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Abstract— We investigated the complexity level of an agent-
based predator/prey ecosystem simulation. The variations of the 
times series associated to this ecosystem simulation are the result 
of complex simulation mechanisms. For the purpose of 
understanding how close our system is to random or chaotic 
processes, we compare these data with data generated by a 
Markov chain as a simple process. The parameters of the 
corresponding Markov matrix are learned from the data 
generated by our simulation. Then we used the Markov chain to 
generate data similar to those of the simulation. We show that 
the Markov chain for all three orders, which we tested, generated 
prey and predator time series that are more random than their 
counterpart in the original simulation. Also, we used the largest 
Lyapunov exponent to determine the chaotic behavior of the 
simulation. We discuss the largest Lyapunov exponent values for 
population time series of both prey and predator agents, which 
indicates chaotic behavior in our agent-based ecosystem 
simulation. 

Keywords- agent-based ecosystem; chaos analysis; 
complexity analysis; Markov chain 

I.  INTRODUCTION  
Few attempts have been made to model a complete 

ecosystem and analyze its complex behavior using an agent-
based approach. A predator-prey model proposed by Ward et 
al. [4] in which the agent model is dedicated to represent 
schooling behaviors, and the evolution is an offline 
mechanism using a genetic algorithm. More recently, 
Ronkko [5] has proposed a high-scale simulation based on a 
particle system approach. There is, however, no evolution 
mechanism in this artificial ecosystem. More works has been 
done on the Avida platform [2], which proposes self-
replicating and evolving digital organisms. Each digital 
organism consists of a virtual CPU that processes a 
sequential program. The biological complexity in these 
organisms has been defined by Huang et al [3] as the generic 
information, which an organism has about its environment. 
However, none of these papers discuss about the complexity 
of the overall behavior of the simulation. 

We are interested in analysing the complexity of such 
complex dynamic system. We have created a generic 
platform capable of simulating complex ecosystem with 
intelligent agents interacting and evolving in a large and 
dynamic environment [1]. This is the only simulation 
modeling the fact that agent behaviors affect evolution and 
speciation. The agents display very complex behavior using 

Fuzzy Cognitive Map (FCM) model [19] to make decisions. 
We would like to understand how predictable the complex 
system we have conceived is. The two opposite and extreme 
situations that lead to a rather unpredictable system are 
random processes and chaotic processes. Therefore, we 
would like to investigate how close our complex system is to 
these two extremes. 

The rest of the article is organized as follows. We first 
review our ecosystem simulation, which uses FCM as a 
behavior model in Section 2.  Predicting population using the 
Markov chain is explained in Section 3. The Markov chain, 
transition matrix, and predicting prey and predator 
population is described in this section as well.  The 
Lyapanov exponent is described in Section 4, and 
experiments and results are shown in Section 5. Finally, in 
Section 6, we draw conclusions about this work and propose 
an extension to it. 

II. INDIVIDUAL-BASED EVOLVING PREDATOR-PREY 
ECOSYSTEM SIMULATION USING FUZZY COGNITIVE MAPS 

AS A BEHAVIOR MODEL  
In this section, the main parts of the already existing 

predator/prey ecosystem is briefly introduced. 

A. Fuzzy Cognitive Maps 
In general, fuzzy cognitive maps (FCMs) aim to 

represent the causal relationship between concepts, and to 
analyze inference patterns (the final states of the system after 
convergence).  Formally, an FCM is a graph which contains 
a set of nodes C, each node Ci being a concept, and a set of 
edges I, each edge Iij representing the influence of the 
concept Ci on the concept Cj . A positive weight associated 
with the edge Iij corresponds to an excitation of the concept 
Cj from the concept Ci, whereas a negative weight is related 
to an inhibition (a zero value indicates that there is no 
influence of Ci on Cj). An activation level ai is associated to 
each concept. An FCM allows computing the new activation 
levels of the concepts of an agent, based on its perception 
and on the current activation levels of its concepts. 

