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Abstract—Path planning for multiple agents in a common 

environment is a challenging research problem. In previous 

papers, we introduced a hybrid architecture solving the 

conflict between a central unit (an observer and a controller) 

and decentralised autonomous agents. This architecture should 

have mechanisms for planning, but only as recommendation, 

and control decisions. In this paper, we focus on planning of 

the desired behaviour of agents in a shared environment. The 

scenario used in this work is a traffic intersection without 

traffic lights. Therefore, an A*-algorithm was adapted for the 

path planning. Consequently, the designed algorithm 

calculates collision-free trajectories (central planning) for all 

agents (vehicles) in a shared environment (the centre of the 

intersection) enabling them to avoid collisions. The 

experimental results demonstrated a high performance of our 

adapted A*-algorithm. 

Keywords- Path planning; A*-algorithm; Multi-Agent 

Systems; autonomous vehicles; Hybrid Coordination; Organic 
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I. INTRODUCTION 

 Organic systems [1] or autonomic systems try to realise 
quality in several aspects of system engineering [2][3]. The 
wide range of properties of organic systems can be used to 
establish the vital concept of "controlled self-organisation". 
Also, organic systems use the "controlled self-organisation" 
design paradigm, in which the unwanted behaviour should be 
prevented, whereas the desired behaviour should be 
rewarded. 

In prior papers [4][5][6][7], we introduced the 
interdisciplinary methodology, “Robust Multi-Agent 
System” (RobustMAS). RobustMAS uses a central 
component that performs the desired behaviour (trajectories), 
where this planned behaviour is recommended to agents. 
RobustMAS applies a hybrid solution (central/self-
organising), where collision-free trajectories for agents (the 
desired behaviour) are calculated by a central component and 
then given to agents only as a recommendation. Here, despite 
the autonomous behaviour of agents, they always get the best 
possible (desired) trajectories from the central unit. 

In this context, a traffic intersection without traffic lights 
was chosen as a main testbed to apply the hybrid approach 
(RobustMAS), where autonomous agents are autonomous 
vehicles, and the controller of the intersection is the central 

 
Figure 1.  The traffic intersection without traffic lights 

unit. However, the basic idea of a hybrid approach is 
applicable for other systems as well. 

‎Figure 1 shows a screenshot from our project. In this 
regard, we presented the desired system architecture in 
[4][5]. This architecture was an observer/controller (O/C) 
architecture adapted to the scenario of traffic intersection.  

In this paper, we concentrate on planning of the desired 
behaviour (trajectories) of agents (vehicles) in a shared 
environment (traffic intersection). 

This paper is organised as follows. Section 2 presents a 
survey of related work concerning path planning. In Section 
3 the realisation of the approach is discussed. This realisation 
includes: path planning, A*-algorithm, trajectories, an 
adapted A*-algorithm and virtual obstacles respectively. 
Section 4 introduces the evaluation of the system 
performance by means of experimental results. Section 5 
draws the conclusion of this work. Finally, the future work is 
explicated in Section 6. 

II. STATE OF THE ART 

In the literature, there are many works concerning path 
planning, where common path search algorithms are 
investigated. The problem of path planning for multiple 
agents (robots) has been discussed in various papers in order 
to coordinate the movements of the agents [8][9][10]. There 
are various approaches to solve this problem. Two well-
known approaches are: the coordination technique and an 
A*-based path planning technique [9]. The coordination 
technique [11] arranges and discovers the optimal paths of 
the individual agents (robots) and then computes a schedule 
how the robots have to traverse these trajectories. The A*-
based technique applies the A* search algorithm (a graph 
search algorithm that finds the least-cost path from a given 
initial node to one goal node) to work out independent 
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planning of the paths for the individual robots in their 
configuration time-spaces, which extends the configuration 
space of the robot by a time axis. In [9], a series of 
experiments have been performed to compare these 
approaches. These experiments demonstrate that the A*-
based technique significantly outperforms the coordination 
technique. In many cases, the authors were convinced that 
the A*-based technique is much more efficient because of 
the independent planning of the paths for the individual 
robots in the time-spaces configuration. These experiments 
show also that the A*-based approach is well suited to 
control the motions of a team of robots in various 
environments and illustrate its advantages over the 
coordination technique. 

III. THE APPROACH 

In our approach, we model vehicles as agents. Also, we 
define the term “shared environment” as the centre of the 
intersection. 

An intersection manager is responsible for coordinating 
tasks.  It performs first a path planning to determine 
collision-free trajectories for the vehicles (central).  This path 
planning is given to vehicles as a recommendation. Vehicles 
are modelled as agents.  

