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Abstract—Visual awareness is an important function in mind 

model CAM (Consciousness And Memory). In this paper，we 

construct a visual awareness component from two respects, 

namely, objective processing and spatial processing. The 

Conditional Random fields based Feature Binding 

computational model (CRFB) is applied to visual objective 

processing. For visual spatial processing, we explore three 

important kinds of relationships between objects that can be 

queried: topology, distance, and direction. The details of object 

processing and spatial processing are presented. 

Keywords-visual awareness; CAM; visual objective 

processing; visual spatial processing 

I.  INTRODUCTION 

The visual system is characterized by functional 
specialization, and each different visual attribute is processed 
by a different specialized system. Psychophysical 
experiments have demonstrated that different visual 
attributes are perceived at different times and independently 
from each other. Most scientists have the common 
understanding that primary visual cortex (V1) perceives any 
visual feature, while higher brain areas may perceive 
particular visual features. A ventral pathway leading from 
V1 to the temporal lobe is for representing ‘what’ objects are. 
A dorsal pathway leading from V1 to the parietal lobe is for 
representing ‘where’ objects are located. The Middle-
Temporal (MT) area is for motion perception. 

 Mental imagery resembles perceptual experience, but 
occurs in the absence of the appropriate external stimuli. 
Visual mental imagery is the thought to be caused by the 
presence of picture-like representations in the mind, soul, or 
brain. Kosslyn [1] proposed the processing system of visual 
mental imagery mainly consists of visual buffer, object 
properties processing, spatial properties processing, 
associative memories, information shunting and attention 
shifting.  

Inspired by Kosslyn’s visual mental imagery, Laird et al. 
[2] have added memory and processing structures to directly 
support perception-based representation. The Spatial-Visual 
Imagery (SVI) focused on modeling the characteristics of 
human mental imagery [3]. A Spatial Visual System (SVS) 
combines the concrete spatial representations and abstract 
symbolic representations [4]. All of these expanded Soar’s 
capabilities [2] with human reasoning. 

Object properties processing and spatial properties 
processing are two important processing issues in visual 
awareness. The paper will present the main principles for 

handling visual awareness in CAM (Consciousness And 
Memory) [5].  

In this paper, Section II will outline the architecture of 
CAM. Object properties processing is discussed in Section 
III. Sections IV will explore the spatial properties processing. 
Finally, the conclusions of this paper are drawn and future 
works are pointed out. 

II. CAM ARCHITECTURE 

 A mind model entitled CAM is proposed by Intelligence 
Science Laboratory of Institute of Computing Technology, 
Chinese Academy of Sciences [5]. Comparing with other 
mind models CAM has several important distinct 
characteristics, such as unique and sophisticated 
computational models for perception and cognition; 
complete memory system including working memory, short-
term memory, and long-term memory which has semantic 
memory, episodic memory and procedural memory; the 
global workspace and motivation-model based consciousness. 
The architecture of CAM is illustrated in Figure 1 and 
organized into ten modules. 

A. Visual Module 

Visual module is the part of the central nervous system, 
which gives organisms the ability to process visual detail, as 
well as enabling the formation of several non-image photo 
response functions. It detects and interprets information from 
visible light to build a representation of the surrounding 
environment. The visual system carries out a number of 
complex tasks, including the reception of light and the 
formation of monocular representations; the buildup of a 
binocular perception from a pair of two dimensional 
projections; the identification and categorization of visual 
objects; assessing distances to and between objects; and 
guiding body movements in relation to visual objects. From 
Lateral Geniculate Nucleus (LGN) neuron send their signals 
to the primary visual cortex V1. About 90% of the outputs 
from the retina project to the LGN and then onward to V1. In 
the ventral pathway, many signals from V1 travel to ventral 
extra striate area V2, V3 and V4 and onward to many areas 
of the temporal lobe. 