B. Agents and Behavior Model 
The agents of this simulation are either prey or predators, 

which act in a dynamic environment with 1000×1000 cells. 
Each cell may contain several individuals and some amount 
of food. Each agent has several properties that determine its 
physical capabilities and its behaviors. The behaviors are 
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determined by the interaction between the FCM and the 
environment.  

Each agent possesses its own FCM that represents its 
genome. We use an FCM to model an agent's behavior 
(structure of the graph) and to compute the next action of the 
agent (dynamic of the map).  In each FCM, three kinds of 
concepts are defined: sensitive (such as distance to foe or 
food, amount of energy, etc), internal (fear, hunger, curiosity, 
satisfaction, etc) and motor (evasion, socialization, 
exploration, breeding, etc.). The activation level of a 
sensitive concept is computed by performing a fuzzification 
of the information the agent perceives in the environment. 
For an internal concept, the activation level corresponds to 
the intensity of an internal state of the agent. Note that it 
enables to distinguish between perception and sensation: the 
sensation is the real value coming from the environment, and 
the perception is the sensation modified by the internal 
states. Activation levels of the motor concepts are used to 
determine what the next action of the individual will be. The 
amplitude of the chosen action is then calculated by 
performing a defuzzification of the value of the 
corresponding motor concept. 

The FCM of an agent is transmitted to its offspring after 
being combined with the one of the other parents, and after 
the possible addition of some mutations. The behavior model 
of each agent is therefore unique. 

C. Update 
The time step represents a relatively long period of time, 

during which agents perform several small actions, which are 
summarized by a unique high level action. The possible high 
level actions for the agents are: 

1. Evasion (for prey only), which is in the opposite 
direction of the closest foe within the vision range 
of the prey. The new position of the prey is 
computed using the speed of the prey. 

2. Search for food, which is near the closest food 
(grass or meat) within the vision range.  

3. Socialization, which is the direction toward the 
closest possible mate within the vision range.  

4. Exploration in which the agent moves at its speed 
in the random direction.  

5. Resting in which nothing happens. 
6. Eating, which includes the update of the 

grass/meat unit in the cell and agents energy and 
hunger level. 

7. Breeding: If the energy levels of both agents are 
more than a certain threshold, and they both 
choose the breeding action, then breeding is done. 

For each action which requires the agent movement, its 
speed is computed proportional to the current activation level 
of the motor concept associated with its action. 

At each time step, the values of the states of all the 
parameters in the model are updated. The three successive 
phases of the update process are as follows for all agent:  
Perception of the environment, computation of all its 
concepts, application of their action and update the energy 
level. Then some general updates for the whole world are 

performed such as updating the species and updating the 
amount of food available in each cell of the world. 

An agent has a quite short lifespan (in terms of number of 
time steps), and performs only a few dozens of actions 
during its life. This enables us to obtain a high level of 
population renewal, which is an important criterion for 
studying an evolutionary process.  

Fig. 1 shows the population of prey and predator agents 
after each time step. As expected with a predator-prey 
system, it is clear that there is a dependency between the 
number of prey and the number of predators. The evolution 
of the number of predators follows that of prey, and vice 
versa. As a clear period, consider time steps between 2000-
4000. When the number of prey grows, the number of 
predators also grows a few time steps later. But when the 
number of predators grows too much, the number of preys 
decreases a few time steps later, leading to a still-later 
decrease in the number of predators. 

D. Evolution 
In our simulation, evolution stems from several 

mechanisms: mating, mutation and speciation. Since species 
membership of the agents is evaluated at each time step, 
births and deaths of individuals influence the general species 
composition. Thus, a species can emerge or disappear at any 
time step. This enables us to model the evolution of 
populations of individuals sharing important genetic 
properties. Due to our species model, species evolution is 
derived directly from individual evolution. If the mating is 
successful, the two parents give birth to a unique offspring. 
This offspring inherits a combination of the genomic 
information of its parents, with possible mutations and 
crossover. The genome of an agent is defined as the set of 
edges, associated with their weights, of its FCM. More 
precisely, for each concept, the child inherits all the incident 
edges of this concept from one of its two parents. During that 
process, the weights of the edges can be modified, based on a 
probability of mutation (which is a parameter of the 
simulation). Moreover, some new edges can be created; and 
some old edges can be removed (if their weight becomes 
smaller than a given threshold).The apparition of new edges 
is a very important mechanism, in the sense that new 
influences between concepts can emerge during the 
evolutionary process. This allows the apparition of more 
complex and potentially more adaptive behaviors.  

