COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Algorithm to Solve Web Service Complex Request Using Automatic
Composition of Semantic Web Service

Brahim Batouche, Yannick Naudet,
Public Research Center Henri Tudor,
Luxembourg
{brahim.batouche, yannick.naudet}@tudor.lu

Abstract-- Automatic composition of web services supports
the solving of complex user reguest. The set of possible
solutions can be represented by a graph, modeling the
composition. Usually, this kind of approach is highly
simplified by considering only sequences of services. This
paper proposes an algorithm for automatic semantic web
services composition, which generates a graph taking into
account any composition structure. The request resolution
process identifies possible composition structures and selects
relevant services based on their semantic description. The
resulted composition graph answers all requested
functionality with coherent composition structures.

Keywords - semantic web service; composition graph;
automatic compositio; web service composition structure.

l. INTRODUCTION

Web services composition is a classical approach to
answer complex queries that cannot be solved wiin o
single service. Answering to such requests requires
several steps: (1) finding suitable services; (Byihg
how they can be composed together to answer theseq
(3) create the corresponding composite service; (4)
invocate it; (5) maintain it so that it can be redidater.
The structure of the composite service dependsoobix
on the request, but also of the available services.

Composing services can be useful in many different
domains, such as, e.g., tourism, transport, muttisyestc.
Some of them involve a dynamic environment where
events at any time can affect previously computed
compositions answering a request. A fundamergakiss
then how to repair failures in a composite service
execution, which can occur in dynamic environmeAs.
typical example is when one of the services inviblire
the composition is faulty or can no more be exetute
This fall is translated to a complex request arghthse
our algorithm to find another composition altermati

In this paper we propose an algorithm for
automatically finding all candidate compositions
answering a complex request, without a priori kremlgle
of the composition structure. When the request duss
formally specify any chaining between the requested

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

Frédéric Guinand
University of Le Havre,
France
frederic.guinand@univ-lehavre.fr

elements, the algorithm must found suitable contjposi
structures based on the available services. Thislgm is
not trivial because there are many possible sesvice
combinations and composition structures. To deteemi
the composition structure we base in the existing
functionalities, which are automatically determined
because the available services are supposed da$crib
semantically by OWL-S [1].

In section 2, we present related works. In Sec8pn
we first formalize the problem and detail it. Senti4
presents the composition structures and their sécsain
Section 5, we present our algorithm for automatic
construction of a composition graph. In Sectionw&
provide the experimentation results, and finallye w
conclude in Section 7.

Il. RELATED WORKS

Solving a complex request by services composition i
dynamic environments, can be tackled by different
approach.

The algorithm presented in [2] builds a composition
graph answering a request. The algorithm identifiiiest
the input and output of the request and searchafor
matching service. When none can be found a service
having a matching output is selected and recungivel
subsequent services having output matching with the
input of the latter service and input matching wikle
request input are sought. The algorithm ends when
sequence of services starting with the requesttiapd
ending with its output is found, or when the set of
available services has been searched. The provided
composition graph does not allow the direct invimrabf
services. Also, it is still limited to sequenceristure of
composition.

In [3], the flooding algorithm is used. Once agdime
proposed approach is limited to services sequeands
does not allow composition execution.

In [3], an architecture for automatic web vies
composition is proposed. This architecture allowst f
composition of OWL-S service. However, while aughor

84

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

provide interesting ideas for the design of the posite
service and automating service invocation, theyyonl
consider sequences of services. Kazhamiakin artdrlis
[5] proposed a model to answer a request using the
composition of web services, the model supposes the
available services are described by BPEL-WS. Aiest
requires much functionality, which are identifieadathen
used in a finite state-machine, implementing
composition structure. The state-machine providees
not allow composition execution.

In [5] a multi-agent system is used to automate the
composition of services. The agents collaboraréeide
the composition needed, an agent is presented &y th
OWL-S service and its functional parameters desdfiie
agent role. With this system, we can consider the
compositional structures: sequence, parallel and
conditional. The conditional structure concernsyathle
functional parameter of the service.

According to the state of the art, many mdthof
automatic composition focus to find the needed
functionalities to answer a request and there opdérdo
not give the link to execute them. So, they usually
consider only the sequence structure. To exceesethe
limits, we automate the detection of the compaositio
structure needed and the selection of the services
requested. To select automatically the services,use
the I/O dependence basing in the matching funcfldr
matching function uses only the 10 parameter [6lises
the IOPE [8] which provides more accurate results.

the

I1l. PROBLEM FORMALIZATION

A typical example of complex user request, which we
will use as a basis to present our approach, is the
following: “I want travel from City A to City B, rgerve
several hotel rooms in destination city where dambk is
billed separately, rent a car for six people, hdke
weather and plan for the destination city”. Sucuesst
needs first to be formalized in a machine procdssahy.

