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Abstract—In an ambient assisted living environment, raw data 

can often be very noisy making is difficulty to interrupt by a 

decision and reasoning system.  To help reduce the effects of 

noise, we propose a decision and reasoning system which 

combines an interval fuzzy system and a self-organising fuzzy 

neural network (SOFNN) is presented in this paper. The 

method exploits the use of a trained standard SOFNN 

structure from a fuzzy neural network to initialise the 

proposed approach. Simulation results show that the proposed 

structure is more suitable for uncertain situations 

demonstrating a high level of robustness. 

Keywords- interval type-2 fuzzy system; self-organising fuzzy 

neural network; cognitive decisions; modelling capability; 

robustness. 

I. INTRODUCTION 

 Robotic UBIquitous COgnitive Network (RUBICON) 
[16] is an EU project that aims to create a self-sustaining, 
self-organizing, learning and goal-oriented robotic ecology, 
which consists of four layers: Learning Layer, Control Layer, 
Cognitive Layer and Communication Layer. The Cognitive 
Layer obtains events from the Learning Layer and generates 
goals for the Control Layer. The Cognitive Layer is 
described in detail in [1] and includes a cognitive reasoning 
and decision module. 

The objective of the cognitive decision module is to 
generate decisions signal by integrating the status outputs 
determined by the cognitive reasoning module, taking into 
account current and historical information. These decision 
signals are then used to set the actual goals for the Control 
Layer so as to attempt to ensure that the RUBICON ecology 
behaves appropriately. Ultimately, the RUBICON system 
will be embedded in real environments where, potentially, 
the collected data will be noisy. To minimise the impact of 
noise and the inherent uncertainty of the generated status 
outputs, the decisions module is expected to show a high 
level of robustness. 

A Self-Organising Fuzzy Neural Network (SOFNN) has a 
degree of robustness [2][3]. However, the membership 
functions of a SOFNN are type-1 fuzzy systems, which are 
presented as crisp numbers. This limits the ability of the 
network to model uncertainty. Type-2 fuzzy sets have been 
extended from type-1 fuzzy sets by Zadeh [4] and are 
attracting increasing attention. The advantage of type-2 fuzzy 
systems is that the membership functions can be presented as 
a fuzzy set, not simply as crisp numbers. This enhances the 

ability of the network to handle the uncertainty in the rule 
base [5], which is vitally important for deployment in real 
applications, such as the RUBICON ecology. In this work, 
the combination of an interval type-2 fuzzy system and a 
SOFNN, denoted as SOFNN-IT2, has been proposed for the 
cognitive decision module. 

Background information on the SOFNN and an interval 
type-2 fuzzy system are presented in Section II. Section III 
presents the proposed SOFNN-IT2 learning method. 
Simulation results in Section IV are presented to verify the 
proposed method in terms of its modelling capability and 
robustness. The work is summarised in Section V. 

II. BACKGROUNDS 

A. Overview of SOFNN 

A Self-Organising Fuzzy Neural Network (SOFNN) [2] 

is a hybrid network which has the capability to model and 

forecast a complex nonlinear system. The SOFNN is a five-

layer network, namely, the input layer, the Ellipsoidal Basis 

Function (EBF) layer, the normalised layer, the weighted 

layer, and the output layer, as shown in Figure 1. 

 
Figure 1. Structure of SOFNN. 

 

In the EBF layer, each neuron is a T-norm of Gaussian 

fuzzy membership functions [2] belonging to the inputs of 

the network. Every Membership Function (MF), thus, has 

its own distinct centre and width, which means every neuron 

has both a centre vector and a width vector and the 

dimensions of these vectors are the same as the dimension 
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of the input vector. Figure 2 illustrates the internal structure 

of the jth neuron, where 1 2[ ]rX x x x  is the real valued 

input vector, 1 2[ ]j j j rjC c c c  is the centre vector in the 

jth EBF neuron, and 1 2[ ]j j j rj     is the width 

vector in the jth neuron. 
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Figure 2. Structure of the jth neuron Rj with cj and σj in EBF layer. 

 

The SOFNN is thus constructed based on EBFs 

consisting of a centre vector and a width vector. The adding 

approach is based on the geometric growing criterion [6] 

and the  -completeness of fuzzy rules [7]. The pruning 

method is based on the Optimal Brain Surgeon (OBS) 

method [8] and depends on the second order derivative of 

the objective function with respect to the parameters of each 

neuron, i.e., the Hessian matrix [2]. The Hessian matrix can 

be easily obtained as part of the proposed on-line parameter 

learning algorithm. Further information on this network is 

available from [2] and [3].  