 

 
Figure 1.   Population of prey and predator agents 
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Figure 2.   Evolution of the prey and predator species 

In general, a single mutation is neutral and cannot 
produce a very different behavior model. It is the 
accumulation of neutral mutations during several time steps 
that allows the apparition of new individual behaviors, and 
then of new species. 

Fig. 2 depicts the evolution of the prey and predator 
species in different time steps. Comparing Fig. 1 and Fig. 2, 
it appears that the number of species is closely correlated 
with the number of agents.  

These are the kind of data that we would like to analyze. 
We consider several time series depicting the variation of 
different quantities in our system and define a protocol to 
evaluate the complexity level of our system by an analysis of 
these time series.  

III. PREDICTING POPULATION USING THE MARKOV CHAIN  
As it appears in Section 2, the agents in our simulation 

display a very complex behavior using FCM to make a 
decision. Moreover, the whole behavior of the ecosystem is a 
very complex system involving interaction between 
hundreds of thousands of complex agents. However, as it has 
been shown in [1], the overall system presents interesting 
correlation patterns.  For instance, the population of prey or 
predators has strong correlations with the number of 
predators, prey, level of grass and meat, species distribution, 
and so on. Despite such regularities, the simulation is far 
from being easily predictable. The amplitudes and times of 
inflation and deflation vary considerably, but their 
correlation is conserved. This means we can suppose that 
there is no easy way, excluding the simulation itself, to 
predict the state of the system at time step t, knowing the 
state of the system at time step t-1. However, the variations 
of the time series associated to these numbers are not random 
as they are the results of the application of the simulation 
mechanisms. We are interested in evaluating how complex 
the time series generated by the simulation are. We would 
like to understand how predictable the complex system we 
have conceived is. The two opposite and extreme situations 
that lead to a system, which is hardly predictable are random 
processes and chaotic processes. Therefore, we would like to 
investigate how close to these two extremes our complex 
system is. In that purpose, we have compared the data 
generated by our system with data generated by a simpler 
process that generates data similar to the ones of the 

simulation. We used a Markov chain as a simple model of 
our simulation. We have learned the parameters of the 
corresponding Markov matrix from the data generated by our 
simulation. Then we used the Markov chain to generate data 
similar to those of the simulation.  We have then compared 
the time series data generated by both processes and 
measured their respective level of randomness/chaos. 

A. Markov Chain 
Define Suppose we generate a sequence of random 

variables, {X0, X1, X2, ...},  such that at each time t, the next 
state Xt+1 depends only on the current state of the chain, Xt. 
This sequence is called a Markov chain, which is formally 
denoted as follows [7]. 

Pr(Xt+1 = xt+1 | X1 = x1, …, Xt = xt) = Pr(Xt+1 = xt+1 | Xt = xt) 

Now suppose we generate a sequence of random 
variables, {X0, X1, X2, ...},  such that at each time t, the next 
state Xt+1 depends on the current state of the chain, Xt and the 
previous state of the chain, Xt-1. This sequence is called a 2nd 

order Markov chain [7]. 

