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Abstract— Predictive decision making is characteristic to 
current state of the art socio-technical systems that guide 
negotiation processes under electronic settings. Back end 
participants are particularly benefited by the use of models of 
computational intelligence, which help them adapt their 
strategy and evaluate risks and dynamics of the current 
negotiation. In this paper, the skill of forecasting the 
counterpart’s future offers with the use of neural networks is 
investigated. Current systems base their learning models on 
data acquired from previous interactions. Such systems are 
once trained in an offline mode and are thereafter expected to 
operate in a real environment. However, when data 
distributions change, the systems no longer provide accurate 
estimations. A new perspective to the issue is introduced, by 
highlighting the need of learning during the negotiation 
session, with the use of “session-long learning” agents. These 
agents prove capable of capturing the negotiation dynamics by 
training their learning models with the data from the current 
negotiation thread. In this paper a static session-long learning 
agent, based on a simple neural network model, as well as an 
adaptive session-long learning agent, based on a neural 
network which evolves its structure and input features with the 
use of a genetic algorithm in each negotiation round, are 
presented and assessed. 

Keywords-Predictive negotiator; genetic algorithm; adaptive 
negotiation strategy; neural network applications 

I.  INTRODUCTION  
Electronic Marketplaces (E-markets) is an important 

component of e-business that brings demand and supply of 
commodities and services into balance. They are the meeting 
places of producers and consumers that use exchange 
mechanisms, such as catalogues, negotiations, and auctions 
[1].  

This paper is focused on the negotiation mechanism, 
defined as an iterative communication and distributed 
decision-making process, where participants, humans or 
agents, are searching for an agreement. Computer science 
has significantly contributed to the field, since the use of 
information systems has moved the negotiation arenas to 
electronic settings, and the development of models of 
computational intelligence has extended the cognitive 
abilities of negotiators. Current research efforts concentrate 
on the enhancement of support systems that assist 

negotiators, and on software agents that fully automate 
negotiation processes using learning techniques. One such 
technique is related to the ability of negotiators to forecast 
their counterpart’s future offers and accordingly adjust their 
strategy. This research considers agent to agent interactions, 
and investigates the skill of forecasting the other party’s 
responses. 

In section 2, related work is presented and the value of 
forecasting, measured in terms of utility gain, is highlighted. 
In section 3, it is argued that neural network models trained 
with data from previous interactions are not capable of 
retaining their accuracy when used in open dynamic 
environments. The key issue is to retrain the neural networks 
involved, with data extracted from the current negotiation 
thread. Agents that retrain the employed networks are termed 
Session-long Learning. In section 4, two types of such agents 
are illustrated; Static session-long learning Agents (SSLAs), 
which are enhanced with a Multi-layer Perceptron (MLP) 
that has a static architecture, and Adaptive Session-long 
Learning Agents (ASLAs), which make use of an MLP that 
evolves its architecture and input features with a genetic 
algorithm. In section 5, the two types of session-long 
learning agents are compared, while in section 6, conclusions 
and future research issues are discussed. 

II. TERMINOLOGY AND RELATED WORK 
The outcome of a negotiation can be a compromise or a 

failure, and the gain (profit) an offer X incurs to participant 
(agent) α is measured by a utility function )(XU a  that 
takes values in [0,1]. In multi-issue negotiations multiple 
attributes (issues) are considered negotiable and are 
exchanged between the engaged parties. Each offer X can 
be expressed as a vector in the n-dimensional space, where n 
is the number of issues under negotiation. For each issue, 
participants specify a range of permissible (reservation) 
values (a minimum and a maximum), which they are not 
willing to exceed. Additionally in many cases time is crucial 
and participants set a deadline indicating the maximum time 
they can spend in a negotiation encounter. 

