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Abstract—We argue for adopting a form of natural logic for
ontology-structured knowledge bases with complex sentences.
This serves to ease reading of knowledge base for domain experts
and to make reasoning and querying and path-finding more
comprehensible. We explain natural logic as a development from
traditional logic, pointing to essential differences to description
logic. We conclude with a knowledge base set-up with an
embedding into clausal logic, offering also a graph view of the
sentences.

Index Terms—Knowledge representation and reasoning; On-
tologies; Natural language Interface.

I. INTRODUCTION

We address ontology-structured knowledge bases (KBs),
that is KBs which encompass ontological classification struc-
tures as well as more general logical sentences. We outline
a KB set-up which supports sentences in a regimented (con-
trolled) fragment of natural language. This choice is motivated
by our wish to make knowledge bases readable for domain
experts. Moreover, this approach offers “generative ontolo-
gies” where linguistic terms generate new concept nodes in the
ontology in addition to the given classes. In the devised meta
logic set-up, the natural logic KB sentences are embedded in
a clausal logic taking care of the inference and querying.

Our approach to ontological engineering is described further
in recent papers [1][2][3][4]. We focus on knowledge bases
within the life-sciences, which abound with complex textual
descriptions and elaborate classification structures.

A. State of the Art

Contemporary approaches to knowledge based systems aim
at accommodating more complex information than admitted in
traditional relational databases. The two competing prominent
approaches are the rule-based representations in the form of
logical clauses and various dialects of description logic. These
logical representations are described and compared e.g. in
Grosof et al. [5].

As an alternative to these logics for KBs we apply so-called
natural logic for the considered KBs including formal ontolo-
gies. The applied natural logic possesses a logical semantics
and is supported by reasoning rules applied directly to the
natural logic form. Sentences in the natural logic resemble
natural language, so that KBs can be read and understood by
domain experts. Moreover, as a novelty, the set-up simultane-
ously provides a graph representation of the natural logic KB
content as extension of the common ontological partial order

classification diagrams. The supporting graph representation
facilitates pathfinding in a KB. This functionality enables
computation of shortest paths in the KB graph between user-
stated concepts and entire phrases.

B. The Structure of the Paper

The structure of this paper is as follows: In Section II, we
take as departure traditional syllogistic logic. Then, in Section
III we review en passant essentials of description logic as a
tool for setting up formal ontologies. In Section IV, we turn to
our main subject of natural logics, followed up, in Section V,
by introduction of the natural logic fragment we propose for
ontological knowledge bases. For the implementation set-up
for the natural logic dialect we consider the logic of definite
clauses in Section VI, which is used for embedding of the
natural logic knowledge base in the devised KB systems design
in Section VII. Finally, Section VIII concludes the paper.

II. TRADITIONAL SYLLOGISTIC LOGIC AND ONTOLOGIES

Let us begin recalling the Aristotelian natural logic syllogis-
tic sentence forms [6] known from the square of opposition,
see figure 1.

every C isa D no C isa D
some C isa D some C isa not D

Fig. 1 From the square of opposition.

Contemporary formal ontologies apply basically the class
inclusion relation isa corresponding to the sentence form every
C isa D, which forms a partial order by way of reflexivity,
transitivity and antisymmetry. Often, the partial order, rendered
as a Hasse diagram (graph), simplifies to a classification tree
with the universal top class at the root.

Although there are (unspecified) extension sets behind the
classes, usually there is no requirement that the ontology has
to form a distributive lattice, let alone a lattice by presence
of supremum and infimum classes [7]. This is because the
intensional comprehension of classes makes in particular many
would-be union classes ontologically irrelevant [8].

As for the other three forms above in the square of oppo-
sition, in ontological engineering they are often expressed by
introducing appropriate classes in the ontology, together with
the default assumption that classes are disjoint if they have
no common subclass and neither is a subclass of the other.
Recall that traditional logic comes with existential import,
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meaning that there is no notion of empty classes. Individual
concepts may formally be conceived of as singleton classes in
the ontological set-up.

III. DESCRIPTION LOGIC

Description logic (DL), the foremost contemporary knowl-
edge representation logic, is a fragment of predicate logic.
DL has become pivotal as logical basis for the semantic
web research endeavors. The various description logic dialects
share a variable-free algebraic form of expressions, with the
general requirement that the logic is decidable with respect to
desired functionalities, as well as tractable. In Grosof et al. [5],
DL is compared to and aligned with the rule forms in definite
clause logic. The tractability requirement implies that intended
operations can be performed in polynomial time measured in
terms of the size of the description logic specification. The
various dialects of description logic differ by the admitted
operators and the ensuing worst case complexity.