Pr(Xt+1 = xt+1 | X1 = x1, …, Xt = xt) =Pr(Xt+1 = xt+1 | Xt = xt, 

Xt-1 = xt-1) 

Similarly the 3rd order Markov chain is a sequence 
satisfying 

Pr(Xt+1 = xt+1 | X1 = x1, …, Xt = xt) = Pr(Xt+1 = xt+1 | Xt = xt, 

Xt-1 = xt-1, Xt-2 = xt-2) 

B. Transition Matrix 
Consider a Markov chain with finite state space {1,2, …, 

k}. A transition matrix describes the probability of moving 
form state i to j at each time step using Pr(j|i) =  P୧,୨ ; in 
other words, the ith  row and jth  column element of the 
transition matrix P is given by Pr(j|i) [6].  

P቎
ଵܲ,ଵ ⋯ ଵܲ,௞
⋮ ⋱ ⋮
௞ܲ,ଵ ⋯ ௞ܲ,௞

቏

where the probabilities of each row sum up to 1. 

෍ ௜ܲ ,௝ =
୨

1

because the overall probability of transitioning from state i to 
one of all possible states must be 1. 

C. Markov Chain for Prey/Predator 
To show the non-random behavior of the simulation, we 

have generated the transition matrix for the population of 
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prey and predator, and used the matrix probabilities to obtain 
the artificial population. The overall algorithm includes the 
three following steps: 

1) Pre-processing  
2) Transition matrix computation 
3) Running the Markov chain 

The first step includes the smoothing and quantization of 
the data set. The first part, smoothing, is performed on the 
dataset by the following linear transformation, which 
smoothes the original data while preserving its general 
characteristics and trend. 

ܺ௧ =
௧ݔ10 + ௧ାଵݔ5 + ௧ିଵݔ5 + ௧ାଶݔ2 + ௧ିଶݔ2 + ௧ାଷݔ + ௧ିଷݔ

26  

where x୲ is prey/predator population size at time t.  
To build the transition matrix for the Markov chain, we 

need to have a finite state space, which means the number of 
the quantities should be constant and discrete. The interval 
for the quantization is computed by: 

݈ܽݒݎ݁ݐ݊ܫ_ݐ݊ܽݑܳ = ݎ݋݋݈݂ ቆ
൫݉ܽݔ(ܺ) −݉݅݊(ܺ)൯

݇
ቇ

where ݉ܽݔ(ܺ) and ݉݅݊(ܺ) are the maximum and minimum 
values seen in the prey or predator datasets, correspondingly, 
and ݇  is the number of quantities, which is equal to the 
number of transition matrix rows in the 1st order Markov 
chain. The value of k is selected small enough to ensure the 
nonzero value for quantization interval. The smoothed values 
are transformed to the quantized data set by the following 
formula to have a minimum value of 1.  

ܺ′௧ = ݎ݋݋݈݂ ቆ
൫ ௧ܺ −݉݅݊(ܺ)൯
݈ܽݒݎ݁ݐ݊ܫ_ݐ݊ܽݑܳ

ቇ + 1

where ܺ′௧  is the quantized value of the smoothed value at 
time t. 

Transition matrix computation depends on the order of 
the Markov chain. The transition matrix dimension is equal 
to the order of the Markov chain plus 1. In the 1st order 
Markov chain, the transition matrix is 2D, which includes the 
population at the current time and the interested population 
at the next time. In the 2nd order Markov chain, the matrix 
has another dimension, which is the previous population of 
prey or predator.  

Each probability for this matrix is computed by counting 
how many times the same consecutive population sizes 
happening in the quantized data set.  

By running the Markov chain from an initial value (or 
several previous values for higher order Markov chain), the 
artificial data set is created; the next population for each time 
instance is computed based on the current and previous 
populations (for the higher order of the Markov chain), and 
the corresponding probabilities in the transition Matrix.  

IV. LYAPUNOV EXPONENT 
Nonlinear signal processing is an important research area 

with many applications. Specifications and identifications of 
nonlinear signals can help us to detect nonlinear behavior of 
dynamical systems [8]. One specification, the discrimination 
of stochastic and chaotic behaviors of nonlinear time series, 
is a basic topic in nonlinear dynamic fields [9]. This 
specification has attracted researchers for a long time 
[10,12]. As many scientists believe that the natural 
phenomena have to be considered as deterministic and 
chaotic systems, it is important that a simulation used to 
model such a phenomenon generate a complex chaotic 
pattern [11]. For this reason fractal dimensions and 
Lyapunov exponents are the most prominent candidates to 
characterize the chaotic behavior [13], because they express 
complexity and predictability of a process and are a measure 
for chaos [14, 15, 16]. In this paper the Lyapunov exponent 
has been used. 

