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Abstract— The common approach for training robots is to 

expose them to different environmental scenarios, training 

their controllers to have the best possible commands when 

untrained scenarios are encountered. When humans train, they 

do the same. They try new manipulations by performing within 

different environments. However, humans training (and in fact 

development from infancy to maturity) also includes a type of 

training which, although claimed to improve cognitive 

capabilities, has not, to date, been adopted for the training of 

robots. This type of training involves the restriction of 

manipulation capabilities while performing different tasks, e.g., 

climbing with just one hand. The hereby reported upon 

research aims at exploring the invigorating idea that such 

training would enhance the robustness of robots and moreover 

may increase our understanding of why humans utilize such 

training in the first place. The main idea has been patented and 

is here published by a new name: Mechanical Cognitivization 

(MC). 

Keywords-cognitive robotics; developmental robotics; 

evolutionary algorithms. 

I.  INTRODUCTION  

Robots are ubiquitous in performing industry related 
tasks and operating within hazardous environments. 
However, they scarcely participate in day to day tasks. In 
contrast, humans are those doing most of such jobs. The 
human competencies to perform arduous and complicated 
tasks while controlling and maneuvering a multi-degrees-of-
freedom body are truly amazing. Through repeatedly 
executing different tasks, the human brain learns how to 
control the complex body.  

Observing the humans' activities, two of them are of 
interest to the current research. The first is associated with 
sport related training. For example, while training, climbers 
often use different techniques such as climbing with one 
hand tied, without hands at all (on sloping walls) and 
blindfolded. Clearly, such situations are not envisaged in the 
actual climbing and are all training techniques that are 
intended to improve the climbers' sense of balance. Such 
restriction of movement, as a way to train, may be found in 
other sports (e.g., swimming, martial arts, and more). The 
other activity is also related to training under restricted 
movement, and involves the way human capabilities are 
developed from day one. Babies' brains are trained on a non-
fully developed body. In contrast to calves, they cannot 
stand, walk or run. Yet, the evolution calls for such a slow 
development and compels using restricted capabilities. 

Maybe, this is due to the fact that in many situations, just 
some of the body's abilities need to be used and the body has 
to train also these sub-manipulations. It should be noted that 
in many sports, it is acknowledged that it is better to start 
young and let the body and mind adapt to the specific 
demands of that field of sport.  

In contrast to the above, the major developments, as 
related to robots' learning and cognition were made with 
respect to the competencies of their artificial brains to learn, 
conceptualize, perform offline-planning based on 
anticipation and more [1]. However, these brains utilized 
fully developed bodies/embodiments. This is not to say that 
simultaneous evolution of solutions and their controllers 
were not investigated, but rather that such a development 
always considered one defined model for the body with a 
related controller [2].   

The research proposed here suggests exploring the novel 
idea of enhancing the robustness of robots through training 
them while considering their final bodies/embodiments as 
well as their restricted-modes (less capable versions). It is 
contemplated that such training would enhance the 
robustness of robots to perform untrained maneuvers as well 
as to cope with malfunctions and unexpected working 
conditions. Moreover, such training is envisaged to be more 
optimally facilitated by specific bodies when compared to 
others. Therefore, optimization has to be incorporated. The 
basic idea has been patented [3].  

 In order to better elucidate the idea, suppose that a 
Robotic Climber (CR) that climbs on a wall that has poles 
sticking out of it, has to be developed. The left panel of 
Figure 1 depicts one possible mechanical configuration 
(body) for such a CR. The CR should now be trained to 
maneuver up and to grasp one of the poles (A or B).  

 

 
 

Figure 1: CR having four links is trained using all of them (left panel) and 
using restricted modes (middle and right panels). 

 

116Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-340-7

COGNITIVE 2014 : The Sixth International Conference on Advanced Cognitive Technologies and Applications



The idea suggested here is that while training this CR’s 
controller, not only this body should be utilized, but also its 
restricted modes. Two of such restricted modes are depicted 
in the middle and right panels of the figure. Clearly, 
performing such a maneuver by utilizing one of the restricted 
modes might be associated with degraded performances (e.g., 
bigger integral of the square error, measured while 
considering the planned and the actual performed maneuver). 
Restricted modes may include the following restrictions:  a. 
Using just some of its mechanical capabilities, such as 
restricting some of the links from moving, that is if the robot 
has four arms/links, it will be restricted to use three/two of 
them or not using its gripper, b. Restricting the movement of 
the arms/links to less than their full possible extent, c. 
Deliberately imposing friction at joints, d. Changing the 
stiffness of links, e. Restricting the performances of 
actuators, by for example: reducing the power supply to the 
actuators or using weaker actuators (smaller motors). 

The paper is organized as follows. In Section II, the 
background for the current study is given. In Section III, a 
description of the already attained results is given. This is 
followed by Section IV, where a discussion and envisaged 
future work are given.  