The specific rules of communication that guide the 
interaction constitute the negotiation protocol and determine 
the way messages are exchanged. The decision making rules 
or strategies are used to determine, select and analyze the 
decision alternatives. In a simple case where negotiation is 
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conducted between two non learning agents, alternatives are 
generated with the use of formal decision functions, and 
three groups of strategies are identified (time, behavior and 
resource dependent) as described in [2]. More sophisticated 
agents use AI-based techniques aiming to maximize the 
incurred utility. In the work presented in [3] categorization 
of such agents to those that follow explorative, repetitive 
and predictive strategies is given. The first category consists 
of agents that search the strategy space usually through trial-
and-error learning processes, the second category consists of 
agents who repeat strategies that have proved efficient in 
past similar situations, while the third category consists of 
agents that adopt a strategy, based on estimations of 
environmental parameters and/or opponent.  

This research is focused on the third category and 
particularly on the issue of predicting the counterpart’s 
future offers. Predictive agents are distinguished into those 
who engage in single-lag predictions and estimate the very 
next offer of their counterpart, and into those who engage in 
multi-lag predictions and foresee future offers of their 
counterpart several time steps ahead. For applications of 
single-lag predictive decision making in negotiation support 
systems the interested reader may refer to [4,5], which 
present a neural network that simulates the possible 
responses to the alternative offers the negotiator is 
contemplating. For strategies of automated negotiators that 
are based on single-lag predictions the reader may refer to 
[6–9], where agents are developed with the scope to 
increase individual gain of the final outcome. In the case of 
multi-lag predictions, [10-12], demonstrate agents who 
decide to withdraw from pointless negotiations based on the 
forecasts of their counterpart’s future values. Finally, 
Brzostowski and Kowalczyk [13-15] depict an agent who 
determines the sequence of optimal offers, “knowing” the 
sequence of opponent’s responses. 

This paper uses the protocol and strategy described in [9] 
where different agent strategies emerge from different 
attitudes towards risk. For a more thorough understanding a 
brief review of the strategy is provided. The negotiation 
environment considered is tied to bilateral (two parties are 
involved) multi-issue negotiations, where all issues are 
bundled and discussed together (package deal). The formal 
model of negotiation is comprised by the set of agents 

{ }baA ,= , a finite set of quantitative issues under 

negotiation { }niiiI ,,, 21 = , the domain of reservation 

values ]max,[min: a
i

a
i

a
iD  for issue i attributed by agent α, 

and the deadline aTmax  of agent α, where i∈ I and a∈A. In 
the cases studied time variable t is discrete and expresses the 
interaction step (negotiation round). The possible outcomes 
of a negotiation can be understood in terms of utility 
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the offered value of negotiable issue i. Each agent α is 
configured with a default strategy Sα,
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, which determines the 

level of concession in each round [2]. In each time step t 
agent α estimates the next offer of his counterpart 

. 
The decision rule makes use of the default strategy (Sα

In the following section, shortcomings of existing 
systems and the approach to address them is discussed. 

) 
of the predictive agent to generate offers until the detection 
of a “meeting point” (MP) with the “opponent”. MP is a 
point which would result an established agreement if the 
agent was guided solely by his default strategy. When such 
point is detected, and according to the agent’s attitude 
towards risk, agent risks staying in the negotiation in order 
to maximize the utility of the final agreement. At that point 
agent makes use of the estimation and refines the offer he 
sends at each time step. Two extreme attitudes can be 
generated: risk-seeking and risk-averse. The risk-seeking 
agent is willing to spend all the remaining time until 
expiration of his deadline engaging in an adaptive behavior 
to turn the estimations of his counterpart’s responses to 
profit. On the other hand risk-averse agents follow a more 
conservative behavior when they detect an MP. They do not 
make any further concessions and insist on sending their 
previous offer, waiting for the opponent to establish an 
agreement.  

III. PROBLEM STATEMENT 
Methodologies that have been used for the purpose of 

forecasting the counterpart’s future offers can be 
summarized into those based on statistical approaches 
(particularly non-linear regression) [10,14], mathematical 
models based on differences [13,15], and connectionist 
approaches, particularly some special types of neural 
networks [4-8,11,12]. 