Most experts would agree that chaos is the aperiodic, 
long-term behavior of a bounded, deterministic system that 
demonstrates sensitive dependence on initial conditions. For 
that purpose, we must quantify the sensitivity [17].  

Lyapunov exponents quantify the exponential divergence 
of initially close state-space trajectories and estimate the 
amount of chaos in a system [18]. A bounded dynamic 
system with a positive Lyapunov exponent is chaotic [17].  

Imagine two nearby initial points ܺ଴  and ܺ଴ +  ∆ܺ଴ , 
respectively. After one iteration of the map, the points are 
separated by 

∆ ଵܺ = ݂(ܺ଴ +  ∆ܺ଴) −  ݂(ܺ଴) ≅  ∆ܺ଴ ሖ݂(ܺ଴)

where ሖ݂ =  ݂݀ ݀ܺ⁄ . Now, we define the local Lyapunov 
exponent ߣ at ܺ଴ such that ݁ఒ =  |Δ ଵܺ Δܺ଴⁄ | , or  

ߣ = ln|Δ ଵܺ Δܺ଴⁄ | = lnห ሖ݂(ܺ଴)ห

To obtain the largest Lyapunov exponent, we average the 
above equation over large enough iterations. 

ߣ =  limே→ஶ
ଵ
ே

 ∑ lnห ሖ݂ (ܺ௡)หேିଵ
௡ୀ଴ 

The largest Lyapunov exponent determines the average 
exponential rate of separation of two nearby initial 
conditions, or the average expansion of the space. A positive 
value shows chaos [17]. 

The different methods that have been proposed for 
computing Lyapunov exponents from time series can be 
divided into two classes: Jacobian-based methods and direct 
methods. 

Direct methods directly estimate the divergent motion of 
the reconstructed states without fitting a model to the data 
[20]. The method, which has been used in this paper was 
proposed by Sato et al. [21], and Kurths and Herzel [22]. The 
average exponential growth of the distance of neighboring 
orbits is studied on a logarithmic scale, this time via the 
prediction error below 
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(݇)݌ =  
1
௦ݐܰ

  ෍ logଶ ቆ
௡ା௞ݕ‖ ‖௡௡ା௞ݕ −
௡ݕ‖ ‖௡௡ݕ −

ቇ
ே

௡ୀଵ



where ݕ௡௡ is the nearest neighbor of ݕ௡. The dependence 
of the prediction error ݌(݇) on the number of time steps ݇ 
may be divided into three phases [19]. Phase 1 is the 
transient where the neighboring orbit converges to the 
direction corresponding to the largest Lyapunov exponent. 
During phase 2 the distance growths exponentially until it 
exceeds the range of validity of the linear approximation of 
the flow. Then phase 3 begins where the distance increases 
more slowly than exponentially until it decreases again 
because of folding in the state space. In phase 2, a linear 
segment with slope ߣଵ appears in the p(k) vs. k diagram. This 
allows an estimation of the largest Lyapunov exponent ߣଵ 
[22]. Fig. 3 gives an example to determine the largest 
Lyapunov exponent ߣଵ of data by this method [19].  

V. EXPERIMENTS AND RESULTS 
The simulation is implemented in C++ and has been run 

using the Narwhal cluster on the Sharcnet system and 
produced 32500 time steps. The resulting prey/predator 
population has been used as the input data for the Markov 
analysis explained in Section 3. The Markov chain analysis 
is implemented in Matlab 7.1 and is run on the AMD dual 
core processor 3.00 GHz with 3.00 GB RAM. 