A. Description Logic and Ontologies

The ontological class inclusion relationship “C isa D” in
description logic becomes

C ⊑ D (1)

In DL, there are no default rules such as the above men-
tioned existential import. Accordingly, disjointness of two
classes is expressed, for instance by

C ⊓D ≡ ⊥ (2)

where ⊥ is the predefined empty concept (class).
Classes C and D in DL generalize to various concept

expression forms including set union, ⊔, and intersection ⊓. As
such the ontological constitution in DL provides distributive
lattices. Furthermore, even Boolean lattices are achieved by
complement formation. In this way, DL offers class genera-
tivity in formal ontologies.

B. Concept Modifiers

Description logic offers means of forming sub-classes
(called concepts in DL) notably by means of a binary algebraic
operator ∃R.C, where the first argument, R, is binary relation
(a property in DL terminology), and the second one, C, is
a concept expression. For instance, the concept of “cells that
produce insulin”, being a sub-concept of “cell”, becomes

cell ⊓ ∃produce.insulin

From the point of view of ontological constitutions, the re-
cursive syntactical form of the ∃ construct provides potentially
unbounded generativity into ever more specialized concepts in
the ontology.

Turning from concepts to entire assertions, the sample
sentence “cells that produce insulin reside in the pancreas” in
DL may become

cell ⊓ ∃produce.insulin ⊑ ∃residein.pancreas

which seems hard to interpret for most domain experts, not the
least because of the awkward ’subject-property’ copula form,

corresponding to “cells and produce insulin are [something
that] reside in the pancreas”.

IV. NATURAL LOGICS

Natural logics are formal logics taking form of “regi-
mented” fragments of natural language with accompanying
inference rules for reasoning directly with the natural logic
[9][10][11][12]. Quoting from the discussion of natural logic
in [13]: “The idea of the universality of logic is based on the
conviction that [...] there are certain invariant features of human
reasoning, carried out in any natural language whatsoever, that
allow the formulation of universal logical laws, applicable to
any language.” In our setup, rather than translating the natural
language forms into, say, DL, we conduct reasoning at the
natural logic level, unlike Azevedo et al. [14].

A. Class Relationships versus Property Ascriptions

Natural logics may be viewed as a development of tra-
ditional syllogistic logic continued via medieval logicians,
e.g., John Buridan, see Klima [13][15], and via 19th century
logicians, notably Peirce and De Morgan, see e.g. Sánchez Va-
lencia [12]. A key point in this development is the abandoning
of strict copula forms taking form of a subject and a predicate
as in traditional syllogistic logic, in favour of logical sentences
admitting a main verb expressing a binary relationship. In a
more conceptual or ontological view, what is at stake here is
acceptance of binary point relationships between classes rather
than property ascription to classes. The latter “monadistic”
view attributed to Leibniz, cf. [16], remains in DL.

As an example, in the property ascription view, informally
the sentence betacell produces insulin is coined into the some-
what awkward betacell isa (producer-of insulin) possibly ac-
companied by the reciprocal insulin isa (produced-by betacell).

V. A NATURAL LOGIC FOR KNOWLEDGE BASES

Let us consider the natural logic in our [3][4] with sentences
of the syntactic form

Q1 C R Q2 D (3)

– where Q1 and Q2 are either of the determiners (quantifiers)
every and some, and
– where C and D are nominal phrases, and
– where R is a transitive verb.

In the simplest case, C and D are common nouns repre-
senting classes. These common nouns may next be adorned
with modifiers in the form of linguistic relative clauses and
adjectives. Modifiers are here assumed to act restrictively,
unlike parenthetical relative clauses [13].

As it appears, the form (3) comprises four quantifier com-
binations, dubbed ∀∀,∀∃, ∃∀, ∃∃ in [17]. From the point of
view of ontological knowledge bases, the by far most common
quantifier constellation among the 4 combinations is the ∀∃
option

every C R some D (4)

Example: every betacell produces some insulin
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– or, in short, using common default conventions as in natural
language for this quantifier case:

betacell produce insulin

The existential quantification over substances such as insulin
we ontologically understand as ranging over the conceivable
amounts of the substance. These amounts constitute the imag-
inable individuals in a substance class.

One observes that the corresponding passive voice sentence
[every] insulin isproducedby [some] betacell, with the reverse
relation, is not logically equivalent [17]. However, the weaker
some insulin isproducedby every betacell is entailed, adopting
existential import throughout.

As an aside, one may notice that the considered form (4)
fits perfectly with the partonomic forms in [18] with examples

[every] pancreas haspart [some] betacell
and

[every] betacell ispartof [some] pancreas.