Experiments have shown that mathematical models give 
poorer results when compared to non-linear regression 
models [14]. Non-linear regression models are restrictive, 
since they require the assumption of a known function form 
of the counterpart’s behavior, and mathematical models are 
empirically proved less accurate than neural networks in the 
negotiation domain [16]. Focus is set on the application of 
neural networks, which can be utilized in the general case 
and have proved efficient in the problem of forecasting the 
counterpart’s next offer. 

However, two issues need to be addressed. The first 
concerns lack of homogeneity. Artificial Neural Networks 
(ANNs) employed by current state of the art negotiators have 
significant differences in terms of network architectures and 
input features. The second is that these models are 
particularly tied to bound domains, since in the majority they 
are trained and applied to environments with data of the 
same underlying distributions. The networks are trained 
before the initiation of the current negotiation instance with 
data from previous interactions, and are then set to operate in 
the current discourse. As a consequence, the predictors’ 
accuracy depends heavily on data acquired from previous 
negotiations.  

To address the second issue, this work highlights the 
need to retrain the MLPs with data acquired from the current 
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negotiation thread. In this respect two types of agents termed 
Session-long learning are developed and assessed. The first 
type, Static Session-long Learning Agent (SSLA), makes use 
of a Multi-layer Perceptron (MLP) with a static structure 
which is retrained at each predictive step, while the second, 
Adaptive Session-long Learning Agent (ASLA), makes use 
of an MLP which optimizes its structure and subset of input 
features during negotiation. 

In the following sections SSLA and ASLA are described 
and compared.  

IV. SESSION-LONG LEARNING AGENTS 

A. Static Session-long Learning Agent 
In this section we describe a Static Session-long 

Learning Agent (SSLA), which is defined as a session-long 
learning agent with a fixed MLP architecture during the 
discourse. Without loss of generality, the predictive agent is 
assumed to be the consumer who initiates the negotiation 
process at time t1

It should be noted that in order to apply the Levenberg 
and Marquardt (LM) method, at least two training patterns 
are required, therefore the MLP is initially trained at round 

=0. The two agents take alternate turns 
until an agreement is established or until any of the two 
agents decides to terminate the procedure. In the general 
case, the forecasting tool of the SSLA makes use of the n 
previous counterpart’s offers to estimate the next offer (at 
time t+1), as is illustrated in Figure 1. At time t the 
consumer formulates a new training set which is constructed 
from the series of the counterpart’s offers.  

tinit

The size of the dataset 

 = 2*n+4   (1) 

Dataset at time t ≥ tinit

n
t

Dataset −=
2

 is given by 

  (2) 

Dataset is initially 2 in order to apply the LM method, and 
increases by 1 in each turn of the predictive agent. After 
training the MLP, SSLA makes use of the network to 
estimate his counterpart’s next offer.  

Figure 1.   Forecasting tool of the negotiator. 

More specifically, the actions an SSLA undertakes at each 
predictive round t are described as follows: 

Step 1. Receive Opponent’s Offer,  
Step 2. Update Negotiation Thread by storing the  
received offer 
Step 3. Formulate training set: 
Consider a time series of the opponent’s past 
offers: },...,,{ 1

)(Pr
3

)(Pr
1

)(Pr
−

>−>−>−
t

ConConCon XXX  
Formulate the set of input-output patterns with 
respect to the number of input nodes 
Step 4. Use the patterns yielded in Step 3 to train 
the network with the LM method 
Step 5. Formulate current input 
pattern },...,{ 1

)(Pr
1*2

)(Pr
−

>−
+−

>−
t

Con
nt

Con XX  
Step 6. Apply input to the trained network 
Step 7. Obtain forecast of opponent’s next offer,  
Step 8. Generate next offer based on the predictive 
strategy 