B. Aural Module 

The auditory module is comprised of many stages and 
pathways that range from ear, to the brainstem, to subcortical 
nuclei, and to cortex. The advent of neuroimaging techniques 
has provided a wealth of new data for understanding the 
cortical auditory system. 
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C. Sensory Buffers 

Each of the classical senses is believed to have a brief 
storage ability called a sensory buffer. 

 
Figure 1. CAM architecture [6] 

D. Working Memory 

Baddeley [8] presented that working memory includes 
the central executive, visuo-spatial sketch pad, phonological 
loop and episodic buffer as illustrated in Figure 1 [7, 8]. The 
central executive is future directed and goal oriented in 
effective, flexible and adaptive. At the basic level the 
working memory is located in the prefrontal cortex. Working 
memory provides temporary storage and manipulation for 
language comprehension, reasoning, problem solving, 
reading, planning, learning and abstraction. 

The ability to mentally maintain information in an active 
and readily accessible state, while concurrently and 
selectively process new information is one of the greatest 
accomplishments of the human mind. Working memory 
provides temporary storage and manipulation for language 
comprehension, reasoning, problem solving, reading, 
planning, learning and abstraction. 

In working memory, the central executive is the core 
component. It drives and coordinates other subcomponents 
in working memory to accomplish cognitive tasks. The 
visuo-spatial sketch pad holds the visual information about 
what the cognitive system had seen. The phonological loop 
deals with the sound or phonological information. The 
episodic buffer stores the linking information across domains 
to form integrated units of visual, spatial and verbal 
information with time sequencing (or chronological 
ordering), such as the memory of a story or a movie scene. 
The episodic buffer is also assumed to have links to long-
term memory and semantic meaning. 

E. Short-Term Memory  

Short-term memory stores agent’s beliefs, goals and 
intention contents, which are change rapidly in response to 
environmental conditions and agent’s agenda. Perceptual 
short-term memory stores the pre-knowledge of objects 
coded in relational coding scheme and empirical 
expectations of correlated objects. 

F. Long-Term Memory 

Long-term memory contains semantic, episodic and 
procedural knowledge which change gradually or not at all. 

1) Semantic memory stores general facts which are 
represented as ontology. In philosophy, ontology is a theory 
about the nature of existence. In information science, 
ontology is a document or file that formally defines the 
relations among terms. The most typical kind of ontology for 
the semantic Web has a taxonomy and a set of inference 
rules. In CAM, ontology specifies a conceptualization of a 
domain in terms of concepts, attributes, and relations in the 
domain. Dynamic Description Logic (DDL) is used to define 
ontology [9]. 

 2) Episodic memory is one part of long-term memory 
that involves the recollection of specific events, situations 
and experiences which are snapshots of working memory. 
Nuxoll and Laird demonstrated that an episodic memory can 
support an intelligent agent to own a multitude of cognitive 
capabilities [10]. 

In CAM, the episode is an elementary unit that stores 
previous scene in episodic memory where an episode is 
divided into two levels: one is an abstract level in terms of 
logic, another is a primitive level which includes perception 
information correlated to abstract level of the described 
object. 

3) Procedural memory is a type of long-term memory for 
the performance of particular types of action. Procedural 
memory stores knowledge about what to do and when to do 
it. In ACT-R, 4CAPS, SOAR [2], etc., procedure knowledge 
is encoded as situation-action rules which provide an 
efficient and scalable representation. In CAM, procedural 
knowledge is represented in DDL logic. 

G. Action Selection 

Action selection is the process of constructing a complex 
composite action from atomic actions to achieve a specific 
task. Action selection can be divided into two steps, first is 
atomic action selection, i.e., select related atomic action from 
action library. Then, selected atomic actions are composed 
together using a planning strategy. One of action selection 
mechanism is based on a spiking basal ganglia model. 

H. Response Output  

The motor hierarchy begins with general goals, 
influenced by emotional and motivational input from limbic 
regions. The primary cortical motor region directly generates 
muscle based control signals that realize a given internal 
movement command. 