The analysis is performed on predator/prey’s population 
starting from time step 10,000. This time was provided to 
ascertain that the simulation reaches its stabilization. The 
smoothing and quantization is performed on each of the prey 
and predator datasets, and 40 smoothed and quantized values 
are obtained. In Fig. 4 the time series analysis for prey 
dynamics is shown. This figure demonstrates the changes in 
the size of population in 10 time steps, in which x-axis 
represents the population value at time t-10, and y-axis 
represents the corresponding change in the size of the 
population at time t. Values between 1 and 40 in prey 
population corresponds to the smoothed and quantized 
values explained in Section 3.C. Specifically values 1 and 40 
are the minimum and maximum values in this dataset, which 
are 44521 and 219007 respectively. Also each unit in y axis 
corresponds to the quantization interval given in the formula 
of Section 3.3, which is 4474 having k as 39.  

As a simple example, consider the minimum value, 1, in 
prey population at time t-10, the changes in the prey 
population at the time t (10 time steps after), according to the 
Fig. 4 is 0 and 1 unites. In other words, if the value of 
smoothed and quantized prey population was 1, then the 
value of smoothed and quantized prey population 10 time 
steps after that would either remain unchanged or increase to 
1 unit. As it can be seen form Fig. 4, prey dynamics has 
many variations around 0, meaning that in many time steps 
prey population size has remained the same in the next 10 
time steps. 

 

 
Figure 3.   Prediction error p for experimental data vs. the number of time 
steps k. the slope of the solid line in the intermediate range of k gives the 

largest Lyapunov exponent ૃ૚ = ૙. ૚૟. 

 
Figure 4.  Time series analysis for prey dynamics 

 
The lines in the graph represent transition between 

successive population states encountered during the 
simulation process. 

Based on the values after preprocessing stage, frequency 
matrices and transition matrices are obtained. Markov runs 
are performed using these transition matrices to estimate the 
prey and predator populations starting with the first 10 
values of the population of prey or predator in the 
simulation. The rest of the population values are estimated 
by applying the Markov run with the transition matrix. The 
Markov run for prey dynamics is shown in Fig. 5.  

By comparing Fig. 4, which is the prey population 
dynamics in the simulation, and Fig. 5, which is the 
estimated prey population given the first 10 values of the 
simulation prey population, two important conclusions can 
be made. As expected the pairs of coordinates in Fig. 5 are 
the subset of pairs of coordinates in Fig. 4 meaning that some 
of the population pairs (population at time t-10 and its 
change at time t) are not generated during this Markov run.  
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Figure 5.  Markov run for prey dynamics 

 
For instance, in Fig. 5, unlike Fig. 4, the pair (5, -2) did 

not appear meaning that if the population size at time t-10 
was 5, the population size at time t would never be 3. 

On the other hand, although the estimated values 
depicted in Fig. 5 are obtained using the transition matrix, 
which is based on the probabilities of values depicted in Fig. 
4, the sequence of estimated values in Fig. 5 are clearly more 
random than the corresponding sequence represented in Fig. 
4. 

Higher order Markov chains are also implemented and 
the results are shown in Fig. 6 and Fig. 7. 

Comparing Fig. 5 to 7 shows that the Markov chain for 
all of the order we have tested, generated prey dynamics that 
are more random than the original simulation prey dynamics. 
Note that although the average probabilities of having a 
certain number in the population size at the next interval 
increase by the order of the Markov chain, the average 
frequencies and zero rows percentage of the transition 
matrices are decreased (see Table 1). This is why the 
difference between different orders of Markov chain runs in 
population dynamics are not significant. A row in transition 
matrix with all zero values, indicate an undefined value for 
the next population interval. This row is created only in the 
2nd or higher order Markov chains because it corresponds to 
the population sequence (sequence of 2 and 3 successive 
population values for 2nd and 3rd order Markov chain 
respectively), which was never appeared in the original 
population time series. 

The same processes have been performed on predator 
time series and similar results have been obtained (Table 1).  