The forecasting tool of the SSLA was selected to be very 
small and consist of three inputs (n=3), representing the 
three previous offers of the counterpart (as in [8]), and two 
hidden nodes (P=2). This architecture is even simpler than 
the one proposed in [8], since it uses one hidden neuron 
less. Although the optimal network architecture cannot be 
extracted from theoretical findings, it is rather empirically 
found that the ratio of learning parameters with respect to 
the size of the training data should be kept small. As stated 
in [17,18] the generalization error can be decomposed into 
an approximation error due to the number of parameters and 
to an estimation error due to the finite number of data 
available. A bound for the generalization error E is given by 
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O
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δ
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where n is the number of input units, P is the number of 
hidden nodes, δ is a confidence parameter, δ ∈ (0,1), and 
Dataset  is the size of the dataset. Since in each 

subsequent step Dataset  increases, the bound of the 
generalization error E is expected to decrease, therefore the 
learning model provides more accurate estimations as the 
negotiation proceeds. Applying in (2) n=3 and Dataset = 2 
(minimum value required by the LM method), yields that 
the agent can initially train and use the MLP at the tenth 
round. 

As far as complexity is concerned, storage of the 
Jacobian matrix ( Dataset xP), as well as computations for 
matrix inversion that are of order O(P3), are required at each 
iterative step of the LM method. The LM is considered 
efficient since it can be defined as a polynomial time 
algorithm (an algorithm that has time complexity that is 
bounded by a polynomial in the length of the input) [19].  
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B. Adaptive Session-long Learning Agents (ASLAs) 
Unlike SSLA, the ASLA considers not only the series of 

his counterpart’s past offers, but also the series of his own 
past offers, to formulate the subset of input features. 
Particularly, in order to find the optimal subset which will 
guide the prediction, two time series are taken into account: 
one resulting from past offers of the predicting 
agent },....,,{ 2

Pr)(
2

Pr)(
0

Pr)(
−

→→→
t
ConConCon XXX , and one 

resulting from the past offers of the 
opponent },....,,{ 1

)(Pr
3

)(Pr
1

)(Pr
−
→→→

t
ConConCon XXX . The 

encoded information represents the number of previously 
offered values of each agent. Using a binary grammar, three 
bits are sufficient to encode up to seven past offers for each 
agent. Consequently a 6-bit length string represents the 
subset of input features. Since it has been proved that an 
MLP with one hidden layer can conduct function 
approximation, and since it has been widely used by 
existing predicting agents, the architecture of a two layered 
MLP is assumed, and focus is set on searching the optimal 
number of hidden units. In an attempt to keep the network 
small, three bits are used for the representation of the hidden 
units, resulting to a chromosome of nine bits which 
simultaneously evolves the subset of input features and 
architecture of the network (Figure 2). 

The ASLA appropriately adjusts the architecture of the 
employed MLP by applying the following genetic 
algorithm. 

Step 1. Randomly generate the initial population P 
Step 2. Decode each individual (chromosome) into an 
architecture 
Step 3. Evaluate individuals: 

a. Train each network with a predefined 
training algorithm and parameters 

b. Define the fitness of each individual 
according to the training result and other 
performance criteria, such as the 
complexity of the architecture 

Repeat 
Step 4. Select a set of promising individuals and place 
them in the mating pool 
Step 5. Apply crossover to generate offspring 
individuals 
Step 6. Apply mutation to perturb offspring individuals 
Step 7. Replace P with the new population 
Step 8. Evaluate all individuals in P (as in step 3) 
Until 10 generations 

Figure 2.  A chromosome consisting of 9 bits is used to evolve the input 
subset and the number of hidden neurons of the neural network. 

Every time the genetic algorithm is run, the agent selects 
the MLP with the lowest fitness function. He then applies 
the MLP to forecast his counterpart’s response in a similar 
way to that of the SSLA. More specifically, the ASLA 
initially generates a random population of individuals (Step 
1). Each individual is translated to the respective MLP (Step 
2), which is then trained and evaluated (Step 3). 

