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Abstract—Recently, the Goodness of Fit Test (GoF) has been
applied for hypothesis testing in the case of spectrum sensing
for Cognitive Radio (CR). GoF sensing has the desirable feature
of needing only a few samples to perform sensing. In this
paper, we first compare the existing GoF sensing methods in
the literature. Secondly, we study some typical impairment for
spectrum sensing, i.e., the effect of a non Gaussian noise, noise
uncertainty and Rayleigh fading channel on the performance
of GoF based sensing. Thirdly, we propose two GoF sensing
methods and compare them against the conventional Anderson
Darling (AD) sensing. The first proposed method is the IQ (In-
phase and Quadrature components) GoF sensing method, which
consists in testing the real and the imaginary part of the received
samples against the Gaussian distribution to make a decision. In
the second method, we propose a new GoF test statistic by taking
into account the physical characteristic of spectrum sensing. The
derived GoF sensing method results in significant improvement
in terms of sensing performance.

Keywords—Cognitive Radio; Spectrum Sensing; Goodness of
Fit test; Test Statistic.

I. INTRODUCTION

Due to the rapid development of wireless communications
services, the requirement of spectrum is growing dramati-
cally. The Federation Communications Commission (FCC)
has stated that some allocated frequency bands are largely
unoccupied (under-utilized) most of the time [1]. Cognitive
Radio has emerged as a novel approach to enable Dynamic
Spectrum Access (DSA) by allowing unlicensed users to
access the under-utilized licensed spectra when/where licensed
Primary Users (PU) are absent and to vacate the spectrum im-
mediately once a PU becomes active without causing harmful
interference [2] [3]. This ability is dependent upon Spectrum
Sensing. Spectrum Sensing is a key component of dynamic
spectrum sensing paradigm to find spectrum opportunities [4].
For practical dynamic spectrum sensing and access, power
detectors are required. Generally, in CR environments, sensing
algorithms are expected to be able to detect the presence of
signals at very low Signal to Noise Ratio (SNR) levels within a
limited observation time. Moreover, it is necessary that they are
robust to practical impairments and parameter uncertainties.
Therefore, spectrum sensing is a difficult task in CR and to
design detection algorithms that are capable to work under
very harsh conditions is of fundamental importance.

Many studies have focused on spectrum sensing algorithms
in literature. The Matched Filter (MF) is considered as the
optimum detector based on the classical detection theory but
it has the disadvantage that it requires the knowledge of the
signal to be detected [5], condition that in general is not
satisfied in cognitive radio applications. The Energy Detector

(ED) is the most used detector when the signal is unknown
[6]. The ED exhibits a low computational complexity and is
widely used because it has a simple implementation. The main
disadvantage of the ED is that it requires knowledge of the
noise power to properly set the threshold. This requirement is
often critical, in particular in low SNR environments, in which
an imperfect knowledge of the noise power can cause severe
performance losses. Moreover, the ED cannot distinguish be-
tween interference and signal [7].

When the signal to be detected has some known character-
istics, the detection of such features is an effective method to
identify such kind of signal. The cyclostationary method can
be an appropriate sensing technique to recognize a particular
transmission and/or extract its parameters [8]. This technique
enables separation between signal and noise components and
it can be adopted for signal classification. This spectrum
sensing method has high computational and implementation
requirements. It is worth to mention that the cyclostationary
method outperforms the ED method if the noise power is
wrongly estimated [9].

To the above mentioned spectrum sensing algorithms, we
can also add other algorithms derived from spectral analysis,
such as: multi-taper spectral analysis [10], wavelet transforms
[11] and filter banks receivers based sensing methods [12].

