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Abstract—Expert systems that evaluate new Command and 

Control (C2) technologies are necessary to determine their 

adequacy for Network Centric Operations (NCO) missions. 

New technologies for complex C2 NCO scenarios are currently 

being developed. However, little has been done to evaluate 

these new technologies for specific sets of mission 

requirements. There is neither a standard methodology to 

evaluate these new technologies, nor a research environment to 

test these technologies under realistic assumptions. This paper 

will introduce an expert system that will help decision makers 

evaluate these technologies and determine whether they can 

transition into practical applications for the Navy, and under 

which limitations.  

 

Keywords-operator capacity; supervisory control; expert 
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I.  INTRODUCTION 

  The Department of Defense’s future vision for NCO is 

intended to increase combat control by networking relevant 

entities across a battlefield [1]. This new vision implies 

large amounts of information sharing and collaboration 

across different entities. An example of a futuristic NCO 

mission scenario is one in which a group of heterogeneous 

Unmanned Vehicles (UVs) are supervised by a single 

operator using NCO technology. In this type of complex C2 

scenario, UV operators will be subjected to vast amounts of 

information as compared to today’s command and control 

scenarios. Therefore, this vision brings with it a new 

problem that must be addressed: How to maintain an 

adequate workload to avoid information overload and 

resulting loss of situation awareness. Currently, C2 

technologies that allow the operator to control multiple UVs 

in a NCO scenario are rapidly increasing. The development 

of these new C2 technologies generates the tendency to 

exponentially increase the ratio of UVs to operators. 

However, if systems are inadequately designed or are used 

beyond their design capabilities, they will not adequately 

control for increased workload, which in turn will cause the 

operator to become overloaded and lose situation awareness. 

It is critical that military decision makers develop predictive 

models of human and system performance to evaluate the 

adequacy of a system’s design to satisfy specific mission 

requirements.   

 

This paper will start by discussing previous research in the 

area of UV operator capacity, to later explain the project 

goals, methodology and experimental results. Finally, it will 

end with a brief discussion of the future research plans and 

the implications of this study on future human-UV 

interaction research.  

II.  BACKGROUND 

  Mental workload is a limiting factor in deciding how many 

UVs an operator can control or supervise. In the case of one 

operator supervising multiple vehicles, the operator’s 

workload is measured by the effort required to supervise 

each vehicle and the overall task. The effort required to 

supervise an individual UV in a team depends on the 

efficiency of the system to reduce workload and increase 

situation awareness. Moreover, workload also depends on 

the complexity of the mission scenario. Some of the 

characteristics of a complex mission scenario as defined by 

military standards include: mission time constraints, 

precision constrains, repeatability in tasks (i.e., navigation, 

manipulations, etc.), level of collaboration required, 

concurrence and synchronization of events and behaviors, 

resource management (i.e., power, bandwidth, ammunition), 

rules of engagement, adversaries, and knowledge 

requirements [2]. The degree to which these characteristics 

are required also define workload. Consequently, if the 

system is not designed to achieve specific types of 

requirements, then when it is tested for those requirements 

the system may not perform them adequately.  

  Previous attempts to model operator capacity were 

developed to display temporal constraints associated with 

the system. The complexity of these measures progressed 

from measuring operator capacity in homogenous UVs 

controlled by one operator [3-7], to scenarios in which 

teams of heterogeneous UVs are supervised by one operator 

[8]. The first equation developed to predict operator 

capacity in homogenous UVs suggested that the operator 

capacity is a function of the Neglect Time (NT), or the time 

the UV operates independently, and Interaction Time (IT), 

or the time the operator is busy interacting, monitoring, and. 

making decisions with the system [3]. Critics of this method 

suggested that the equation lacked two critical 

considerations: 1) the importance of including Wait Times 

(WTs) caused by human-vehicle interaction, and 2) how to  
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link this equation to measure effective performance [6]. 