The training patterns are extracted from the current 
negotiation thread. If the available number of previous 
predicting agent’s offers at decision making time t is m, and 
for opponent’s offers is n, where m,n є {0,1,…,t/2} and 
m+n>0, the first observation is extracted at time 't  is: 


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nmifn
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and the size of the available dataset at time t is: 

Dataset
2

'
1

tt −
+=   (5) 

As far as the objective (fitness) function is concerned, 
since Dataset must be at least 2 to apply the LM method, 

the ASLA favors solutions that result to 2≥Dataset . 
Furthermore, in cases where it is possible to divide the 
available data in three sets (training, validation and test set), 
the objective (fitness) function, which is minimized through 
the GA solver, is proportional to the Mean Squared Error 
(MSE) of the test set. Preference is given to solutions which 
result to more data patterns, in order to apply an early 
stopping learning method, which guarantees better 
generalization.  

After evaluation, the most promising individuals are 
placed in the mating pool (Step 4), and GA operators are 
applied (Steps 5 and 6) to formulate the new population 
(Step 7). The new individuals are in turn evaluated (Step 8) 
and the process is repeated for 10 generations. The trained 
MLP that yields from the most promising individual is 
applied for the purpose of forecasting the counterpart’s next 
offer.  

It is important to note that implementation of ASLA 
advances the state of the art in the field of applying Neural 
Networks in negotiations to predict the counterpart’s 
responses. It is based on an optimization technique and 
illustrates a pathway of finding a sub-optimal structure and 
subset of input features for the network. It could be used as 
a reference point in the development of other forecasting 
tools that assist negotiators. Additionally, it is a way of 
addressing the issue of heterogeneity of existing systems 
when it comes to selecting the offers of the negotiation 
thread which will constitute the input of the forecasting tool. 
In the following section SSLAs and ASLAs are compared. 
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V. COMPARISON OF SSLAS AND ASLAS 
For the conduction of the experiments we have 

developed a simulator that produces negotiator objects in 
Java (Jdk version 1.6), which are then extended in Matlab 
(version 2008R) and are enhanced with learning techniques. 
The negotiator objects are capable of conducting bilateral 
multi-issued negotiations. Experiments involve the 
generation of different negotiation environments, with 
provider and consumer agents, which can perform learning 
tasks, and engage in negotiations following the predictive 
strategy discussed in [9]. 

To compare session-long learning agents and current 
state of the art agents we conducted numerous experiments, 
simulating different negotiation environments. The cases 
studied involved short negotiations, where each counterpart 
set a deadline of 50 steps, as well as long negotiations, where 
the counterparts set a deadline of 350 steps. It was observed 
that SSLAs reduced the average of absolute prediction error 
by 92.67% compared to agents that only trained the MLP at 
a pre-negotiation stage, in cases where data distributions 
changed (turbulent settings).  

In this research, focus is set on the comparison of the two 
types of session-long learning agents. In this respect 1,359 
negotiation environments, where the participants adopted 
various strategies, deadlines and reservation values, were 
simulated. Negotiations were conducted between SSLAs and 
non-learning agents, and between ASLAs and non-learning 
agents with the objective to measure the accuracy of the 
predictions in each case. More specifically, in each 
negotiation round the absolute error, defined as the 
difference between the prediction and the actual value, is 
computed. Assessment is provided through the computation 
of statistical information (mean, standard deviation and 
maximum value of the absolute errors) in each negotiation 
instance. The purpose of the comparison is to illustrate the 
deviation of the error as the agents negotiate in new settings. 

Results which illustrate average and maximum values of 
the computed variables are summarized in Table 1. Avg 
Mean and Max Mean refer to the average and maximum 
value of the mean of absolute errors. Accordingly, Avg Std 
and Max Std refer to the average and maximum standard 
deviation observed, while Avg Max and Highest Max stand 
for the average and maximum of the highest error values 
acquired in negotiations. The ASLA is shown to be more 
accurate in the general case since it yields reduction of the 
mean of absolute errors (Avg Mean) by 38.34%, reduction of 
Avg Max by 44.74% and reduction of Avg Std by 38.03%. 
More specifically, when the ASLA deals with counterparts 
following time dependent (TD) strategies the same measures 
(Avg Mean, Avg Max and Avg Std) are reduced by 36.11%, 
37.24%, and 31.52% respectively, while when it deals with 
counterparts following behavior dependent (BD) strategies 
Avg Mean, Avg Max and Avg Std are reduced by 38.45%, 
45.29%, and 38.32%.  