There are several important characteristics to be considered
in order to decide on a specific sensing method such as : prior
knowledge, sensing time, computational complexity and noise
rejection. To make trade-offs between these different character-
istics, we propose in this paper the study of a spectrum sensing
method based on statistic test ((GoF) test). In literature, many
GoF sensing methods are proposed. The most important ones
are the Anderson-Darling based sensing [13], Kolmogorov-
Smirnov based sensing [14], the Cramer-Von Mises based
sensing [15] and Order Statistics [16]. All these GoF sensing
methods are based on the same hypothesis test, but differ
in the way the distance between the empirical cumulative
distribution of the observations made locally at the CR user
and the noise distribution is calculated. The calculated distance
is compared with a threshold to decide whether the signal
is present or not, given a certain probability of false alarm.
The first GoF sensing was presented in [13]. It is based on
the Anderson-Darling GoF test to decide whether the received
samples are drawn from the noise distribution F0 (Gaussian
distribution) or a different distribution. In [17], the authors
reformulate the AD sensing to a Students t-distribution testing
problem and propose a method which does not require any
knowledge of the transmitted signal. The performance of the
proposed method is better than ED sensing but less than AD
sensing proposed in [13]. Kurtosis GoF sensing is proposed
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in [18] in which the kurtosis is calculated from the absolute
values of the Fast Fourier Transform (FFT) of the received
samples. The value of the kurtosis statistic is then compared
to a predefined threshold to decide about the presence of the
signal. Skewness and Kurtosis GoF sensing, Goodness of fit
High Order Statistic Testing (GHOST) is proposed in [19]. The
method is based on the kurtosis and skewness computed from
the received signal. Jarque-Bera (JB) GoF sensing is presented
in [20]. Moreover, detection methods based on Tietjen-Moore
(TM) and Shapiro-Wilk (SW) tests are proposed to detect and
suppress Spectrum Sensing Data Falsification (SSDF) attacks
by malicious user in cooperative spectrum sensing [21]. Most
of the above methods take a normal noise distribution for the
GoF test, and they all assume that the samples of the received
signal are real valued. As CR is based on the Software Defined
Radio (SDR) technology, the received base-band samples in
the digital domain are complex in nature. Therefore, the most
practical approach to apply the GoF test for spectrum sensing is
to consider the squared magnitude of the complex samples (i.e.,
energy of the samples) and to test their empirical distribution
against the hypothetical noise energy distribution [22]. In [23],
and based on our new model in [22], we have proposed a blind
spectrum sensing method based on GoF test using Likelihood
Ratio (LR). Motivated by its desirable feature of needing only
a few samples to perform sensing, in [24], the narrowband
spectrum sensing based on GoF is used for a Nyquist wide-
band sensing also known as a conventional wide-band sensing.
Besides, we have studied in [25] the GoF sensing methods
under noise uncertainty.

In this paper, we propose a new GoF based spectrum for
cognitive radio. The first proposed method is the IQ GoF
sensing method, which consists in testing the real and the
imaginary part of the received samples against the Gaussian
distribution to make a decision. In the second method, we
propose a new GoF test statistic by taking into account
the physical characteristics of spectrum sensing. Besides, we
evaluate the GoF based sensing methods under some typical
impairment such as the effect of a non Gaussian noise, noise
uncertainty and Rayleigh channel.

The paper is organized as follows. In Section II, we explain
the Goodness of Fit tests and we mention the most important
among them. We present some existing GoF sensing methods
and compare their detection performances in Section III. In
Section IV, the GoF based spectrum sensing is investigated
under non Gaussian noise, noise uncertainty and Rayleigh
channel. In Section V, two new spectrum sensing methods are
proposed and evaluated. We conclude this paper in Section VI.

II. GOODNESS OF FIT TESTS

GoF tests were proposed in mathematical statistics by
measuring a distance between the empirical distribution of
the observation made and the assumption distribution. In CR,
GoF sensing is used to solve a binary detection problem and
to decide whether the received samples are drawn from a
distribution with a Cumulative Distribution Function (CDF)
F0, representing the noise distribution, or they are drawn from
some distribution different from the noise distribution. The
hypothesis to be tested can be formulated as follows:

H0 : Fn(x) = F0(x)

H1 : Fn(x) 6= F0(x),
(1)

for a random set of n independent and identically distributed
observations and where Fn(x) is the empirical CDF of the
received sample and can be calculated by:

Fn(x) = |{i : xi ≤ x, 1 ≤ i ≤ n}/n|, (2)

where | • | indicates cardinality, x1 ≤ x2 ≤ .... ≤ xn are
the samples under test and n represents the total number of
samples.

Many goodness of fit tests are proposed in literature. The
most important ones are the Kolmogorov- Smirnov test [14],
the Cramer-von Mises test [15], the Shapiro-Wilk [21] test and
the Anderson-Darling test [13]. In the following, we briefly
recall these GoF tests.
A. Kolmogorov- Smirnov test (KS test): In this test, the

distance between Fn(x) and F0(x) is given by:

Dn = max|Fn(x)− F0(x)|, (3)

where Fn(x) is the empirical distribution which is defined in
(2). If the samples under test are coming from F0(x), then,
Dn converges to 0.
B. Cramer-Von Mises (CM test): In this test, the distance

between Fn(x) and F0(x) is defined as:

T 2
n =

∞∫
−∞

[Fn(x)− F0(x)]2 dF0(x). (4)

By breaking the integral in (4) into n parts, T 2
n can be writen

as:

T 2
n =

n∑
i=1

[zi − (2i− 1)/2n]2 + (1/12n), (5)

with zi = F0(xi)
C. Anderson-Darling test (AD test): This test can be considered

as a weighted Cramer-Von Mises test where the distance
between Fn(x) and F0(x) is given by:

A2
n =

∞∫
−∞

[Fn(x)− F0(x)]2
dF0(x)

F0(x)(1− F0(x))
. (6)

The expression of A2
n can also be simplified to:

A2
n = −n−

n∑
i=1

(2i− 1)(ln zi + ln(1− z(n+1−i)))

n
, (7)

with zi = F0(xi).