Hence, WT is added to the equation to account for the times 

the UV has to perform in degraded state because the 

operator is not able to attend to it or is not aware of a new 

incoming event. Three WTs were identified: Wait Times 

due to Interaction (WTI), Wait Times due to Loss of 

Situation Awareness (WTSA), and Wait Times due to 

Queue (WTQ).  
Using a discrete event simulation, a research study 

attempted to create a link to performance by using a proxy to 
measure workload and situation awareness. In this model, 
the researcher intended to model heterogeneity in UV 
systems in order to evaluate the system’s design [8]. The 
human was modeled as a server attending to vehicle-
generated tasks – both exogenous and endogenous tasks – as 

defined by their arrival and service processes. The concept of 

utilization was introduced as a proxy for measuring mental 
workload. Utilization Time (UT) refers to the percentage of 
time the operator is busy. The concept of WTSA was used as 
a proxy to measure Situation Awareness. The UT and WTSA 
measures were computed as a type of aggregate effect of 
inefficiencies in information processing rather than being 
computed as individual measures of workload and situation 
awareness. The author of this model suggested that many 
other sources of cognitive inefficiencies, besides these two 
proxies, are manifested through cognitive delays. He 
emphasized that measures of UT and WTSA are extremely 
critical to determine supervisory performance and suggested 
that better methodologies to measure these variables need to 
be developed. 

III.  PROJECT GOALS 

This study aims to develop a model of operator capacity 
in a complex mission scenario that will serve to help decision 
makers determine whether a particular technology is 
adequate for an NCO mission scenario. Moreover, this study 
aims to develop a model of operator capacity that is more 
comprehensive. This model is intended to fill in the gaps of 
current research by introducing new variables and 
relationships to previous models. The model will be 
constructed in a way so prior knowledge about the 
relationship between variables will serve to better predict 
missing data, such as workload and situation awareness. 
Moreover, the model will be structured in a way that will 
make it easy to determine which areas in the system design 
need improvement. The ultimate goal of this study is to 
develop a decision-making tool that will serve to evaluate 
and determine the effectiveness and limitations of a 
particular NCO technology in a complex mission scenario.  

IV.  METHODOLOGY 

A. Approach 

    The approach taken by this research study was to model 

the decision-making process required to decide whether to 

increase a particular team size. This approach was taken in 

order to present decision makers with a decision-support 

tool that will ensure that knowledgeable decisions are made 

in regards to the adequacy of a given team size with a 

particular NCO technology. Modeling the decision-making 

process, as opposed to the environment, allows for more 

knowledgeable decisions because not only are the most 

important factors in the decision taken into account, but 

optimization of the recommended decision’s outcome is also 

possible. This approach provides adequate information to 

the user to make a decision. And while the model is based 

on answering this particular question, the nature of the 

situation is manifested in the model, thus allowing users to 

draw more conclusions than only the adequacy of the team 

size.  

 

B.   The Decision Network Model  

     A decision network was developed to model the 

decision-making process required to decide whether to 

increase a given team size with the selected NCO 

technology. Netica Bayesian Belief Network (BBN) 

software [9] was used to develop a decision network that 

incorporates quantitative and qualitative information about 

the model. This software was chosen mainly because it 

provides an effective display of quantitative and qualitative 

data and it can accommodate missing or incomplete data. 

Using a BBN allows researchers to compute unobservable 

variables (i.e., missing data) based on measures that are 

observed (i.e., prior knowledge). This feature is very 

important to determine variables such as Situation 

Awareness and Workload that were only computed as 

proxies in previous models. 

    A decision network consists of nature, decision, and 

utility nodes. Nature nodes represent variables over which 

the decision maker has no control (see yellow nodes in Fig. 

2). Decision nodes represent variables over which the 

decision maker can make a decision (see blue nodes in Fig. 

2). Utility nodes represent a measure of value, or the 

decision maker’s preferences for the states of the variables 

in the model (see pink nodes in Fig. 1). In this network, the 

outcome of a decision node is maximized by finding a 

configuration of the various states of the sets of variables 

that maximize the values of the utility node. Therefore, 

based on a series of requirements, or utility values, a 

decision network provides the user with the correct decision. 