I. Consciousness  

The primary focus is on global workspace theory, 
motivation model, attention, and the executive control 
system of the mind in CAM. Baars [11] proposed the global 
workspace theory which all the elements have reasonable 
brain interpretations, allowing us to generate a set of specific, 
testable brain hypotheses about consciousness and its many 
roles in the brain. We presented a new motivation model 
which is 3-tuples {N, G, I}, where N means needs, G is goal, 
I means the motivation intensity [12].  
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J. High Level Cognitive Functions  

It includes a class of high level cognitive functions, such 
as reasoning, planning, learning, etc., which perform 
cognitive activities based on the basic cognitive functions 
supported by the memory and consciousness components of 
CAM. 

K. High Level Cognitive Functions  

It includes a class of high level cognitive functions, such 
as reasoning, planning, learning, and etc., which perform 
cognitive activities based on the basic cognitive functions 
supported by the memory and consciousness components of 
CAM.  

III. VISUAL OBJECTIVE PROCESSING 

Many findings have shown that the ventral pathway acts 
as an object-properties processing subsystem, whereas the 
dorsal pathway acts as a spatial-properties processing 
subsystem. By “object properties” means shape, color, and 
texture; by “spatial properties” means relative positions in 
space of two or more objects or parts. Objective processing 
is to understand what the object is and spatial processing is 
to know where the object locates. Visual object processing is 
discussed in this section, whereas next section will explore 
visual spatial processing.  

 Figure 2. The framework of visual objective processing 

 
We have proposed CRFB in 2010 [13]. Now we apply 

CRFB for visual object processing. Figure 2 shows the 
framework of CRFB model. We regard a whole image as a 
master map of locations [14]. With respect to the precise 
position tags on the master map, low-level image features are 
extracted. According to the relational coding schemes, the 
position tags and low-level image features are locally 

combined into feature maps [14]. When attentional window 
[15] scans the master map, the being scanned locations 
stimulate their corresponding feature maps, forming a 
temporary object representation, which describe the object in 
relational coding scheme with no object name. Then, we 
search the recognition network in perceptual short-term 
memory, which stores the pre-knowledge of objects coded in 
relational coding scheme and empirical expectations of 
correlated objects. When serial scan [15] (for a 2-D image, 
horizontal and vertical scans are sufficient) of the master 
map finished, we accomplish the binding process. In the 
whole process, the fundamental concepts and principles of 
random fields enlighten us a lot to model the binding 
problem. 

Following the framework, we detail the image features 
extraction in subsection A. Next, we stipulate the relational 
coding schemes in subsection B. In subsection C, we learn 
the recognition network according to the maximum entropy 
principle. At last, we clarify visual conjunction search 
process in subsection D. 

A. Low-level Feature Extraction 

Feature extraction constructs combinations of the 
variables to get around these problems while still describing 
the data with sufficient accuracy. Low-level image features 
are cornerstones for feature binding process. It is desired that 
we could extract the feature of single object one by one, but 
to our disappointment, up till now, there are no methods 
could perfectly sketch the contour of single object among 
interacted ones. So, we synthesize the latest effective 
methods to extract image features to represent the low-level 
visual information to our best. 

We present a Coding and Combing Feature framework 
(CCF) in multi-scale space. We first partition an image into 
square grids with the same size. For each grid, we compute 
complement features, i.e., the gradient texture histogram, 
color histogram and normalized intensity histogram. After 
various features are extracted, we compact them into 
efficient and effective codes. The coding process preserves 
as much information as possible and repesents features with 
effecive codes. The codes generated in the compact coding 
step are then combined by multi-kernel hashing to make a 
more discriminative feature representation. The final 
representation is effective in different situations. Then, we 
enlarge the size of the grid and obtain the features for the 
larger grid as the former procedure and we regard the feature 
of the larger grid as regional feature. At last, we normalize 
the local features for an image into a vector. For many 
images, vectors are clustered and each image is assigned an 
index of cluster center. We call the index global feature of an 
image. 