A. Inclusion in the Natural Logic and in Description logic

In the considered natural logic dialect, the class inclusion
comes about with the above ∀∃ form with the relation being
equality. Thus

every betacell is-equal-to some cell

expresses the class inclusion

betacell isa cell.

This follows from a predicate logical explication of
“every C equals some D” as ∀x(C(x)→ ∃y(x = y∧D(y)),
which is logically equivalent to ∀x(C(x)→ D(x)). We retain
the distinguished short form isa relationship in our natural
logic, since this relationship prevails in ontological knowledge
bases.

The key natural logic sentence “every C R some D” in
DL would become the somewhat awkward copula (subject
predicate) form

C ⊑ ∃R.D (5)

cf. Section III.B.

B. Compound Concept Terms

As mentioned, in the devised natural logic [2][3][4] class
expressions may contain modifiers with restrictive relative
clauses, as in the example

cell that produce insulin residein pancreas

contrast the DL formulation in Section III.B.

VI. DEFINITE CLAUSE LOGIC: RULE LANGUAGE

We now turn to definite clause rules as an additional
component in our natural logic KB set-up. The building blocks
of logical clauses are atomic formulas p(t1, ..., tm), where
p is an m-argument predicate and the ti are logical terms.
In the present context, these terms are confined to variables
and constants representing individuals. Recall that the more

general form of clauses applied in logic programming and
artificial intelligence admits functional terms, consisting of a
function symbol followed by term arguments.

As such, clausal logic specifies relationships between indi-
viduals, unlike the focus on relationships between concepts in
syllogistic logic and description logic. This makes clausal logic
prima facie unfit for ontology-structured knowledge bases
dealing with relationship between classes.

A logical clause is a disjunction of atomic formulas or
their denials, where all variables present (if any) are implicitly
universally quantified. A definite clause is conveniently written
and understood as an implication clause

p0(t01, ..., t0m0) ←
n∧
i

pi(ti1, ..., timi) (6)

where the reverse implication arrow can be read as ”if”.
The case of n = 0 yields an atomic formula, (called a fact
if it is variable-free). Definite clauses where the terms are
either variables or constants are known as DATALOG. A logical
computation is initiated with an atomic formula as hypothesis
to be confirmed or disconfirmed as logically entailed by
the given clauses. The DATALOG logic enjoys properties of
decidability (proved by propositionalization, i.e., reduction to
propositional logic) and tractability, cf. [5].

Definite clauses only express assertive (positive) proposi-
tions. However, denials may be provided implicitly by the
adoption of the closed world assumption, implying that the
denial of a fact is taken to hold if the fact does not follow from
the given clauses, a principle known as negation-by-failure (to
prove). The DATALOG logic enjoys properties of decidability
(proved by propositionalization, i.e., reduction to propositional
logic) and tractability, cf. [5].

A. Concepts Reified as Individuals

Definite clauses at the outset express relations between
individuals as in

hormone(X)← insulin(X)

However, by encoding of concepts as individuals definite
clauses can emulate class-class relationships as in

isa(insulin, hormone)

supported by the clauses
isa∗(C,D)← isa(C,D)
isa∗(C,D)← isa(C,X) ∧ isa∗(X,D)
isa∗(C,C)

where isa now represents the immediate (direct) subclass
relationship, and the predicate name isa∗ its reflexive tran-
sitive closure computed in DATALOG. This encoding of classes
suggests as a next crucial step embedding of the entire natural
logic in clauses with supporting inference directly in the
natural logic.

VII. AN EMBEDDED NATURAL LOGIC

We now wish to embed the natural logic in DATALOG

clauses acting as a metalogic for the natural logic. This
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calls for decomposition of natural logic sentences into atomic
components which can be handled in DATALOG. We devise a
decomposition that enables reconstruction of the natural logic
compound sentences (modulo paraphrasing) [3][4].

As an instructive example, consider again the sentence
cell that produce insulin residein pancreas

This sentence in our system becomes decomposed into the
following atomic ground (that is, variable-free) facts

isa(cell′that′produce′insulin, cell)
fact(definition,

cell′that′produce′insulin, produce, insulin)

fact(observ,
cell′that′produce′insulin, residein, pancreas)

where cell′that′produce′insulin is formally an auxiliary
individual constant in DATALOG, and simultaneously a fresh
concept node label in the ontological graph view.

The two latter DATALOG facts, as it appears, comprise
an epistemic mode tag. These modes affect the inference
engine: The outlet definitions (including isa) of a concept node
effectively act as an if-and-only-if definition, unlike the obser-
vational contributions. Further modes may be introduced, in
order to distinguish normative, observational and hypothetical
contributions.