For the path planning, common path search algorithms 
are investigated. Particularly interesting here is the A*-
algorithm. The path planning is considered as a resource 
allocation problem (Resource Allocation Conflict), where 
several agents move in a shared environment and have to 
avoid collisions. The implementation should be carried out 
under consideration of virtual obstacles. Virtual obstacles 
model blocked surfaces, restricted areas (prohibited 
allocations of resources), which may arise as a result of 
reservations, accidents or other obstructions. 

In this paper, we assume that all vehicles obey their 
planned trajectories (plan) and thus no deviations from the 
plan will occur. In addition, there are no accidents in the 
intersection. This means that everything is as planned. 

A. Path planning  

This section presents the realisation and requirement of 
path planning and illustrates the resulting trajectories. 
Accordingly, the adapted A*-algorithm to calculate 
collision-free trajectories for all agents is introduced using 
virtual obstacles. 

When every agent has its unique path from one point to 
another, no conflict is possible when no unexpected errors or 
disturbances occur during movement of agents. In order to 
plan such unique paths for multiple agents that move in a 
shared space, global knowledge and centralised control will 
be needed so that it will be easy to prevent conflicts. 

Path planning in this work is the applied coordination 
mechanism to solve the problem of resource sharing 
wherever multiple agents cross the shared environment 
avoiding collisions. Path planning delivers collision-free 
trajectories for all participants in this multi-agent system. 
The behaviour of an agent outside the shared environment do 
not need path planning, because an agent outside the shared 
environment has only local rules, through which it tries to 

move forward avoiding collisions with other agents. Path 
planning has to be done only for agents inside the shared 
environment. 

When an agent arrives at a border of the shared 
environment (‎Figure 1), it sends a message (request) to the 
controller (intersection). The path planning unit of the 
controller has to reply to this message thereby the agent can 
cross the shared environment safely provided no unexpected 
errors or deviations from the plan occur within this process. 

When the path planning unit of the controller receives a 
request from an agent (vehicle), it simulates the trip of that 
agent through the shared environment taking into 
consideration the presence of other agents and the geometry 
of the shared environment (intersection) in the configuration 
time-spaces. It calculates an appropriate trajectory and sends 
it to the agent. Furthermore, the calculated trajectory is 
stored in the trajectory memory. 

The enquiring agent gets its trajectory, which guarantees 
a coordinated behaviour with the other agents in order to 
avoid traffic jams in the intersection. 

B. A*-algorithm 

Since our work uses the A*-based technique, which 
employs the A*-algorithm, this section presents the A* 
procedure described by Nilsson et al. in [12]. As mentioned 
above, A*-algorithm is a search algorithm to obtain the 
optimal path (minimum-cost path according to a given cost 
function) from a given start state to a target state in a graph. 
In order to build only paths that lead towards the target state, 
A* uses priorities assigned to each path. The priority of a 
path n  is determined by the cost function:      nhngnf  . 

It should be mentioned that using a priority queue to store 
paths through the graph (already visited nodes) together with 
their related A* costs is the most common implementation of 
the A*-algorithm. For this purpose, the lower the A* cost, 
i.e., the  nf cost, of the node n , the higher the priority 

assigned to this node. 
Here,  nf  is the total A* cost of the path from the start 

state (start node) until the current state (current node) n , 

where  nf is composed of  ng  and  nh . First,  ng  

represents the accumulated costs of reaching the state n from 
the start state. Second,  nh  is the estimated cost of reaching 

the goal state from the state n . The estimated cost is called 

heuristics.  The cost function  nf plays a main role in finding 

optimal paths, because A* takes into account the distance 
already travelled, the  ng function. Therefore, A* will only 

obtain the shortest path, if it exists, when a good heuristics is 
selected. The algorithm 1 gives an overview of how the A*-
algorithm works. 

C. Trajectories 

A trajectory in our work represents the path of an agent 
only inside the shared environment (inside the intersection). 
The controller plans trajectories for all agents in the system, 
which have to be collision-free. If all agents comply with 
their planned trajectories, then the throughput of the system 
would be better (the intersection will be covered optimally 
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by the vehicles), because RobustMAS uses a central 
algorithm in order to plan the trajectories. Here, the central 
planning algorithm (A*-algorithm) has a global view of all 
available resources (cells in the intersection) that can be 
allocated to the agents. 

The agents get their planned trajectories only as 
recommendation from the controller, because they can 
behave in a fully autonomous way. 