The coding and combining framework is evaluated on the 
UKbench image retrieval dataset [16]. From Figure 3, we 
can see that the combined feature achieves a higher recall 
than the color histogram and the texture feature. The 
combined feature utilizes complementary features and 
benefit from compact coding; thus, the features generated by 
our CCF framework is more discriminative and robust.  

recognition network

temporary object 
representation

time t
properties

place (x,y)
relations

... ...

master map of locations attention

low-level features

local feature map
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The multi-scale feature is proposed for the following two 
reasons: a) It is intractable to represent the feature of an 
object for difficult outlining objects. Features from different 
scales could compensate the above problem on some extent; 
b) Multi-scale feature enrich our association function in 
relational coding scheme, which we will see in subsection B. 

 
Figure 3. Combined feature evaluation  

B. Relational Coding Scheme 

We stipulate the relational coding scheme for three 
functions. First, we lock the low-level features to the 
locations of the master map. Secondly, correlations between 
low-level features and high-level knowledge are coded. 
Thirdly, transfer relations among knowledge are coded. 
These functions also construct the local feature map. For the 
first function, we build a 2-D coordinates for the image, then, 
assign each local grid a precise position (x, y), so we can map 
the location to the corresponding low-level feature. 

We implement the second function under the following 
considerations: a) a longer coding scheme is expected to 
manage the unstructured image information; b) the coding 
length is restricted by the attentional window. So, we make a 
compromise to design a reasonable length of the coding 
scheme. We introduce the association function, inspired by 
the state feature function [17], to encode the correlations. Let 
o be an observed low-level local feature, st be a state s at 
time t and l be a name of some object. Association function 
is defined as follows, 

      , ,i t i tf o s x o t s l                     (1) 

where st=l means that current state st is associate with the 
object name l. xi(o,t) is a logical function to judge whether or 

not a specific serial of low-level features. δ(e) is equal to 1 

if the logical expression e is true, and 0 otherwise. We design 
the logical function xi(o,t) within the attentional window. 
Figure 2 shows the procedure. 

In Figure 4, the attentional window size is 2n +1, so the 
maximum length of our logical function is n+1. The arrow 
indicates the current state. o represents the low-level local 
feature, r represents the combination of low-level regional 
and global feature and l represents the high-level knowledge. 
For a current state, there are some fixed schemes to construct 
xi(o,t), such as o0, o-1o0, r-1r0, r-1r0o0 and so on. We can see 
that multi-scale low-level features are engaged to construct 
xi(o,t), which gives more feature combination schemes for 
logical function than with the low-level local features only. 
For a 2-D image, adjacent low-level features are correlated 
by the logical function. We associate the current observed 
low-level feature with its horizontal and vertical neighbors 

within length n to construct xi(o, t). The 2-D structural 
correlation coding scheme could better reflect the image 
semantics. 

We introduce the interaction function, similar to the edge 
feature function [16], to realize the third function. Interaction 
function is defined as follows, 

     1 1, 'j t t t tg s s s l s l                      (2) 

Figure 4. Designing the logical function xi(o,t). 

 

We introduce the interaction function, similar to the edge 
feature function [17], to realize the third function. Interaction 
function is defined as follows, 

     1 1, 'j t t t tg s s s l s l                      (2) 

This formula suggests that the interaction function 
presents the object name transfers from previous state to 
current state, which indeed indicates the transfer scheme of 
high-level knowledge. Similar to the association function, 
the knowledge transfer scheme also employed a 2-D 
structure, coding the relational knowledge horizontally and 
vertically. 

We assemble the association and interaction functions as 
relation functions, which construct the local feature map. 
With the ensemble of local feature maps, we can represent 
the relationships among low-level features and high-level 
knowledge.  

C. Learning the Recognition Network 

Relational Coding associate the local feature maps with 
the master map of locations. At the same time, abundant 
chaotic correlations between low-level feature and high-level 
knowledge are supplied. How do we organize the association 
functions and the interaction functions to gain maximal 
empirical pre-knowledge for recognizing object? 