This decomposition principle supports the graph view of
ontologies with the subclass relationships forming the skeleton
ontology, as it were.

cell insulin
↖ ↗
isa produce (definition)
↖ ↗

cell′that′produce′insulin
↘
residein (observation)
↘
pancreas

Fig. 2. Graph view of sample sentence.

Figure 2 shows the graph conception of the considered
sentence, where the decomposition into the above three ground
atomic facts appears as labeled, directed edges being outlet
from the concept node cell′that′produce′insulin.

The epistemic distinctions ensure that the natural
logic sentence is recoverable. They also ensure that
relevant subsumption relationships can be computed
and added to the KB [4]: Suppose that it is stated
that insulin is a hormone in the KB ontology. Then
the concept, say, cell′that′produce′hormone is likely
to occur also. In this case, the subsumption algorithm
then is to compute and record the inclusion relationship
isa(cell′that′produce′insulin, cell′that′produce′hormone),
concomitant with an additional arc in the graph. On the other
hand, we refrain from pre-computing and storing those

inclusion isa relationships holding solely by virtue of
transitivity, since the entire transitive closure relation would
shortcut paths which might preferably be retained in pathway
computations.

The compound natural logic sentences in the KB in general
give rise to auxiliary nodes in the graph. And the graph
contributions from the sentences form a single ontological KB
graph with unique node representation of concepts across the
sentence contributions. The original natural logic sentences
can be reconstructed relying on the edge modes. Ideally,
synonymic phrases such as pancreatic cell and cell that residein
pancreas would be mapped into one concept node in the KB.
One should also keep in mind that all the edges are here further
assumed ∀∃-quantified.

A. Intensional Querying and Pathfinding

The embedded knowledge base may now be queried de-
ductively via the clause language, appealing to appropriate
inference rules expressed as clauses.

Given class names, c, are introduced by
class(c)

The concepts (simple or complex) may be queried, say, with
← isa∗(X, c)

giving for variable X all concept terms below c,
– or more restrictively with
← class(X) ∧ isa∗(X, c)

giving all subordinate class names.
The key inference rules in natural logic are the so-called

monotonicity rules [9], which admits restriction of the gram-
matical subject concept to sub-concepts (recognized as in-
heritance), and, conversely, generalization of the grammatical
object concept for the ∀∃ forms considered here [4]:

fact(M,Csub,R,Dsup)←
isa∗(Csub, C) ∧ fact(M,C,R,D) ∧ isa∗(D,Dsup)

It follows logically, for instance, given cell that produce
insulin residein pancreas and pancreas isa endocrinegland that
cell that produce insulin residein endocrinegland.

In [2][3] we discuss pathway inference computations in nat-
ural logic KBs in the context of bio-models. This functionality
aims at finding shortest paths in the KB graph between two
stated concepts appealing to graph search algorithms. Pathway
computations may formally be understood as application of a
logical comprehension principle for composition of relations
[1].

B. Class Disjointness in the Natural Logic

As it stands, the present natural logic does not provide nega-
tion, unlike the classical negation available in DL. However,
some form of negation is achievable by appeal to negation
by non-provability in the rule logic, as known from logic
programming and relational database querying.

In our set-up, two classes are considered disjoint unless
one class is a sub-class of the other one, or that they have
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a common sub-class. We find this natural in ontological engi-
neering, which often leans towards hierarchical classifications.
Recall that classes here are assumed non-empty according to
the principle of existential import. Then, overlap of two classes
(concepts) can be ascertained with

overlap(C,D)← isa∗(X,C) ∧ isa∗(X,D)

where the variable X ranging over concept terms (including
those stemming from the decomposition of sentences) may be
considered existentially quantified to the right of the reverse
implication.

Conversely the disjointness of two classes is verified with
disjoint(C,D)← NOT overlap(C,D)

appealing to negation by non-provability, NOT, with the
closed world assumption, conforming with use of negation
in database query languages. From the point of view of
ontology development use of the non-monotonic negation by
non-provability implies that extension with new overlapping
classes to the knowledge base may cancel out present class
disjointness.

VIII. CONCLUDING SUMMARY

We have advocated the adoption of forms of natural logic
for ontology-structured knowledge bases in a set-up with
embedding into definite clauses. This embedding of the natural
logic sentences facilitates useful functionalities such as inten-
sional reasoning and querying and pathway finding in large
knowledge bases.

We conduct evaluation with a small scale prototype writ-
ten in the logic programming language PROLOG (supporting
DATALOG as a sublanguage) on life-science sample KBs in
[2]. The prototype decomposes the natural logic sentences
into the shown fact/graph KB representation. The devised
decomposition of the natural logic sentences with inference
rules in DATALOG invites as a next development step large-
scale implementation on relational data base platforms with
the decomposed KB sentences represented as tuples.
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