The memory of all trajectories serves the observer to 
detect any deviations from the planned trajectories occurred 
in the system, where the observer compares the actual 
travelled trajectories to this memory. 

A trajectory is modelled as a vector ( n -tupel) of space-

time points, where each point has its coordinates  ii yx , that 

can be reserved at time it : 

  niniwithtyxtyxtrajectory nnn ,;1)},,(,),,,({ 111   (1) 

D. An adapted A*-algorithm 

In this paper, the A*-procedure for path planning of 
agents is applied and the minimum-cost path in its three-
dimensional configuration time-space is searched. However 
this A*-based procedure has been adapted for the 
requirements of the used application scenario “intersection 
without traffic lights”, because a vehicle can only take a 
“rational” path, whereas an agent (e.g., robot) can take any 
calculated path. Here, the term "rational" denotes the fact 
that a vehicle carries out a goal-directed motion along a 
rational (most reasonable) path in the intersection when it 
moves towards its target. This path will be a straight or 
concave trajectory (or sections of a trajectory) with respect to 
the travel direction as depicted in ‎Figure 2. 

However, robots can follow an arbitrary (winding) path. 
As a result, due to the use of the A*-algorithm not adapted to 
a traffic intersection, “non-rational” path (or sections of the 
path) from one waypoint to the target can be built and 
consequently used, where vehicles can not take such paths in 
the centre of an intersection to reach their targets. Examples 
of “irrational” paths are due to repeated zigzag movements, 
or back and forth movements (crisscross). 

‎Figure 3 shows how A* is used for the problem 
supported by an example. Here, the trajectory of the vehicle 

consists of six points. Every point has its  tyx ,, in the three- 

dimensional configuration time-space as follows: 
 

)},,(),,,(

),,,(),,,(),,,(),,,({

666555

444333222111

tyxtyx

tyxtyxtyxtyxtrajectory   
(2) 

Compared to the A*-algorithm described above, the 
adapted A*-algorithm, which is used in this work, has the 
following features: 

 

 
Figure 2.  Rational paths of vehicles with respect to the travel direction 

 
 

 
Figure 3.  An adapted A*-algorithm used for the problem of path planning 

in the three- dimensional configuration time-space. 

 The function BuildVirtualObstacles (n): It uses this 
function in order to build virtual obstacles into the 
path from the current node n to the goal node, 
because a vehicle can only follow a “rational” path 
as explained above. Virtual obstacles are blocked 
areas, which can not be crossed by vehicles. For 
details see section ‎E (Virtual obstacles). 

 It plans independent paths for the individual vehicles 
in their three-dimensional configuration time-spaces. 

Thus, reservation of space-time points  iii tyx ,, is the 

key step of the adapted A*, where each node (space-
time point, tile or cell in the intersection) of the 

graph that has its coordinates  ii yx , can be reserved 

by one agent Ai at time it . For this purpose, the 

adapted A*-algorithm uses the function 
isCellReserved (n, time). This function tests 

whether the node  yxn , has been already reserved 

for another agent for a specific time, where the 
parameter “time” represents the time at which the 
agent, for which A* is looking for the best trajectory, 
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will reach the node  yxn , according to its planned 

trajectory so far. So, RobustMAS considers the 
problem of path planning for teams of agents. 

 It provides the possibility to react to potential 
deviations of the agents from their planned 
trajectories during the plan execution. Deviations 
from the planned trajectories are detected by the 
observer of the O/C architecture, where the 
controller is informed of it. Consequently, the 
adapted A* re-plans the affected trajectories using 
the function replanNewTrajectoriesOfAffectedAgents(). 
Moreover, it takes into account the presence of 
disturbances (i.e., accidents in the intersections) by 
computing the paths. 

 The heuristics used in the adapted algorithm for the 
estimated cost of reaching the goal state is based on 
the straight-line Euclidean distance from any given 
state (a node in the graph) to the goal state: 

         stategoalyxstatestartyxyxyx ggssggss :,,:,;,,min   (3) 

This heuristics (a heuristic estimation of the distance 
in the case of path planning) will enable definitely 
A* finding the shortest path, if it exists, where the 
search will be limited to selected collections of the 
state space. Thus, a heuristic estimate of the distance 
to be travelled may be the straight-line distance 
between two states in a shared environment, so that 
optimal paths can be planned. 