The SOFNN can be used for on-line learning and the 

adding and pruning strategies have the self-organising 

capability to produce a fuzzy neural network with a flexible 

structure that grows in order to minimise the training error. 

The SOFNN has demonstrated good performance in 

applications of function approximation, complex system 

identification, and time-series prediction [2] [3]. 

B. Interval Type-2 Fuzzy System 

An Interval Type-2 Fuzzy Logic System (IT2FLS) is 

shown in Figure 3. This is similar to a Type-1 FLS (T1FLS) 

containing a fuzzifier, rule base, fuzzy inference engine, and 

output processing. The main difference is that a type-2 FLS 

has a type-reducer in the output processing. The type-

reducer has the ability to generate a type-1 fuzzy set from a 

type-2 fuzzy set. The defuzzifier then can defuzzify this 

type-1 fuzzy set to a crisp number. IT2FLSs have 

demonstrated better ability to handle uncertainties than their 

type-1 counterparts [9]. 

 

Fuzzifier Type-reducer 

Rules 

Inference Engine 
Input 

X 

Output 

y 

Fuzzy Implication 

Defuzzifier 

output processing 

Figure 3. Interval type-2 fuzzy logic system (IT2FLS). 
 

 
Figure 4. Interval type-2 Gaussian primary membership function. 

 

Figure 4 illustrates the Footprint of Uncertainty (FOU) of 

an interval type-2 Gaussian primary Membership Function 

(MF). This MF can be represented by the two bounding 

MFs: upper MF and lower MF. For the ith type-2 fuzzy rule 

iR , the jth input variable jx  has the interval type-2 fuzzy 

set 
i
jA  which has a Gaussian primary MF with the standard 

deviation 
i
j  and the uncertain mean 

i
jm  within the range 
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For a type-2 Takagi-Sugeno (TS) model [10][11], the 

type-2 fuzzy rule iR  can be represented as 

1 1 1 1 2 2 2 2

0 0 1 1 1 2 2 2

: ([ , ], ) ([ , ], ),

[ , ] [ , ] [ , ]

i i i i i i
i l r l r

i i i i i i i
l r l r l r

R IF x isN m m and x isN m m

THEN y a a a a x a a x

 

  
 (4) 

where iy  is the output of the ith rule and [ , ]i i
kl kra a  is the 

interval set of the parameter for TS model. 

The type-reducer [12][13] reduces the outputs of the rules 

to the type-1 output of the system as an interval-valued 

fuzzy set [ , ]l ry y . This type-1 interval-valued fuzzy set can 

be defuzzified as 

.
2

l ry y
y


         (5) 

III. SOFNN-IT2 LEARNING 

An algorithm combining SOFNN and IT2FLS has been 

developed for the cognitive decision module to attain a high 

level of robustness. The strategy for development exploits 

the following steps: 

1. A trained SOFNN structure, which is a type-1 

fuzzy structure, is obtained following learning. 

2. This type-1 fuzzy structure is then initialised as a 

type-2 fuzzy structure. 

3. The initialised type-2 structure is trained off-line, 

based on gradient descent and Kalman filter 

algorithms. The obtained type-2 fuzzy neural 

structure can be represented as a set of type-2 fuzzy 

rules similar to (4). 

4. The final output of the system can be generated 

after information has passed through type-

reduction and defuzzification. 

The method to obtain a SOFNN structure has been 

described in [2] and [3]. Details on attaining the final output 

of the system by type-reduction and defuzzification can be 

found in [12] and [13]. Steps 2 and 3 are outlined in the 

following sections. 

A. Initialise Type-1 Structure to Type-2 Structure 

The structure of the SOFNN can be represented as a set 

of type-1 fuzzy rules, for example 

1 1 1 2 2 2

0 1 1 2 2

: ( , ) ( , ),

.

i i i i
i

i i i i

R IF x isN m and x isN m

THEN y a a x a x

 

  
       (6) 

Firstly, we initialise the centres of the Gaussian 

membership function in the IF-part as 

0 0

0 0

[ , ],
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     (7) 

and then initialise the parameters in THEN-part as 

        0 0 0[ , ], . ., ,   ,

0,1,2,....

i i i i i i i i
n n nl n n nr n na s i e a a s a a s

n

     


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where 0
i
km  and 0

i
ns  are predefined values. This is the 

initial type-2 structure of the system, similar to (4). Thus, 

the parameters i
klm , i

krm , i
k , i

na  and i
ns  should be 

adapted during the learning process. 