We need to build a probability distribution p as general 
as possible to give a maximum entropy of the relation 
functions which contains the maximal quantity of 
information [18]. We apply certain expectation constraints 
with respect to feature functions: 

  ,i t iE f o s                                   (3) 

  1,j t t jE g s s                               (4) 

For the association function fi(o,st), if certain serial of 
observed low-level features associate with some object name, 
it equals 1, otherwise 0; for the interaction function gj(st-

1,st),if the previous object transfers to the current one, it 
equals 1, otherwise 0. In enormous observing samples, we 

may set the expectation value
j, .i   We assume px an 

element of finite length vector P. Now we may formalize our 

o-n ... o-1 o0 o1 ... ono-n-2 o-n-1 on+1 on+2

r1r-1 r0 ...... rn rn+1 rn+2r-nr-n-1r-n-2

l0 lnl-1 ...... ln+1 ln+2l1l-nl-n-1l-n-2 ...

...

...

attentional window
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target as a convex optimization problem subject to linear 
constraints: 

p
max   logx x

x

p p                                (5) 

subject to 

 ,x i t i

x

p f o s                              (6) 

 1,  x j t t j

x

p g s s                         (7) 

1 x

x

p                                            (8) 

We write the Lagrangian as   

    
 

 1

log ,

      , 1

x x i x i t i

x i x

j x t t j x

j x x

J p p p f o s

p s s p

 

  

 
    

 

   
      

   

  

  

        (9) 

Taking derivatives with respect to a specific element px 

   11 log , , 0x i i t j j t t

i jx

J
p f o s g s s

p
  


      


   (10) 

Hence 

   1

1
exp , ,x i i t j j t t

i j

p f o s g s s
Z

  

 
  

 
            (11) 

That is the distribution we are pursuing. In learning 
process, we estimate the weight parameters of the relation 
functions through the K training image samples by maximum 
the log-likelihood of the objective function [18]: 

       , log ,xk
p   k k

s oL                    (12) 

We define  

     1, , ,i i t j j t t

i j

F f o s g s s    k ks o         (13) 

Then, we seek the zero of gradient 

       |
, , ,

xpk
F E F     
 

k
k k kS o

s o S oL     (14) 

The expectation 
   |

,
xp

E F
k

kS o
S o can be efficiently 

computed with the forward-backward algorithm in [17]. For 
the 2-D structural of our relation functions, the transition 
matrix differs [17] in the following formula 

      1', exp , ,t m m t n n t tm n
M l l f s o g s s        (15) 

which means that the current matrix Mt(l’,l) sums up all the 
association functions and interaction functions of current 
state st in both horizontal and vertical direction. We penalize 
the likelihood with a spherical Gaussian weight prior to 
avoid overfitting [20]. We input the gradient of the log-
likelihood to the L-BFGS [21] algorithm for an iteration 
process which gives the values of parameters 

1 2 1 2( , , , , ).     With the weighed relation functions, 

we build the recognition network. Suppose we have learnt |L| 

categories of object, we can build a | | | |L L  knowledge 

transfer matrix by summing up the weighted interaction 
functions across the overall learning samples where gj(st-1,st) 
satisfies st-1=l’ and st= l. 

    1', exp ,i j j t tj
M l l g s s                    (16) 

The transfer matrix implies the empirical knowledge that 
on what extent object B co-occurs with the object A. The 
association functions with weights, which indicate how 
much low-level features relate to a specific object, are stored 
in the recognition network, ready for retrieval. 

D. Conjunction Search 

The binding process is driven by both attention and 
particular expectations. Attention works through the 
attentional window scanning the image and expectations 
mean predicting the presence of a particular object by 
contextual constraints, which can be represented by the 
knowledge transfer matrix. With the preparations in the 
former sections, we clarify the conjunction search below. 