E. Virtual obstacles 

The implementation of the adapted A*-algorithm in 
RobustMAS has been carried out under consideration of 
virtual obstacles. Virtual obstacles have been adopted, where 
blocked surfaces should not be considered by the planner. 
Virtual obstacles model blocked surfaces, restricted areas, 
which may arise as a result of reservations, accidents or other 
obstructions. In addition, virtual obstacles can be used for 
traffic control. ‎Figure 4 shows the shape of the blocking 
surfaces (virtual obstacles), which are used by RobustMAS 
in order to plan trajectories using an adapted A*-algorithm. 

IV. PERFORMANCE EVALUATION 

In this section, we present an initial evaluation of our 
algorithm using the model of a traffic intersection, which 
was designed and described in our earlier papers [4][5]. 

Since the path planning algorithm plays an important role 
in our traffic system to achieve high performance, an 
evaluation of this algorithm is required under different test 
scenarios considering various loads of vehicles, where no 
deviations from plan and no accidents occur in the system. In 
our earlier papers, handling of deviations from planned 
(desired) behaviour was studied in [6], whereas handling of 
disturbances (accidents) was considered in [7]. 

The evaluation of the concept was carried out based on 
the basic metrics: throughput and mean waiting time. 
Throughput here is the total number of vehicles that left the 
intersection (simulation area) over time, whereas the mean 
waiting time is the average time (ticks or iterations) needed 
by vehicles to traverse the intersection: 

 
Figure 4.  Blocking surfaces (virtual obstacles) 
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Where iMWT is the mean waiting time of the system at the 

time (tick) i , ikW , is the waiting time of the vehicle k at the 

time i , and v  is the total amount of vehicles. 

A. Evaluation scenarios 

Four different evaluation scenarios are used to measure 
and compare the system performance, which results from 
change of values of the following two simulation parameters: 

maxV is the maximum number of vehicles in each direction, 

and TL is the production rate of vehicles in each direction 
(traffic level or traffic flow rate). The four different 
evaluation scenarios ensure that the system performance in 
various combinations of the parameter remains effective 
even when the intersection is very busy, especially during 
rush hour (during morning and afternoon peak traffic). 

The used metrics have been measured in an interval 
between 0 und 3000 ticks (time steps). As shown in ‎Figure 1 
two traffic flows with orthogonal directions are taken into 

account: EW 2 (West2East) and NS2 (South2North). 

‎Table I shows the resulting four evaluation scenarios. 
Here, “equalTL ” means that the traffic flow rates of vehicles 
in each direction are the same, while these rates in each 
direction are different in the case of “not equal TL ”. 

Similarly, the “equal maxV ” and “not equal maxV ” can be 

expressed by the parameter “maximum number of vehicles”. 
The values of both simulation parameters were chosen in 
such a way that a wide spectrum of traffic volumes can be 
covered (low, medium, high and extreme traffic volumes).  

For example, in evaluation scenario I (Equal maxV – 

EqualTL ), the throughput and the mean waiting time of the 
system have been measured in the case that the traffic flow 
rates (traffic levels) of vehicles in south-north and west-east 
directions is equal, namely 5 vehicles/tick, where the 
measurement has been repeated in the cases that the 
maximum number of vehicles in each direction is equal, 
namely 20, 40, 80, 100, and 500 vehicles. The case of 500 
vehicles in every direction is an extreme case, where the 
maximum number of vehicles is greater than the capacity of 
the intersection (very busy intersection). Here, the 
intersection is a 10x10 grid of reservation tiles. Similarly, 
other evaluation scenarios II, III, and IV can be expressed. 

B. Results of throughput measurement 

‎Figure 5 shows the system throughput (#Vehicles/tick) 
for each evaluation scenario that was measured in an interval 
between 0 und 3000 ticks. 
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TABLE I.  THE FOUR EVALUATION SCENARIOS (TWO TRAFFIC FLOWS 

WITH ORTHOGONAL DIRECTIONS) 

 
 

 

 

 

 
Figure 5.  The system throughput (# Vehicles/tick) for each evaluation 

scenario (I, II, III, and IV) in an interval between 0 und 3000 ticks 

It can be seen that from approximately the tick (120) the 
vehicles begin to leave the intersection, because at the 
beginning of the simulation the intersection was empty. 
Therefore, the system throughput in this interval [0-120] is 
zero. Thereafter, the system throughput increases always 
with time in the case of the cumulative system throughput 
(#Vehicles), or it is at its best (i.e., approximately constant) 
in the case of the throughput per time unit (#Vehicles/tick). 
This note applies to the four evaluation scenarios. 