Additionally, the arrows in the model represent reasoning 

relationships and are detailed in the conditional probability 

tables (CPTs) of the nature and utility nodes. In the CPT, 

the distribution of each node will be determined a priori 

based on the relationships specified in each conditional 

probability table.  

    This model makes several assumptions. First, the type of 

UV system addressed by this model is one in which a single 

human operator is responsible for supervising a team of 

heterogeneous UVs. The human operator is assumed to act 

in a supervisory control style, interacting with the system at 

discrete points in time (i.e., there is no manual control). 

Second, in this model, the human operator is responsible for 

supervising a team of heterogeneous UVs defending an oil 

130

COGNITIVE 2011 : The Third International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) The Government of USA, 2011. Used by permission to IARIA.     ISBN: 978-1-61208-155-7



platform from potential enemies. Third, the human operator 

could be situated in a ground-based, sea-based, or airborne 

control station. Fourth, the model was built in a way such 

that decision makers will use this model to help them decide 

if a particular technology is adequate for specific mission 

requirements. Finally, the model assumes that the decision 

making process required to make this decision is 

hierarchical; therefore, later decisions are based on earlier 

ones. The model captures attributes from the Operator 

Performance Model, the System Performance Model, and 

the Operator Capacity Model as shown in Figure 1. 

 
Figure 1. A high level representation on the attributes the model captures. 
Notice that variables of interest in Operator Performance Model are 

Operator Attention Allocation Strategies and Operator Decision Making 

Efficiency, while in the System Performance model are Usability, 
Automation Level and Algorithm Efficiency. The output of the operator 

capacity model is to determine an adequate team size.  

 

      The attributes captured in Figure 1 represent three major 

areas of relevance for the decision to increase the team size: 

system performance, operator performance, and cognitive 

workload (see Figure 2). These areas of relevance are 

represented in the model as sub-models; each of them 

contains one or more decision nodes that correspond to the 

decisions that must be made by the operator in each area to 

ensure that they are working adequately. The order in which 

the decision nodes have been organized represents the way 

in which decisions should be made (see blue nodes on 

Figure 2). The model represents a sequence of decisions in 

which later decisions depend on the results of earlier ones. 

In this model, the last decision is shown at the end of the 

sequence. The last decision determines whether a particular 

team size should be increased.  

    The first sub-model, system performance, includes three 

decision nodes with the followings decisions: 1) Is the 

interface effective? 2) Does the system have an adequate 

level of automation? 3) Are the system algorithms efficient 

for the task? These three decisions were included in this 

sub-model because they represent areas that are important to 

ensure good system performance. Some of the utility nodes 

for each of these decision nodes were identified from the 

literature, while some others were included to ensure that 

specific mission requirements are satisfied. For example, if 

the system has good interface usability, the situation 

awareness of the operator will be high. Moreover, if the 

situation awareness is high, the system’s automation level 

must be somehow effective to avoid loss of situation 

awareness and/or complacency. Then, to ensure that the 

mission requirements are satisfied, the algorithms used must 

be working efficiently toward achieving the mission goal. 

This efficiency is measured by the number of times the 

operator reassigns a mission that was previously assigned by 

the system, with a lower number signaling higher efficiency. 

Note that algorithm efficiency is defined in this model only 

as a result of the operator’s perceived trustworthiness of the 

system. If the system is not perceived as trustworthy, then 

the operator will tend to override the system frequently and 

the algorithm efficiency will be low.  

   The second sub-model, operator performance, needs to 

ensure that the operator performs effectively with the 

system being evaluated, as more UVs are introduced to the 

team, and the mission scenario becomes more complex. 

Since this is a supervisory control environment, operator 

performance is defined in terms of the operator’s decision 

making. There are two decisions (decision nodes) that are 

important to evaluate whether the operator’s performance is 

adequate for the task: 1) Is the operator’s task management 

strategy efficient? 2) Is the operator’s decision making 

efficient? The first decision is necessary to evaluate whether 

operators will efficiently prioritize different tasks that arrive 

simultaneously. 