B. Proposed Training Algorithm 

The proposed training algorithm is based on the gradient 

descent and Kalman filtering algorithms. 

Considering the objective function 

21
[ ( ) ( )]

2
dE y t y t          (9) 

where ( )y t  and ( )dy t  are the real and desired outputs of 

the system, respectively. Parameters of the IF-part are tuned 

by the gradient descent algorithm as: 
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where   is a learning rate. 

For training purposes, the output of the system can be 

described in matrix form as 

y 2= W Ψ .      (13) 

Similar to [2][14][15], 2W  is relevant to parameters of 

the THEN-part and Ψ  is a matrix obtained by parameters of 

the IF-part and input data. Parameters of the THEN-part 

2W  can be updated by executing the Kalman filtering 

algorithm 
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The proposed training algorithm, combining the gradient 

descent and Kalman filtering algorithms is performed in one 

iteration for each incoming training data and repeated for 

incremental offline learning. The trained type-2 fuzzy neural 

network is thus obtained. This network is employed as the 

RUBICON cognitive decision module to generate the 

decision signal to set the actual goals for Control Layer. 

IV. SIMULATION 

For the purposes of validating the approach, a 

synthesised dataset consisting of 4500 samples was used as 

input to the reasoning module [1], which generates the data 

needed for the decision module. These data describe typical 

events in a domestic environment, one of the application 

areas of the RUBICON project’s ecology. Figure 5 shows 

the inputs to the decision module are status outputs from the 

reasoning module [1], and the outputs of the decision 
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module (the SOFNN-IT2) are decision signals to set actual 

goals. The decision module receives 10 status outputs from 

the reasoning module plus an additional 10 one-step-back 

status outputs to make a combined set of 20 inputs. These 

status outputs are then categorised into 1 of 7 goals by the 

decision module. The status outputs and goal labels are 

listed in Table I and Table II, respectively. 

 
Figure 5. Block diagram of Cognitive Layer. 

 

TABLE I. LIST OF STATUS OUTPUTS 

ID Status Outputs 

1 User Exercising 

2 User Relaxing 

3 User in Kitchen 

4 Phone Ringing Confirmed 

5 Visitor at Door 

6 User Cook Activity 

7 Fire Alert 

8 Burglary Alert 

9 Dripping Alert 

10 Cleaning Situation 

 
TABLE II. LIST OF GOALS 

ID Goals 

1 Bring Drink for User 

2 Set Bath for User 

3 Bring Phone for User 

4 Attend Door 

5 Attend Drip 

6 Suspend Clean 

7 Attend Fire 

 

A. Testing of Modelling Capability 

The first 3900 points of the data set were used as the 

training data of the decision module, and the remaining 600 

points as the testing data. Using the algorithm outlined in 

the previous section a type-2 structure, SOFNN-IT2, is then 

obtained. The results of training and testing of the SOFNN-

IT2 are shown in Table III, where RMSE is the Root Mean 

Square Error between the output of the network and the 

desired decision signal of the goal (i.e., target) and CD is the 

percentage of correct decision in terms of goals against 

desired goal data. Figures 6 to 8 give results of the decision 

signal of the goal, "Bring Drink for User", and type-2 

membership functions (MFs) of selected inputs. 

 
TABLE III. RESULTS OF SOFNN-IT2 

ID Goals Number 

of Rules 

Result SOFNN-IT2 

Training Testing 

1 Bring Drink 

for User 

4 RMSE 0.1373 0.1195 

CD 94.92 97.17 

2 Set Bath for 
User 

3 RMSE 0.1636 0.1326 

CD 92.36 94.17 

3 Bring Phone 

for User 

33 RMSE 0.1553 0.1297 

CD 93.79 96.33 

4 Attend Door 11 RMSE 0.1223 0.0856 

CD 96.56 99.00 

5 Attend Drip 9 RMSE 0.1425 0.1319 

CD 93.03 94.67 

6 Suspend 

Clean 

3 RMSE 0.0945 0.1115 

CD 96.15 94.33 

7 Attend Fire 3 RMSE 0.1080 0.1093 

CD 97.21 97.17 

 

 
Figure 6. Results of Bring Drink for User. 