SSLAs and ASLAs can be safely used in cases where 
the counterpart’s strategy can be expressed by continuous 
functions. In the scenarios described, these are the cases 
with TD strategies, yielding to SSLA and ASLA Avg Mean 

of 0.36 and 0.23, Avg Max of 6.66 and 4.18, and Avg Std of 
0.92 and 0.63 respectively. 

On the contrary, when opponents’ behavior is sharp (as 
is the case of BD strategies), neural networks are less 
accurate. In the experiments conducted, cases with BD 
strategies yield to SSLA and ASLA Avg Mean of 11.91 and 
7.33, Avg Max of 88.96 and 48.67, and Avg Std of 19.23 
and 11.86 respectively. 

ASLAs are not as fast as SSLAs and have higher storage 
requirements. However, they yield better results as they 
prove more accurate with decreased standard deviation and 
maximum error values. 

VI. CONCLUSIONS AND FUTURE REASEARCH 
Current state of the art negotiating agents and support 

tools are enhanced with learning techniques in order to 
provide increased benefit to the parties they represent or 
support. A very promising skill is to foresee the counterpart’s 
future moves and accordingly adapt one’s decisions. The 
trend lies on neural networks, which have been proved 
efficient for various systems and domains. These models are 
capable of mapping input to output space, as long as 
appropriate data are used for training. The networks’ 
accuracy is dependent on the training set. The problem that 
arises from current implementations is that (in the majority) 
the employed networks are trained at a pre-negotiation step. 
Results are impressive if data with similar underlying 
distributions are considered. However this is not the case in 
turbulent environments. In this research, the perspective of 
using data solely extracted from the actual negotiation thread 
is considered, and focus is set on the employment of very 
simple networks initiated without any a priori knowledge 
(random initial weights). A static session-long learning agent 
(SSLA), using a network with fixed architecture and 
standard input features, and an adaptive session-long 
learning agent (ASLA), evolving its network structure and 
feature subset in each negotiation round, are described and 
implemented. 

The adaptive agent, ASLA, is empirically proved to be 
more accurate when dealing with opponents that adopt time 
and behavior dependent strategies; however it is observed 
that both agents yield high utility gain in cases where the 
counterpart’s strategy is defined by continuous functions 
(which is the case of time dependent strategies), and do not 
score that high when opponents adopt behavior dependent 
strategies. Refinement of the predictive strategy discussed in 
[9] will be considered in the future, in order to also tackle 
opponents with smart or hybrid behaviors. 

SSLAs and ASLAs have been implemented without any 
assumption of data distributions and for this reason they 
could also be applied in different types of negotiation arenas. 

ASLAs have proved more efficient than SSLAs, however 
the trade-off is the increased time of convergence. Other 
efficient adaptive structures can be considered, such as 
Evolving Fuzzy Neural Networks (EFuNNs) or DENFIS, 
which are Evolving Connectionist Systems (ECoS) that 
continuously evolve their structure and functionality to 
capture the dynamics of turbulent settings [20].  
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TABLE I.  COMPARISON OF SESSION-LONG LEARNING AGENTS 

Measured 
Variables 

 

Avg Mean Max Mean Avg Max Highest Max Avg Std Max Std 

SSLA ASLA SSLA ASLA SSLA ASLA SSLA ASLA SSLA ASLA SSLA ASLA 

Totals TD 0.36 0.23 8.9 4.67 6.66 4.18 476.61 127.14 0.92 0.63 49.85 15.19 

BD 11.91 7.33 183.92 52.16 88.96 48.67 3050 264.78 19.23 11.86 346.99 68.11 

Overall TD,BD 6.13 3.78 183.92 52.16 47.81 26.42 3050 264.78 10.07 6.24 346.99 68.11 
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