. W. Ng, “Integrated

cognitive architectures: A survey,” Artif. Intell. Rev., vol.

28, no. 2, 2007, pp. 103–130.

[3] W. Duch, R. J. Oentaryo, and M. Pasquier, “Cognitive

Architectures: Where do we go from here?,” Proc. 2008

Conf. Artif. Gen. Intell. 2008 Proc. First AGI Conf. , vol.

171, 2008, pp. 122–136.

[4] P. Jackson, Introduction to expert systems. Addison-Wesley

Pub. Co.,Reading, MA, 1986.

[5] J. C. Giarratano and G. Riley, Expert Systems: Principles

and Programming. PWS Publishing Co., 1998.

[6] A. Ajith, “Rule-based Expert Systems HEURISTICS,”

Handb. Meas. Syst. Des., vol. 1, no. g, 2005, pp. 909–919.

[7] C. A. Lindley, “Synthetic Intelligence: Beyond Artificial

Intelligence and Robotics,” in Integral Biomathics,
Springer, 2012, pp. 195–204.

[8] C. A. Lindley, “Neurobiological Computation and

Synthetic Intelligence,” in Computing Nature, 2013, pp. 71–

85.

[9] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum,

“Simulation as an engine of physical scene understanding.,”

Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 45, 2013, pp.

18327–32.

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

[10] J. R. Anderson, J. M. Fincham, Y. Qin, and A. Stocco, “A

central circuit of the mind,” Trends Cogn. Sci., vol. 12, no.

March, 2008, pp. 136–143.

[11] J. R. Anderson and C. D. Schunn, “Implications of the ACT-

R learning theory: No magic bullets,” Adv. Instr. Psychol.

(Vol. 5), vol. 5, 2000, pp. 1–34.

[12] J. R. Anderson, How Can the Human MindOccur in the

Physical Universe? Oxford University Press, 2007.
[13] H. Putnam, “Brains and Behavior,” American Association

for the Advancement of Science, vol. Section L . 1961.

[14] S. Profanter, “Cognitive architectures,” HaupteSeminar

Hum. Robot Interact., 2012.

[15] J. Laird, K. Kinkade, S. Mohan, and J. Xu, “Cognitive

Robotics Using the Soar Cognitive Architecture,” 8th Int.

Work. Cogn. Robot., 2012, pp. 46–54.

[16] D. Vernon, G. Metta, and G. Sandini, “A survey of artificial

cognitive systems: Implications for the autonomous

development of mental capabilities in computational

agents,” IEEE Trans. Evol. Comput., vol. 11, no. 2, 2007,

pp. 151–180.

[17] M. Lochner, C. Sennersten, A. Morshed, and C. Lindley,

“Modelling Spatial Understanding : Using Knowledge

Representation to Enable Spatial Awareness in a Robotics

Platform”, COGNITIVE 2014, The Sixth International
Conference on Advanced Cognitive technologies and

Applications, Venice, Italy, 2014, pp. 26–31.

[18] R. Brooks, “A robust layered control system for a mobile

robot,” IEEE J. Robot. Autom., vol. 2, no. 1, 1986, pp. 14–

23.

[19] R. a. Brooks, “Elephants don’t play chess,” Rob. Auton.

Syst., vol. 6, no. 1–2, 1990, pp. 3–15.

[20] R. A. Brooks, C. Breazeal, M. Marjanovi, B. Scassellati,

and M. M. Williamson, “The Cog Project  : Building a

Humanoid Robot,” in Computation for metaphors, analogy,

and agents, Springer Berlin Heidelberg, 1999, pp. 52–87.
[21] M. Minsky, R. Kurzweil, and S. Mann, “Society of mind,”

Artificial Intelligence, vol. 48, no. 3, 1991. pp. 371–396.

[22] P. Singh, “Examing the Society Of Mind,” Comput.

Informatics, vol. 22, 2003, pp. 1001–1023.

[23] B. Goertzel, R. Lian, I. Arel, H. de Garis, and S. Chen, “A

world survey of artificial brain projects, Part II: Biologically

inspired cognitive architectures,” Neurocomputing, vol. 74,

no. 1–3, 2010, pp. 30–49.

[24] T . Liadal, “ACT -R A cognitive architecture,”, Cognitive

Science , 2007, pp. 1–16.

[25] D. Bothell, “Extending ACT -R 6.0,” 2007.

[26] C. Sennersten, A. Morshed, M. Lochner, and C. Lindley,

“Towards a Cloud-Based Architecture for 3D Object

Comprehension in Cognitive Robotics”, COGNITIVE

2014, The Sixth International Conference on Advanced

Cognitive technologies and Applications, Venice, Italy,
2014, pp. 220–225.

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-462-6

COGNITIVE 2016 : The Eighth International Conference on Advanced Cognitive Technologies and Applications