A. Request Formalization

A complex request is a combination of more focused
or atomic sub-requests, which concerns each aceeori
functionality. We writeR = Fy = {F.}, where F,, is a
functionality requested. Our example requiresrfou
functionalities: transport, booking hotel, rent ar,ccity
information. Each functionality has input/ output
(IFTi/OFrl_). Formally, we write a request as a tripke:=

card(FR)

<1R, OR, C>, Whel’e IR = Ui=1 IFT- = (il’ ...,ik)TiS

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

card(FR)

the set of inputs, 0 = U2, ® 0p = (04, ...,0))7 is

the set of outputs, arC = (cy,...,c,)7 is the set of
conditions or constraints (related to data, servize
composition). Conditions differ from constraints tinat
they must be verified to instance the input paramet
service, but the constraints to filter the set whikble
services, data provided by services or compospiaths.

All the sets elements are URIs of concepts defiimed
ontologies. Whilel and O correspond to functional
parameters which describe a domain ontol@goncerns
both functional and non functional parameters. @uaf
Service is an example of such parameter, as wetlties,
cardinality of some services output, etc. The non
functional parameters values are found in the servi
description. The functional parameters values are
identified after execution the informative serviegjich
provide information without modify its source datab.

. From the fail execution of service to request

The execution of composition can falil if one of its
services fails. The fail can then be translatedh toew
request, which depends on the functionalities zedliat
the moment of fail. These functionalities corregpon a
set of Terminated Input / OutpufTI(TO). The new
request formalized R =<1, NTI, 0, NTO,C >.

To configure the original composition graph (or dfin
another alternative) we use reclusively our algamitwith
the new request.

B. Composition Graph Formalization

The composition of services presents a set of
functionalities and there structures, but usuathgsi not
give the execution possibility, e.g. [5] [9]. THisings us
to define two types of composition graph.

Definition: The executable composition graph allows
the service execution, thus making the composition
executable.The abstract composition graph represents
only the structure of the composition and cannot be
executed.

This definition based in the existing (or not) timk to
invocate the service. But [10] defines the abstract
composition according to the existing (or not) gwb-
service /0O of the composition. According to our
definitions, an executable composition graph is an
abstract composition graph whose nodes integrate
services identifiers, (URIs), instead of input /tput
parameters only. Abstract graphs represent
composition of functionalities fitting a request,hile

only

85

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

executable ones describe actual services chaifg.

focus here on finding automatically suitable sessic
composition structures that we model with an exauet

graph.

The executable composition graph corresponding to a
complex request; represents a set of services patith
constitute possible answers. It is formulated@s: <N,

V>, where,V is a set of directed arcs amlis a set of
nodes. We distinguish four types of nod&;,AS, DA and
SW,wherelS is an informative serviceASis an active
service, which provides an action and modify itsirse
databaseDA is the data (information) provided by &y,
and SWis a switch node that represents a conditional
structure, specifying a condition formula.

We define a node as
n =< NT,id,URI, I, O;, URIpg74 >, WhereNT is the
node typejd is the identifier of starting parallel structure
node id = @ if n does not belong to a parallel structure),
URIs is the URI of OWL-S serviceURI; = @ if NT =
DA or SW), I;/0s are respectively the Input and output
of the service, they are defined frctURIg, andURIp 474
is the URI of dataURIp,r, = @ if NT = IS, AS or SW).
The special node switcing, =< NT = SW,¢;, LF >
, Wherec; is the condition provided by the request and it is
verified by the node, anLF is the linked node because
the multiple paths in the graph can meet in oner@®de,
then a SW node embeds a hash function recording
authorized successors of nodes. For this reasenSW
node is a kind of meta-node containing several sode

We add the nodé&N and EN which respectively
starting and ending the composite griSN =<0 =
Iz >, which its output corresponds to the request input
andEN =< @ >.
The functional parameters of the answer composite o
services match with the functional parameters o th
request. So, the non functional parameters values a
calculated according to the parameter type and the
composition structure used, for exampdee [11] .