   The second decision is necessary to evaluate whether the 

operator will successfully achieve the goals of the mission 

(i.e., protecting the asset from enemy attack). Together these 

two decisions summarize what is important to ensure a 

satisfactory operator performance. Please note that by 

measuring task management efficiency, an attention 

inefficiency component is included in this model.  

   Finally, the last sub-model, cognitive workload, includes 

the final decision node: ―Increase Team?” For this decision, 

it is important to ensure that operators are not overloaded, 

but instead their workload is adequate to successfully 

complete the mission scenario. This final decision node is 

the end of a sequence of decisions and therefore it depends 

on the outcomes of the previous decisions made in the 

system performance and operator performance sub-models. 

Hence, in order to avoid cognitive overload, not only does 

the system have to efficiently perform in the mission 

scenario, but the operator also has to perform efficiently to 

ensure that tasks are adequately managed and do not 

overload the operator. The cognitive workload and operator 

performance sub-models are strongly associated. If 

cognitive workload is too high, then the operator 

performance will be low. Therefore, the more inadequate 

management and tactical decisions operators make, the 

higher their workload will be.  

    System performance, operator performance, and cognitive 

workload are the foundation of this model. Most of the 

knowledge about the model relationships between variables 

was acquired from a literature review. Variables such as 

―Information Overload” and ―System Interruption‖ were 

included to emphasize the need to evaluate these aspects of 

the usability of the system (see Figure 2) in complex 
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supervisory control tasks. These variables are relevant 

because they contribute to design interfaces, especially in 

the supervisory control environment in which large amounts 

of information, and large event queues can result in 

information overload and frequent system interruptions. 

 

 
Figure 2. Decision network representing the decision process involved in 

deciding whether to increase a particular team size. Notice that this picture 
displays the model with no data. When data are introduced into the model, 

the system provides the user with a recommended course of action that will 

be displayed as a percentage (i.e., Yes 90%). 

C.  Performance Measures  

      The model allows for measurement of several output 

variables. These variables include those implemented in the 

previous models [3-7], as well as specific user-defined 

metrics that the model allows to capture. Temporal 

measures such as UT and WT are used because they are 

critical in a system where the operator has limited attention 

resources that must be divided across multiple tasks. UT is 

used to capture the effects of alternate design variables on 

operator workload. Some researchers indicate that average 

UT and WT can allow for benchmarking and comparison to 

be made across applications [8, 10]. The level of autonomy 

in the model is captured through the NT. In addition to the 

basic metrics inherently captured by previous models, this 

model also captures mission-specific metrics. Some of the 

mission-specific metrics include the rate at which tasks are 

successfully completed, the UVs’ health status and the total 

time to complete the mission scenario. Furthermore, other 

measures being captured by the model include Information 

Overload, System Interruption, and Reassignment Rate. 

These three measures are important to evaluate the system 

performance. Information Overload and System Interruption 

are shown to be related to SA; therefore, they are used to 

help determine Situation Awareness (SA). For example, 

when the operator is overloaded with information, he/she is 

not able to focus on what is important, therefore vital SA is 

lost. Moreover, when the system is constantly interrupting 

the operator at any point in time, it drives the operator’s 

attention away from one task to focus on another, therefore 

affecting their SA. The system’s Frequency of 

Reassignment measure is used to evaluate the number of 

times the operator overrides the system. Identifying the 

amount of times the system has been overridden will help us 

determine how trustworthy the system is for the operator. 

The underlying assumption is that the more the operator 

overrides the system, the less reliable the algorithm for the 

system is. See Figure 3 for a list of the performance 

measures used as input in the model. 

 
PERFORMANCE 

MEASURES 

DEFINITION 

Wait Times due to lost of 

Situation Awareness( WTSA) 

Represents the amount of time the operator 

is not aware that the vehicle requires his 

attention. 

Wait Times due to Queue 

(WTQ) 

Represents the amount of time resulting 

from queues due to near simultaneous 

arrivals of tasks.  