‎Figure 6 shows the system throughput comparing the 
four evaluation scenarios according to varying the value of 
the maximum number of vehicles in each direction after 
3000 ticks including the extreme case. Here, on the x-axis is 
the maximum number of vehicles together in both directions 

EW 2 and NS2 . 

In evaluation scenario I, the system throughput increases 
almost always linearly with the number of vehicles. In a 
similar manner, the same behaviour of the system throughput 
applies to the other evaluation scenarios. However, this 
behaviour of the system throughput will be changed only in 
the extreme case, (500-500) vehicles. 

In the extreme case, the system performance achieves a 
value of around 9500 vehicles, because the maximum 
number of vehicles here is greater than the capacity of the 
intersection. Thus, it can be concluded that the system 
throughput within the capacity of the intersection increases 
almost always linearly with the number of vehicles. 

In evaluation scenarios I and II, the values of the system 
throughput are approximately identical. This means that the 
maximum number of vehicles in each direction is relevant, 
not the traffic levels (traffic flow rates) of vehicles in each 
direction. The system achieves a throughput of around 5000 
vehicles by 100 vehicles in every direction in both evaluation 
scenarios I and II (see ‎Figure 6). A similar conclusion can be 
obtained when the values of the system throughput in 
evaluation scenarios III and IV are compared.  

However, it is obvious that the values of the system 
throughput in evaluation scenario III are not similar to the 
values in the evaluation scenario I and II, because the total 
amount of vehicles in both directions in evaluation scenario 
III is less than the amount in evaluation scenarios I or II.  

In general, it can be noted that the system throughput 
increases almost always linearly with the number of vehicles 
in all evaluation scenarios (I, II, III, and IV) as long as the 
maximum number of vehicles is not greater than the capacity 
of the intersection. 

 
Figure 6.  The throughput of system in the four evaluation scenarios 

including the extreme case after 3000 ticks 

5Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-273-8

COGNITIVE 2013 : The Fifth International Conference on Advanced Cognitive Technologies and Applications



 
Figure 7.  The mean waiting time in the extreme case (1000 vehicles) 

C. Results of mean waiting time measurement 

Here, the results of the mean waiting time metric will be 
discussed for the extreme case, 500 vehicles in every 
direction, where the maximum number of vehicles is greater 
than the capacity of the intersection (very busy intersection). 
That is done in order to show the longest waiting time at all 
with its standard deviation. 

For this purpose, the measurements were repeated in the 
cases that the traffic levels of vehicles in south-north and 
west-east directions are: (1,1), (1,8), (5,5), (5,8), (8,8) 
vehicles/tick. The different rates at which vehicles enter each 
of the directions are chosen to investigate the effect of traffic 
streams with equal/unequal strength on the mean waiting 
time which vehicles experience as depicted in ‎Figure 7 using 
a box plot. The mean waiting times and the standard 
deviations of all vehicles, that left the intersection, have been 
registered after 3000 ticks in the extreme case. 

Despite the huge number of vehicles, which is greater 
than the capacity of the intersection, the resulting mean 
waiting times were low values with small standard 
deviations in all different traffic flow rates (traffic levels). 
The largest mean waiting time is by traffic rate (8,8) around  
Φ 4 ± 1.19 . 

V. CONCLUSIONS 

In this paper, the path planning was the applied 
coordination mechanism to solve the problem of resource 
sharing wherever multiple agents (vehicles) cross the shared 
environment (centre of the intersection) avoiding collisions. 

Path planning served to compute collision-free 
trajectories and to arrange the agents.  The controller 
performs the path planning using a central planning 
algorithm and sends the planned trajectories to the agents 
only as recommendation. Here, a trajectory represents the 
path of an agent only inside the shared environment. 

An adapted A*-algorithm for path planning of agents 
(vehicles) has been applied. The adaptation was necessary 
for the requirements of the used application scenario 
“intersection without traffic lights”, because a vehicle can 
only take a “rational” path. A*-algorithm searches the 
minimum-cost path in its three-dimensional configuration 
time-spaces. The implementation has been carried out under 
consideration of virtual obstacles that model blocked 

surfaces, restricted areas, which may arise as a result of 
reservations, accidents or other obstructions. The 
experiments showed a high performance of this algorithm. 
The evaluation of this algorithm was based on different test 
scenarios considering various loads of vehicles. 

VI. FUTURE WORK 

One aspect that may be of interest for future work is the 
fairness between the system’s agents (vehicles). In order to 
achieve this fairness, there are different approaches that deal 
with this issue. The other aspect that will be an important 
issue in the future is the coordination and cooperation of 
multiple intersections without traffic lights. 
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