 

 
Figure 7. MFs of current input User Exercising. 
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Figure 8. MFs of one-step-back input User Exercising. 

 

 
Figure 9. Results of Bring Drink for User's decision goals. 

 

In Figure 6, the red line represents outputs of the 

decision model and the blue line represents targets. As an 

example, Figure 9 shows the results for the goal "Bring 

Drink for User". In Figure 9, the red line represents the 

goals obtained by the decision module and the blue line 

represents desired goals. In Figure 9, H is the high-level 

signal which triggers the actual goal, L is the low-level 

signal. Any decision signal with a confidence greater than 

0.5 is defined as the high-level goal data; otherwise it is 

defined as the low-level goal data. These results prove that 

the obtained type-2 system, SOFNN-IT2, has the capability 

to model the complex input-output relationship to achieve 

high accuracy decisions. 

B. Testing of Robustness 

To investigate the robustness of the type-2 network 

SOFNN-IT2, its type-1 counterpart network SOFNN is used 

for comparison. Inputs for the obtained SOFNN and 

SOFNN-IT2 structures are a combination of current and 

one-step-back historical data from the reasoning module. 

The 20 inputs are combined with white-noise to assess the 

robustness of both networks. White-noise is chosen from the 

different standard deviations listed in Table IV. Again, the 

RMSE is between the output with noise inputs and the 

output without noise inputs. Table IV provides the results 

for both the SOFNN and SOFNN-IT2 for the goal "Bring 

Drink for User". 
 

TABLE IV. RESULTS OF SOFNN AND SOFNN-IT2 FOR BRING DRINK FOR 

USER 

No. White Noise 

(SD) 

Result SOFNN SOFNN-IT2 

1 σ=0.00001 RMSE 1.16E-05 3.66E-06 

CD% 98.84 95.24 

2 σ=0.0001 RMSE 0.0001 3.48E-05 

CD% 98.84 95.24 

3 σ=0.001 RMSE 0.0012 0.0004 

CD% 98.84 95.24 

4 σ=0.01 RMSE 0.0116 0.0038 

CD% 98.84 95.29 

5 σ=0.1 RMSE 0.124 0.0731 

CD% 96.29 93.62 

6 σ=0.15 RMSE 0.1569 0.1525 

CD% 70.38 86.27 

7 σ=0.2 RMSE 0.177 0.2214 

CD% 71.67 79.96 

8 σ=0.25 RMSE 0.1914 0.2512 

CD% 73 77.71 

9 σ=0.3 RMSE 0.2034 0.2676 

CD% 72.18 76.67 
 

Figure 10 and Figure 11 plot the trends of RMSE and 

CD% against increased noise on the inputs for the goal 

"Bring Drink for User". 

 
Figure 10. Results of Bring Drink for User's decision goals. 
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Figure 11. Results of Bring Drink for User's decision goals. 

 

It is observed that the RMSEs of SOFNN and SOFNN-

IT2 decrease as the standard deviation of the white-noise is 

decreased. This means that the SOFNN and SOFNN-IT2 

both have a degree of robustness. For white-noise with 

0.1  , the RMSEs of the SOFNN-IT2 for all outputs are 

smaller than those of the SOFNN and the CDs are similar. 

This illustrates that the SOFNN-IT2 is more robust to noise 

than the SOFNN. Furthermore, for increased white-noise, 

the CDs of the SOFNN-IT2 are better than those of the 

SOFNN, though the RMSEs of the SOFNN-IT2 are slightly 

larger than those of the SOFNN. These results show that, 

compared with its type-1 counterpart structure, the type-2 

structure is more suitable for addressing uncertain situations 

with a high level of robustness. 

V. CONCLUSION 

A type-2 fuzzy neural network SOFNN-IT2, based on a 

SOFNN and interval type-2 fuzzy reasoning, has been 

proposed in this paper. The obtained type-1 SOFNN 

structure is firstly initialised to a type-2 SOFNN-IT2 

structure and then the final type-2 SOFNN-IT2 structure is 

generated by the proposed training algorithm. Extensive 

testing of the cognitive decisions module using this 

SOFNN-IT2 algorithm has demonstrated that the approach 

is highly robust to noise and that performance is improved 

(compared to the traditional SOFNN approach) when 

considerable noise or uncertainty is present in the inputs.  

This is a very important attribute for RUBICON as it will be 

deployed in a real world environment, and thus, subject to 

uncertainty and noisy inputs. 
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