Interaction Times (IT) Represents the amount of time the operator 

interacts with the vehicle. Includes 

monitoring and decision making time. 

Neglected Times (NT) Represents the amount of time each vehicle 

operates independently. 

Utilization Times (UT) Represents the amount of time the operator 

actively interacted with the display over the 

course of the experiment. 

Total Task Time Represents total time to complete the trial. 

Information Overload Represents information overload in the 

interface. 

System Interruption Represents the amount of time the operator 

was interrupted to attend a different task. 

Target Elimination Task- 

Success Rate 

Represents the ratio of eliminated enemies 

to the total number of identified enemies. 

Identification Task-Success 

Rate 

Represents the ratio of identified enemies 

to the total number of detected vehicles. 

Frequency of Reassignment Represents the operator’s trust in the 

system. Accounts for the times the operator 

reassigned a vehicle once that it was 

assigned by the system. 

UV Health Status Represents the amount of damage 

experienced by the vehicle. 

Figure 3. Performance measures collected during the experiment. 

D.  Experimental Apparatus 

   Since there is no test bed available that portrays all the 

complexities of a futuristic mission scenario, the Research 

Environment for Supervisory Control of Heterogeneous 

Unmanned Vehicles (RESCHU) developed by the 

Massachusetts Institute of Technology (MIT) was acquired 

and later modified to be used as a test bed in this study. The 

RESCHU simulator [8] is a test bed that allows operators to 

supervise a team of Unmaned Aerial Vehicles (UAVs) and 

Unmanned Underwater Vehicles (UUVs) while conducting 

surveillance and identification tasks. This simulation was 

modified for this study to include the following 

requirements: 1) a complex mission scenario with an asset 

to protect and multiple simultaneous enemies to attack, 2) a 

highly automated system such as mission definition 

language (MDL) and 3) a highly heterogeneous team that is 

made of at least three different types of UVs. The new 

version of the simulation is called RESCHU SPAWAR or 

RESCHU SP.  
It is important to mention that the Unmanned System 

technology selected as an example of a NCO’s technology 
that allows one operator to supervise multiple UVs is the 
Collaborative Sensing Language (CSL) developed at the 
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University of California, Berkeley. The CSL [11] is a high-
level feedback control language for mobile sensor networks 
of UAVs. This system allows an operator to concentrate on 
high-level decisions, while the system takes care of low-level 
decisions, like choosing which UV to send for a particular 
type of task. A framework for the CSL was designed to 
integrate this technology into the complex mission scenario 
portrayed by the RESCHU SP simulator. The CSL version 
displayed in this simulation is only intended to illustrate one 
way to portray how this technology may work in more 
complex mission scenarios and with supervisory control of 
multiple heterogeneous UVs (see Figure 4). 

 

Figure 4. RESCHU SP simulator displays a mission scenario with a team 
size of nine UVs (blue icons in the map), three potential enemies (dark 

yellow icons in the map), and one identified enemy (red numbered icon in 

the map). The CSL tab shows missions that are currently active and other 
missions that are not yet submitted. 

 

   The team of UVs in the RESCHU SP simulator is 

composed of UAVs, UUVs, and Unmanned Surface 

Vehicles (USVs). There are two types of UAV, the MALE 

UAV and the HALE UAV; both travel to areas of interest to 

detect potential enemies. When a UAV detects a potential 

enemy, a USV is sent to the detection area to identify the 

vehicle (i.e., the unidentified vehicles appear as dark yellow 

numbered icons in map). Engaging the video payload that 

arrives at a detection area requires the operator to decide 

whether the vehicle detected is a potential enemy. If an 

enemy is identified, a UUV travels to the location to target 

the enemy. UUVs are slower than USVs and UAVs. UAVs 

are the fastest UVs.  

   The operator’s main task is to identify and target potential 

enemies while protecting an asset (i.e., oil platform). At the 

same time, the operator is responsible for supervising the 

path of the UVs, in order to avoid traveling through 

potential threat areas (bright yellow areas on the map). 