IV. STRUCTURES ORWVEB SERVICE COMPOSITIONS

Existing web services languages supporting
composition model different structures in differeveys.
Taking the most commonly known, we observed the
following. The structures modeled by OWL-S are:
"sequence"”, "any-order", "if-then-else", "choicaihile",
"until*, "split" and "split-joint". Differently, BELAWS
[12] uses: "sequence", "switch" "while" "Pick" and

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

"flow". A mapping between the two representations
involves three operators: equivalence (e.g., ifithkse is
equivalent to switch; choice is equivalent to pjck)
composition (e.g., the flow structure in BPELAW S &
decomposed into two structures of OWL-S: split and
split-joint); and identity (for constructs that cemt be
realized with structures of the other representatag.,
any-order is not identity (see Section 4.2)). ofder to
insure interoperability with the different repretsions
and keeping a generic approach, we focus on elament
structures (sequence, if-then-else, split, spliitjp from
which many others can be modeled.

A. Composition Structures lllustration

A composition may comprise several different
structures, which can themselves contain combinstad
structures. A tree representation helps understgnalnd
visualizing the composition: the leaves are sepjithe
nodes and the root are the compositions structdres.
path corresponds to read of composition tree wiattbw
a prefixed depth approach. The Figure 1 showsotor
example the composition tree and the corresponding
composition flow. The used services are: availakdan
(AT), available flight (AF), book train (BT), boofight
(BF), available hotel (AH), book hotel (BH), avdila
rentals car (ARC), rent car (RC), plan touristicon{®T),
city weather (CW).

D Informative Service O Active Service

Figure 1: Service composition illustrated by tred 8ow

B. Characteristic of Composition Structures

In the following, we detail the characteristics of
structures we retained and explain how they idieotif
from the request.

86

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Sequencé—": This structure defines an order between
services. The order can be detected directly drently.
There are two ways to detect the order directly: {1
Checking the match between services IOPE; (2) -
Checking the priority between the services answetfire
question: which service cancels the other when it is
cancelled?

Since the order operation is transityd:— B) A

(B »C)= (A - (). To detect indirectly the order
between A and C. We base on the order of serviees, (

B) which have the order with A, C.

Choice "+": (or or-split): This structure represents a
choice between several services that have a same
functionality. Choice(A,B4,B;, ...,By) = (A—> BV
(A-By)Vv..V (A- By), knowing that service “A”
precedes servicds and the services; have not the
different functionality.

Any-Order "O": This structure is not elementary and
represents a random invocation of services. Thistsire
can be expressed using choice and sequence
structuresAO B =(A— B)+ (B— A). Therefore
this structure is replicable.

If-then-else” ®_.": This structure checks a condition of
request to instance the functional parameter oféneice.
The structure follows a service if ones of its paeter
(functional/ non functional) correspond to a coiaait

Split" + ": This structure indicates a simultaneous start of
multiple services (or services chains). Services than be
parallelized have the same predecessor and provide
different types of outputs. Each service startew sub-
path in the composition. All services chains startat a
split will be executed in parallel and ended witlsit-
joint. Split(A,By, By, ...,By) =(A—> B;))A(A— By) A

.. N (A= By).

Split-joint "4 "; This structure ends a parallel structure,
where the sub-composition paths belong to a sapii™'s
The last services; in parallel chains have the same
SUCCEeSSOoA. split — Joint (By, B, ..., By, A) = (B, —
A)A (B, » A) A ... A (By — A), where serviceB;" end

the parallel sub-composition paths. It is possibiat all
services chains in a same “split” do not end in shme
“split-joint”.

While "®." and until "@. ": These structures are not
elementary and used for iterative service invocatihey
can be constructed with if-then-else and sequence
structures: ®.A) =R, AN —>®, and

O, (A)=4->QAQ,— A.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

The compositional structure:sSt) are illustrated in
the graph by arc or no,5t =< N,V > (see Figure 1).
The structures while and un= {SW,V}, the structure if-
then-els= {SW,® } and the structure sequence, choice,
split and split-join= {@,V}, whereV is respectively a
sequence-arc, set of sequence-arc, split-arc ditgodt-
arc. This gives to distinct three types of {—,F,}.

An arc is defined by its type, departure node and
destination node.

V. ALGORITHM GENERATING THECOMPOSITION
GRAPH

Our algorithm processes progressively the request t
build the executable composition graph. In theofelhg,
we define our terminology.

We name in the grapturrent layerl, the set of nodes
in the graph having a same depth level, currentind
processedl,={n;}. Initially I,={SN}. One step of the
algorithm corresponds to full covers lpf The node ofy
being processed namedrrent node.