To show the chaotic behavior observed in the population 
of prey and predator time series, the largest Lyapunov 
exponent values after different modifications of dataset are 
computed. In Table 2, the values of the largest Lyapunov 
exponent over simulation’s prey and predator population 
data, smoothed time series and first, second and third order 
of the Markov run for the prey/predator population time 
series are presented. 
 

 
Figure 6.  Second order Markov run for prey dynamics 

 
Figure 7.  Third order Markov run for prey dynamics 

 
The same processes have been performed on predator 

time series and similar results have been obtained (Table 1).  
To show the chaotic behavior observed in the population 

of prey and predator time series, the largest Lyapunov 
exponent values after different modifications of dataset are 
computed. In Table 2, the values of the largest Lyapunov 
exponent over simulation’s prey and predator population 
data, smoothed time series and first, second and third order 
of the Markov run for the prey/predator population time 
series are presented. 

According to Table 2, we can conclude that the 
population time series, which has been produced by the 
simulation, indicate chaotic behavior because the largest 
Lyapunov exponent values for population time series are 
greater than zero. Obviously after the smoothing process, the 
largest Lyapunov exponent value is higher because 
smoothing removes random behavior. As we expected, the 
largest Lyapunov exponent of first, second and third order  
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TABLE I.  DIFFERENCE BETWEEN MARKOV CHAIN ORDER VALUES IN 
TRANSITION MATRIX 

  
Zero Rows 
of Matrix 

Average 
Probability 
of sequence 

Average 
Frequency 

of sequence 

Pr
ey

 

1st-order  
Markov chain 0 0.17 101.67 

2nd-order 
Markov chain 0.14 0.27 27.83 

3rd-order 
Markov chain 0.013 0.37 10.18 

Pr
ed

at
or

 

1st-order 
Markov chain 0 0.14 79.54 

2nd-order 
Markov chain 0.18 0.22 17.28 

3rd-order 
Markov chain 0.021 0.34 5.9 

TABLE II.  LARGEST LYAPUNOV EXPONENT VALUES FOR DIFFERENT 
TIME SERIES 

Data  
(time series) 

Largest Lyapunov 
Exponent for prey 

Largest Lyapunov 
Exponent for predator 

Real data 0.5208 0.4862 
Smoothed 

data 0.5603 0.5132 

1st-order 
Markov chain 0.0117 0 

2nd-order 
Markov chain 0 0 

3rd-order 
Markov chain 0 0 

Markov run for population time series is almost zero due to 
the random behavior of the Markov chain. 

VI. CONCLUSION AND FUTURE WORK 
We have conceived a protocol to evaluate the complexity 

level of our agent-based ecosystem simulation. The 
variations of the time series associated with the ecosystem 
simulation are the results of complex simulation 
mechanisms. To understand how close our system is to the 
random or chaotic processes, we have compared the data 
generated by our system with data generated by a Markov 
chain as a simple process.  

As explained in Section 3, the parameters of the 
corresponding Markov matrix have been learned from the 
data generated by our simulation. Then we used the Markov 
chain to generate data similar to those of the simulation. As 
shown in Section 5 the Markov chain for all of the order we 
have tested, generates prey and predator time series that are 
more random than their counterpart in the original 
simulation.  

We also used the largest Lyapunov exponent to 
determine the chaotic behavior of the simulation. Our 
experiments show that the largest Lyapunov exponent values 
for population time series of both prey and predator are 
positive, indicating a chaotic behavior in our ecosystem 
simulation, which is a good indication of a high complexity 
level. 

As it appears in Section 4, the most prominent candidates 
to characterize chaotic behavior in a system are Fractal 
dimensions and Lyapunov exponents [13]. As the next step, 

Fractal dimensions can also be applied on the time series 
produced by our ecosystem simulation to determine the 
complexity and predictability of the system and measure the 
chaotic behavior. We would like also to analyze other time 
series, depicting variations of other quantities like quantities 
of food or number of species, to have a better understanding 
of the overall complexity of our system.  
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