Threat areas are zones that operators should avoid in order 

to protect the health of their vehicles. Moreover, operators 

are also responsible for following chat messages which 

provide them with the necessary Intelligence and guidance 

to complete their missions. When a UAV detects a potential 

enemy, a visual flashing alert is issued to warn the operator. 

This alert indicates that the operator should command the 

CSL system to assign a UV to complete the task. The 

operator commands the CSL to complete the task through a 

right-click interaction. The CSL system chooses a UV that 

is appropriate for the task and one that is also in close 

proximity to the potential target. The operator is in charge of 

approving the CSL selection by submitting the task through 

the Submit All button in the CSL Editing Controls tab. In the 

case of multiple identification tasks submitted to the CSL at 

the same time, the operator’s task is to approve the CSL 

selection, and if applicable, determine the order in which the 

tasks should be conducted. For example, in a situation in 

which there is only one UV available for the task, the 

operator has to determine the order in which tasks should be 

conducted to ensure a good mission performance. Once the 

order of tasks has been determined, the operator needs to 

submit the commands so that the CSL can complete the 

tasks. Once that a task has been submitted, a selected UV is 

sent to location, when it arrives, a visual flashing alert warns 

the operator that the video payload is ready to engage. Then, 

the operator engages the video payload through a right-click 

interaction. The detected vehicle is viewed through the 

video image displayed in the Payload View tab to determine 

whether the detection is identified as the enemy. The 

operator identifies the vehicle by clicking on the Yes or No 

button below the payload view. A supervisor will inform the 

operator via chat whether the identification is correct or not. 

If the operator correctly identifies the vehicle as an enemy, 

the vehicle icon on the map becomes red. If the operator 

incorrectly identifies a detected vehicle as the enemy, the 

supervisor will override the operator; therefore, the icon will 

not change to red. The next step for the operator is to inform 

the CSL that a vehicle should be assigned to complete the 

target mission. Once again, the CSL system chooses a UV 

and sends it to the target location. When on target, a visual 

flashing alert is issued to inform the operator that the UV is 

ready to engage. The operator confirms this through a right-

click interaction, and the target is eliminated. In this way, 

the operator is responsible to identify all detections and 

eliminate all enemies in order to protect the asset.  

E.   Participants, Experimental Design and Procedure 

  Experiments were designed to be completed in two phases: 

1) the software and performance measures program 

verification phase, and 2) the model validation phase. First, 

it is desired to ensure that the requirements of the simulation 

and performance measures computation program are met. 

Second, it is desired to obtain data associated with the 

different levels of team size, in order to build confidence in 

the model’s accuracy at replicating human-UV-interaction 

under different conditions. Having team size as the 

independent variable, the model’s ability to replicate 

statistically significant effects on the operator performance 

and/or mission performance could be evaluated. Finally, 
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having data sets associated with the different levels of team 

size allows for predictive validation by selecting a single 

data set associated with one of the conditions and predicting 

the results observed for a second condition. The recruited 

participants for the first experimental phase are students 

from the Naval Postgraduate School (NPS). The online test 

bed includes: a background and exit survey, an interactive 

tutorial, a practice trial, and one of a set of possible 

experimental conditions. 

   In order to ensure the validity of the variables and 

relationships represented in the model, the decision network 

was converted into a Bayesian Belief Network (BBN) to run 

validation analysis. The software’s Test with Cases analysis 

will be used to validate the network in the second phase of 

the experiments. The Test with Cases analysis examines if 

the predictions in the network match the actual cases. The 

goal of the test is to divide the nodes of the network into 

two types of nodes: observed and unobserved. The observed 

nodes are the nodes read from the case file, and their values 

are used to predict the unobserved nodes by using Bayesian 

belief updating. The test compares the predicted values for 

the unobserved nodes with the actual observed values in the 

case file and the successes and failures are then recorded. 

The report produced by this analysis has different measures 

that validate each node’s predicted capabilities. After 

evaluating the validity of the model, we can determine 

which relationships are incorrect and we can make the 

network learn those relationships through the collected 

cases. Finally, we can run sensitivity analysis and predictive 

validation analysis to determine which variable has the 

biggest effect on team size and how each variable affects the 

overall result of the model. 