The temporary buffer is used to store the set afeso
following the current node, and not precedil. When
precedeEN are placed directly in thend layerof the
graph.

The algorithm is illustrated in Figure 2. Froe
request, it fills the current layer and processeBar each
node in the current layer, selects the next sesvice
according to their matching with functionalitiBs. The
set of nodes created from next services is firstipuhe
temporary buffer, which is later put in the nexyda
When the current node output matches with one ef th
F.outputs, the algorithm carries on with next node in
current layer. That has the input offanot yet covered.
Otherwise, services having inputs matching the err
node output are selected. Corresponding nodes eaed
after checking does not already exist in the setoafesN
in G.

An arc-sequence is created between the cunemé
and the next nodes. When a selected service iS,ahib
invoked to obtain the information it provides befor
creating the arc. When the data are obtained, the
algorithm creates an arc sequence between theaidbe
service and data nodes created, then it replaeesetivice
node by the set of data nodes.

When a next node has been newly created, the #igori
checks the existence of a condition. The next node
contains a condition if the output of the servide i
represents corresponds to one of request conditions

87

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

this case we create a SW-node and linked to the bgd

an arc-sequence. The node following the SW-nodeeis
selected according to the first node output.

In case a F, have been covered, the next node is affected
to theend layer.Otherwise, it is put into the temporary
buffer, and later to the next layer.

The checking of split-structures is performdtken the
temporary buffer is full, containing all the nodweatching
the current node. The checking of split-joint-stuwe is
performed when the next node is selected. Therefbe
algorithm checks split-joint structure before thplits
structure.

The process checks the existence of a split-join
structure starting from next node. If it is selecteom N,
thenit is possible to find a node which can precede the
next node. In this case a complete check is pedgdrm
otherwise only a partial check is necessary. Theptete
check considers all nodes of the current layer. Jértial
check considers a current node and current laydesio
which have not been yet processed.

The algorithm creates a split-joint-arc whba split-
joint is verified, i.e., the follow conditions averified:

-The starting nodes of the split-joint-arc haveame split-
structure, i.e., they contain the same identifiérsplit
structurcid(n'), wheren’ is the node starting the parallel
structure.

-The nodes have the same succeeding n*daheren*
ends the parallel structure.

Vv n;,n; preced nt, if (n;,nj)contains (id(n,)) then

CreatArcSplitjoint (nl-, n;, n+), n;. delet(id(n’)), n;. delet(id(n*))
Concatenation of parallel structures is possiblehe
nodes of same split-structure don’t regroup in mea
split-joint structure, the nodentis included in the
structure split, so it can be grouped with the rieing
nodes3 ni.contains(id(n’)), n; € L:n*.add(id(n")).

The checking for the existence of a split e is
performed between the current node and the nodd®in
temporary buffer. If these nodes have different
functionalities i.e., different output, then we ate a split-
arc and add the identifier of the split structid(n’) to

these nodew n;,n; follow n', if M (outni,outnj) > ¢ then
n;.add (id(n')) ,n;.add (id(n')) , CreatArcSplit(n',n;,n;)
When a noden,, follows the noden; which appears in
parallel structuren;contains(id(n’)), then we affecn;,
to this structuren,,. add(id(n’)) M. delet(id(n’)).
When all nodes of the current layer are pssed, the
next layer becomes the current layer and so on th#i

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

next layer is empty. The algorithm terminates wkigs
state is reached.
Request >

burrent layer add{Beginhklode) |

Current layer= @

|Current layer— Next layer |

| Selsct next services of node |
¥

|Checkthe query's part answered | No | Create ag-spht

r]
Check split
(Current node, Temp layer)
Ma
es
service already selected
Ma

Yes
Create arc-sequence
(Current node, existed node)

Mo

Next node = Yes
create (AS node

Create arc-sequence
Current node, Next node)

Check canditio
Mext node

i [\
‘End layer add(Mext node) H‘I’emp layer add(MNext noda) ‘

Check split-joint
rrent layer, Mext node L4
(Creat arc-sequence

Y

heck split-joint complete
urrent layer, existed node)

[EndLayer, Endhode

Create arc-splitjoint Return composition graph

Figure 2: Algorithm of solving complex request

Ma

<

Finally, the complexity of each step of the algumit
graph construction composition is akoug|l|.|S|),
whereSis the set of selected service. Since, the algorit
is based in the flooding algorithm. To assure thecgss
logic, we check the composition structures accgrdim
the flooding algorithm step.

VI. EXPERIMENTATION AND RESULTS

We have tested our example request on a base,
containing the services OWL-S descriptions and ingry
all the functionality needed in the request.