When a new image comes, low-level features are first 

extracted in a set 
1 2 1 2{ , , , }.S o o r r Then, local feature 

maps are generated in relational coding scheme. Here, our 
local feature maps only code the location information and the 
related serial of low-level features. Location information is 
coded in a map where each local feature oi in S corresponds 

to an only precise position coordinate  i i,x y , formulated as 

 i i i, .o x y Positional adjacent features are coded in the 

form: 
1 s 1 k ( , 1).o o r r s k n  c Next, at time t, the 

attentional window whose maximum size is 2n+1, scans the 
master map of locations with respect to both horizontal and 
vertical directions. Low-level features within attentional 
window are cared, and the outside features are temporarily 
neglected. The relevant feature maps are activated by the 
window to form a temporary object representation, which 
contains the location of low-level features and the low-level 

features combination schemes set   { , , }1 2C c c ,of the 

current state st. Now, we search the recognition network to 
find the association functions which contain the element of 
set C. Related weighted association functions containing the 
same object name l are added up. Looking up to the transfer 
matrix, we obtain the transfer probability from every other 
object l’ to l. We pick the maximal exponential sum of the 
two factors to be the object l associated with state st as 
formula (17). 

    1

total number 

max exp , , ,...i i t j j t ti j

L

f s o u g s s 

 
 

 
 
 

       (17) 

As the attentional window moving forward step by step, 
the procedure we discussed above is repeated. With regards 
to the previous states, we get a recursive expression as 
follows 

      1 max exp , , 1
jt i s t js s F t   s o         (18) 

where  t is denotes the probability that state si associate 

with a particular object l. When attentional window scans 
over the whole image, we obtain the conjunction search 
result as follows 

      * arg max exp , ,
t
F t s

s s o              (19) 
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We apply Viterbi algorithm to the above process to 
perform an efficient computing. When conjunction search 
finished, we bind the features to get an integrated 
understanding of the image. 

Conjunction search procedure can be accelerated by the 
hint of feature inhibition [15], which means that the active 
features suppress the non-target features. In the low-level 
local features, adjacent features share similar characteristics 
causing identical local feature maps. We define the highly 
similar local features as non-target features. In the 
conjunction search process, when we come across non-target 
features, we ignore them and move the attentional window to 
the next target features. By doing so, we obtain the same 
binding result but compute less. 

Conjunction search associates the every element of low-
level local feature set S with object name l. Looking up to the 

map of relational coding scheme, using  i i i,o x y , we 

can locate the objects in one image. Up till now, the 
recognition task is accomplished.  

IV. VISUAL SPATIAL PROCESSING 

Visuo-spatial sketch pad holds the information it gathers 
during the initial processing and often in normal thought 
processes with visualization and conscious effort. Logie has 
proposed that the visuo-spatial sketch pad can be subdivided 
into two components [22]: a) The visual cache, which stores 
information about form and color. b) The inner scribe deals 
with spatial and movement information.  

In order to do visual spatial processing, we follow SVS 
idea which is proposed by Wintermute [4]. CAM adds a 
quantitative spatial representation in the spatial scene short-
term memory and a visual depictive presentation in the 
visual buffer short-term memory. In addition to the two 
short-term memories, there is a long-term memory in CAM 
for visual, spatial, and motion data and it is called Perceptual 
LTM. Visual imagery is cognitively useful and can be 
implemented without true perception. Predicate extraction 
provides symbolic processing with qualitative properties of 
the contents of the spatial scene and visual buffer. 

For the spatial system, there are three important kinds of 
relationships between objects that can be queried: topology, 
distance and direction. Topological relationships describe 
how the surfaces of objects relate to one another. Distance 
queries are similarly simple. Currently, the system can query 
for the distance between any two objects in the scene along 
the closest line connecting them. Direction queries are 
implemented as in the approach of Hernández [23]. 

V. CONCLUSIONS AND FUTURE WORKS 

Visual awareness is an important function in mind model 
CAM. This paper has presented to apply the conditional 
random fields based feature binding computational model 
(CRFB) for visual objective processing. We have also shown 
the main idea for visual spatial processing in the paper. 

Visual spatial processing is more difficult and we will 
continue to look for good representation and algorithm to 
solve the problem.  
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