   The study design is a between-subject design with three 

conditions: high team size, medium team size, and low team 

size. The high team size condition is composed of 9 UVs: 3 

UAVs, 3 USVs and 3 UUVs. The medium team size 

condition is composed of 7 UVs: 3 UAVs, 2 USVs and 2 

UUVs. Finally, the low team size condition is composed of 

5 UVs: 3 UAVs, 1 USV and 1 UUV. Notice that the UAV’s 

number was kept constant through the different conditions 

because the UAVs produce little interaction with the 

operator (i.e., UAVs only patrol for detection and operators 

only have to supervise their flight path to avoid flying into 

threat areas). The number of USVs and UUVs was 

gradually incremented to investigate how they affect the 

performance measures and therefore the model outcome. 

Furthermore, the baseline of a team of 5 UVs was decided 

after pilot testing the simulation with different team sizes. 

  The experimental test bed was designed for a web-based 

delivery, with an interactive tutorial and practice trial. A 

web-based experimentation was chosen in order to obtain as 

much data as possible. The website is Common Access Card 

(CAC) protected and participation is via invitation. Data 

collected from the simulation is being recorded to an online 

database. Demographic information is collected via a 

background survey presented before the tutorial. 

Participants are instructed to maximize their overall 

performance by: 1) avoiding threat areas that dynamically 

changed and therefore minimizing damage to the UVs, 2) 

correctly identifying enemies, 3) targeting enemies before 

they reach the asset, 4) overriding the system when 

necessary to minimize vehicle travel times and maximize 

mission performance, and 5) eliminating potential enemies 

as soon as possible.  

V.  EXPERIMENTAL RESULTS  

   Pilot tests were conducted at NPS and SPAWAR to 

evaluate the online test bed and performance measures. The 

results of these pilot tests indicated that the interactive 

tutorial was hard to understand, the simulation had bugs and 

the logic used for coding the performance measures was 

inaccurate. The test bed and performance measures were 

reviewed, a framework for improvement was developed and 

problematic areas were fixed. The first experiment was 

conducted at NPS in June, 2011. Data obtained is currently 

being analyzed. Results will be released in a future scientific 

publication. Due to the complexity of the software and the 

number of factors to be considered in the computation of the 

performance measures (i.e., multiple event types, vehicle 

types, performance measures, start and end times, etc.), we 

expect the verification phase to continue through next year.  

It is planned to start the validation phase in May, 2012. 

VI.  FUTURE RESEARCH 

   In the validation phase of this study, the model will be 

first validated with the current implemented technology. 

Next, the model will be validated with a different NCO 

technology in order to test whether the results of the model 

can be generalized to other NCO technologies with different 

system’s variables (i.e., usability, automation, etc.). 

Furthermore, learned workload and SA curves will be 

incorporated into the model to strength model predictions. 

Finally, a decision tool package will be developed to allow 

decision makers and/or system designers to evaluate NCO 

technologies. The decision tool package will include a 

program that will collect performance measures from 

simulations and feed the model in order to evaluate new 

NCO technologies.   

VII.  IMPLICATIONS FOR FUTURE RESEARCH 

   The implications of this study are various. First, the results 

of this study will allow a better understanding of what 

enables operator capacity in complex NCO mission 

scenarios. Second, by understanding the variables that affect 

operator capacity and the decision making process involved 

in evaluating NCO technologies, the results of this study 

will allow the development of specific C2 design 

requirements for technologies to be used in complex NCO 

mission scenarios. Third, by acquiring a better 

understanding of the dynamic between the operator 

capacity, the system, and the mission requirements, the 

results of this study will not only define performance 
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measures for these complex environments but also 

determine an effective logic to extract them from any 

simulation and place them into the model for evaluation and 

prediction. Finally, the overall results of this study will help 

future research by providing scientists with a test bed and 

performance measures definitions for a NCO scenario to 

further expand this study and/ or conduct further studies in 

this crucial research area.  
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