II. BACKGROUND 

Over the past several decades, a great deal of research 
attention has been directed at cognition and its 
implementation for artificial brains. The inspiration provided 
by human beings toward producing a machine that will copy 
human abilities is evident. Different models of cognition 
have been adopted to produce artificial cognitive systems or 
cognitive architectures. Cognitive architectures [1] represent 
attempts to create unified theories of cognition, i.e., theories 
that cover a broad range of cognitive issues, among them 
attention, memory, problem-solving, decision-making, 
learning. These theories consider several aspects, including 
psychology, neuroscience, and computer science. Examples 
of such architectures are EPIC [4], and ACT-R [5]. Some of 
these architectures have been claimed to be more adequate 
than others for use as cognitive brains for robots. This 
distinction [1], is rooted in the differences between the 
"cognitivist" and the "emergent" philosophies of cognition. 
The philosophy of emergent cognition contends that the 
relationship between the cognitive architecture and the body 
it is controlling (e.g., robots) is essential to the development 
of cognition. An associated philosophy is embodied 
cognition [6][7], which states that cognition can be 
influenced and biased by states of the body and that abstract 
cognitive states are grounded in states of the body. Among 
the architectures that facilitate this view is the biologically 
plausible brain-inspired neural-level cognitive architecture 
proposed by Shanahan [8], in which cognitive functions such 
as anticipation and planning are realized through internal 
simulation of interaction with the environment.  

Several approaches have been proposed to improve the 
response of artificial entities to specific stimulations by 
circumventing complex cognitive architecture. For example, 
the computational model of perception and action for 
cognitive robots discussed by Haazebroek et al. [9] embraces 

the view that there is a direct route from perception to action 
that may bypass cognition [10]. A related approach is 
morphological computing [11][12][13], in which the idea is 
to design the mechanical structure to respond directly to a 
stimulus. This response is a result of the special morphology 
(shape, materials inter-relation among parts) of the structure. 
For example, in [14], the special features of a hand (Yoki 
hand) partially built from flexible deformable materials 
enable it to easily grasp different objects with no need for 
controller feedback. This notion has gained a great deal of 
interest, and for the past several years workshops have been 
dedicated to considering different aspects of morphological 
computing, such as artificial skin and stretchable sensors, 
compliant actuators and mechanisms, and soft materials in 
robotics.  

Most relevant to the current paper are studies conducted 
by Mark Lee's group at Aberystwyth, UK. Their research is 
related to Developmental Robotics [15]. According to this 
approach, which is rooted in the way babies develop, 
cognitive development is achieved through staged growth of 
cognition as the sensomotoric competencies gradually and 
sequentially improve. In several publications [16][17] [18], 
Lee's group introduced and developed what they term as 
'constraint lifting'. At each stage, learning takes place with 
certain constraints imposed on the sensomotoric system. At 
the next stage, some of these constraints are removed or 
'lifted'. For example, learning hand-eye coordination in 
manipulating a robotic arm has been investigated. In that 
case, as learning progressed, constraints imposed on moving 
parts of the robot (e.g., using the fingers) were 'lifted'.  

The proposed research focuses on the enhancement of 
cognition by considering the mechanical structure, as is the 
case in morphological computing. Here, however, the 
cognitive architecture is of vital importance, and the 
mechanical structure and its possible restricted modes 
(permutations of the final structure) are utilized for training 
the cognitive architecture. This means that the mechanical 
structure is the driving force for the enhancement of 
cognition. Moreover, the current project involves several 
basic differences from the works, such as [18]: a) In contrast 
to the sequential staged growth, MC may be enhanced 
simultaneously. b) In the proposed approach, constraining 
manipulations may take place any time along the robot's life 
time. c) In our research, a search for embodiments that will 
optimally benefit from the MC training will be conducted.  

III. PROMISING INITIAL RESULTS 

Mathematical functions rather than a model of a CR were 
used to elucidate the concept of MC and to demonstrate its 
potential. A polynomial function Y(x) of order m, where x is 
a vector of inputs (e.g., location of poles), is used to represent 
the "environment" (the climbing wall) to which the CR must 
adapt (i.e., climb in the best way).  In other words, Y(x) may 
be viewed as a planned route for the robot to follow. The 
CR's controller is a neural net (NN) whose outputs are the 
coefficients of a polynomial of order n,

n
nn axaxaxy   ...)( 1

21 . Each output may be viewed 

as a control signal (here a coefficient) to a motor of a 
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manipulator that moves a robotic arm. By means of 
kinematics, the sum of the arm's movements results in the 
location of the CR on the wall, where the summing is 
represented by y(x). One way to enhance the training is to 
minimize the error, )()( xyxYError  . Figure 2 depicts the 

correlation between the CR case and the function 
representation. 

 
 
 
 
 
 
 
 

Figure 2. The correlation between the CR and the related function 
representation. 

 
In order to train the net to provide output adequate to the 

environment (a function of order m), the artificial learning 
system is set, as depicted in Figure 3.  

 
 

Figure 3. The artificial NN with no restricted modes. 