After running the algorithm, we verify: - the sa®i
composite answering a request has all requested
functionalities, - its internal composition struetuis
coherent, i.e., there is no false detection ofcstmes.

Different APIs were used Jena [13], SPARQL [14]; to
check the data constraint and the conditions, OWAP$
[15], to check the service constraints, and P¢1é}, to

88

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

check the matching level between services /0 and
request I/0.

Figure 3: Resulted executable composition graph

The Figure 3 illustrates the composition graphegiv
by the algorithm. The composition path is semalitica
correct because it contains all requested fundiites
transport, booking hotel, etc. And the composition
structures used are coherent with the used senkcgs
choice: between the service “Available Hotel 0" and
“Available Hotel 1”. Sequence: between “Book Flight
and “Available Rentals Car”. While: the noge0checks
the number of booking hotel. If the condition igdrthen
another booking is made; else the loop is lefthén else:
the nodeswl checks the number of car rented according
to the type of car provided, if the available réotar does
not take six people then rent two c&plit/Split-joint: the
service “City Heritage Museum” and “City Bus” witle
executed in parallel.

VIl. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed an algorithm for
multi-structure web services composition. It altow
answering a user request by composing available
matching services using all possible composition
structures.

The composition graph provided by the algorithm
will mainly be used as input for giving a searclasp

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

authorized to optimize the composition of services.
Additionally, we have also shown how to deal with
composition execution failures (in this case, the
composition graph can be adapted).

Finally, the solutions to a request contained ie th
composition graph can be formalized using classical
languages like, e.g., BPEL-WS, OWL-S, etc., andesto

in the services base for re-use.

In future works, we consider all ways taed¢ a
sequence between services and we integrate
precondition/effects to calculate a level of matchi
between the services and request.

the

REFERENCES

[1] D Martin, et al.: OWL-S: Semantic Markup for Webr8ees.
W3C Member Submissipp2, 2004.

[2] G. silva, F. Pires, and V. Sinderen. An Algorithar Automatic
Service Composition, 1 st International Workshop on
Architectures, Concepts and Technologies for sen@riented
Computingpp. 65-74, Barcelona Spain. July 2007.

[3] s. onh, B. On, EJ. Larson, and D. Lee. BF*: Webviges
Discovery and Composition as Graph Search Probl®, e-
Technology, e-Commerce, and e-Services, |IEEE Ilatierral
Conference on784-786, 2005.

[4] K. Matthias and G. Andreas, Semantic web servigepusition
planning with OWLS-XPlan|n Proceedings of the 1st Int. AAAI
Fall Symposium on Agents and the Semantic Web5pf2, 2005.

[5] R. Kazhamiakin md M. Pistore, A Parametric Communication
Model for the Verification of BELAWSCompositions Formal
Techniques for Computer Systems and Business Bex848-
332, Trento, ltaly. 2005.

[6] D. Pellier and H. Fiorino. Un modéle de compositiariomatique
et distribuée de services web par planificatRayue d'Intelligence
Artificielle ,v23,13-46, 2009.

[7] M. Klusch, B. Fries, M. Khalid, and K. Sycara, QSVMX:
Hybrid OWL-S Service Matchmaking, In Proceeding4 sifintl.
AAAI Fall Symposium on Agents and the Semantic D015,

[8] A.B.Bener, V. Ozadali, and E.S.llhan. Semanticaimataker with
precondition and effect matching using SWRExpert Systems
with Applications 36, 9371-9377, 2009.

[9] s.v. Hashemian, and F. Mavaddat. A Graph-Based d¥r to
Web Services CompositionProceedings of Symposium on
Applications and the Internet83-189, 2005.

[10] M. Mihhail, M. Riina, and T. Enn. Compositional g¢ioal
Semantics for Business Process Languages. R@i\af 2007.

[11] c. wan, C. Ulrich, L. Chen, R. Huang, J. Luo, a&hdShi. On
Solving QoS-Aware Service Selection Problem withrvige
CompositionGrid and Cooperative Computingp08.

[12] T. Andrews, et al: ‘Business Process Executiorguage for Web
Services Version 1.1°, IBM, May, 2003.

[13] http://jena.sourceforge.net(1/03/2010)

[14] http://iwww.w3.org/TR/rdf-spargl-queryi 1/03/2010)

[15] http://iwww.mindswap.org/2004/owl-s/afil1/03/2010)

[16] http://iwww.mindswap.org/2003/pellgtl1/03/2010)

89