 
The input to the NN is a list of K, x and corresponding 

Y(x) values that are fed sequentially to the net. The net has n 

extra inputs (flags), namely: ],.....,,[ 21

naaa . These flags 

serve as the feedback to the controller and indicate the 
condition of related outputs. That is, if all outputs are 
functioning (no restriction of movement is associated with 
the manipulator's links), the value of the corresponding flag 
will be set to one, while if there is a restriction (unable to 
move due to a malfunction) a value of zero will be assigned 
to that flag. In the non-restricted training mode these flags 
are all set to one, indicating that no restriction is imposed on 
outputs and that all of them participate in estimating a 
function Y(x). A genetic algorithm was used to tune the net's 
weights so as to minimize the error. The results of the 
training are in the form of weights that for each input [x, 
Y(x)] produce a different set of outputs that best fit the target 
function Y(x). In the restricted mode, training the NN uses 
different sets of inputs, exploiting not more than the former 
system's available resources (K pairs). 1/n of the inputs, were 
pairs fed to the net together with all the flags, which were set 
to one as in the unrestricted mode. For the next 1/n inputs, 
the first output was prohibited and the corresponding flag 
was set to zero, as shown in Figure 4.  

 

 
 

Figure 4. The artificial NN training setting for a restricted mode. 

 
The implication of this training is that the weights are 

now trained to produce only n-1 outputs so as still to provide 
the best fit to the original function (environment). The other 
available resources were used to train the restricted modes by 
repeating this procedure for all other outputs while setting the 
corresponding flags to zero. In another version of this 
training, the available resources were divided among the 
restricted mode training such that more than one output was 
restricted. The left panel of Figure 5 depicts a target function 
as a dashed curve.  

 
 
 
 
 
 
 
 
 
 

Figure 5. Left panel: The two NNs are trained to follow a function, right 
panel: Restricted mode shows better performances in following a function.  

 
The trained non-restricted and restricted net outputs for a 

new arbitrary set of x points are shown in that panel by the 
black and the grey curves, respectively. Next, the 
performances of these differently trained entities have been 
compared while considering different scenarios: A. 
Malfunction in one or more of the outputs: In this scenario 
the environment is not altered (i.e., the same function has to 
be correlated) and the two different systems must still fit it. 
As stated in the patent, the MC-based system provides 
feedback that informs the net that there is a problem by 
setting the corresponding flag to zero. Because such 
situations have been included as part of the MC training, the 
performances of the related entity are expected to be 
superior. B. Environmental changes: In these scenarios, all 
flags are set to one (no malfunctions). This means that the 
two systems must perform in an untrained environment. A 
change in the environment is simulated by changing Y(x) by 
altering the coefficients (including setting one or several to 
zero) and the powers (not using only integers as powers). 
This is tested practically by entering a new set of inputs pairs 
(x, Y(x)) that corresponds to these changes. The right panel 
of Figure 5 depicts a common situation in which the MC 
approach showed merit. Here again, the target function, the 
non-restricted-mode trained function and the MC trained 
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function are designated by dashed, black and grey curves, 
respectively. 

These scenarios yielded the following observations: a) As 
expected, the superiority of the MC training was 
unquestionable for scenario A. b) For scenario B, no 
conclusive conclusions could be made, although as the n-m 
difference grew (possibly related to more degrees of freedom 
associated with the CR), the statistical success of the MC 
training became more profound. This observation clearly 
implies that, depending on possible environmental changes, 
some entities (order of n) will benefit more from MC 
training. c) If planning is taken into account, that is, if the 
different performances resulting from the different restricted-
mode models are assessed before action is taken, the 
superiority of the MC is unquestionable. This means that at 
least one of the flags is deliberately set to zero, prohibiting at 
least one of the outputs so as to best fit the function at hand 
(the new environment). Thus, the CR may choose whether to 
use all of its arms in order to best fit the needed maneuver. A 
decision to deliberately prohibit movement may also be the 
result of failing to advance along a route and trying a 
different strategy for advancement. 

 

IV. CONCLUSION AND FUTURE WORK 

The suggested idea is to enhance the robustness of robots 
in performing within changing environments and tasks by 
optimizing and training them while exploiting their final 
mechanical configuration as well as their restricted mode 
configurations. Restricted modes are modes where part of the 
mechanical capabilities, are restricted. This means that such 
training should take into account multi-models (kinematics 
and dynamics) while training the entity to perform within 
different scenarios. The dependency of the controller's 
tuning, which may be related to cognition, on the mechanical 
structure and its related restricted modes, for the sake of 
inducing cognition, has been termed here as Mechanical 
cognitivization. For now, it seems that the success of the MC 
would be, for all scenarios, dependent upon optimizing the 
entity itself in order for it to fully exploit this type of training. 
It is noted that the main envisaged drawback of such 
optimized entities is that they will probably be more 
complicated and therefore will cost more. Although for the 
cases where planning is possible, success is more easily 
obtained.  

As for future work, we intend to further exploit the use of 
functions in order to explore the fundamentals of MC 
optimization and training. However, due to the fact that the 
correlation between functions and robots is not always 
apparent, the idea will be examined through evolving 
embodiments and simulating their performances within 
artificial environments. More futuristic plans include testing 
the MC by using learning by demonstrations and more.       
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