III. GOF SENSING METHODS

We formulate the spectrum sensing problem as a binary
hypothesis testing problem as follows:

H0 : Xi = Wi

H1 : Xi = Si +Wi,
(8)

where Si are the received complex samples of the transmitted
signal and Wi is the complex Gaussian noise. We now consider
the random variable Yi = |Xi|2 which corresponds to the
received energy. It is known that, if the real and the imaginary
part of Xi are normally distributed, which is the case under H0
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hypothesis, the variable Yi = |Xi|2 is chi-squared distributed
with 2 degrees of freedom.

As mentioned before, we will consider a normal noise,
in order to be able to compare the different GoF sensing
methods. This assumption is not limiting. The performance
of the GoF sensing is independent of the noise distribution, as
the distribution of GoF test statistic (A2

n, T 2
n , Dn, .. ) under

H0 is independent of the F0(y) [26] [27].
The spectrum sensing problem can now be reformulated

as a hypothesis represented in (8) where we test whether the
received energy Yi = |Xi|2 samples are drawn from a chi-
square distribution with 2 degrees of freedom or not. The CDF
of the chi-square distribution is given by:

F0(y) = 1− e−y/2σ
2
n

m−1∑
k=0

1

k!
(
y

2σ2
n

)k, y > 0, (9)

where m is the degree of freedom (in our case m = 1) and
σ2
n is the noise power.

In summary, GoF sensing methods follow these steps:

Step1 From the complex received samples Xi, calculate the
energy samples Yi = |Xi|2

Step2 Sort the sequence {Yi} in increasing order such as
Y1 ≤ Y2 ≤ · · · ≤ Yn

Step3 Calculate the GoF test statistic T ∗ , with F0 given in
(9).
use (3) for KS GoF sensing
use (5) for CM GoF sensing
use (7) for AD GoF sensing

Step4 Find the threshold λ for a given probability of false
alarm such that:

Pfa = P{T ∗ > λ|H0}. (10)

Step5 Accept the null hypothesis H0 if T ∗ ≤ λ, where T ∗
is the GoF test statistic (KS, CM or AD) . Otherwise,
reject H0 in favor of the presence of the signal.

The value of λ is determined for a specific value of Pfa.
Tables listing values of λ corresponding to different false alarm
probabilities Pfa are given according to the test considered
[26]. Otherwise, these values can be computed by Monte Carlo
approach [23] [25].

A. Performance comparison of existing GoF sensing methods

In this subsection, we will analyze and compare the per-
formance of existing GoF sensing methods.

Thereafter, simulation results are presented to show the
sensing performance of various GoF sensing methods com-
pared to the conventional ED sensing. In Fig. 1, we show
the ROC (Receiver Operating Characteristic) curves of GoF
sensing methods (AD, CM and KS) and ED sensing for a
fixed number of 80 samples and a given SNR equal to -6 dB.
It is clear that ED sensing outperforms the considered GoF
sensing methods. Likewise, AD sensing is the best among the
considered GoF sensing methods. This is indeed confirmed in
the simulation results as shown in Fig.2, where the detection
probability versus SNR is plotted for a fixed number of 80
samples and at given false alarm probability Pfa = 0.05. ED
sensing has better performance than the three GoF sensing
methods. To achieve 90 % of detection probability, ED sens-
ing outperforms AD sensing by about 1 dB, and AD sensing
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Figure 1. Detection probability versus false alarm probability of various
GOF test based sensing at SNR = −6dB and n = 80 samples
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Figure 2. Detection probability versus SNR for different GOF tests based
sensing with Pfa = 0.05 and n = 80 samples

presents a slight difference in gain compared to CM sensing
and KS sensing of about 0.2 dB and 0.5 dB respectively.

IV. GOF SENSING UNDER NON GAUSSIAN NOISE, NOISE
UNCERTAINTY AND RAYLEIGH CHANNEL

Although, its nice feature that it only needs a few samples
to perform sensing, we have seen in the previous section
that the conventional Energy Detection still outperforms the
GoF based sensing (when considering a normal distribution of
noise). However, the GoF sensing methods have the merit to
be resistant to different impairments. This point is studied in
this section.

A. Impact of a non Gaussian noise (GM Model)

It is worth to mention that the existing works on GoF
for spectrum sensing [13] [15] [16] and [17] are focusing on
detecting a signal in white Gaussian noise. In this paper, we
will also focus on detecting signals in white non-Gaussian
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Figure 3. probability distribution function (pdf) of GM noise α = 0.9,
β = 5 and σ = 1

noise. In literature, a lot of models are proposed to pattern
a non Gaussian noise. The most used models are the Gaussian
Mixture model (GM) and the Generalized Gaussian model
(GG). For our spectrum sensing model, we will work with the
GM model [28], as it has been used in practical applications
in [30] and in radio signal detection applications in [31]. To
apply the GoF test for spectrum sensing, we need to know the
CDF of the non Gaussian noise (GM CDF). The Probability
Density Function (PDF) of GM noise has three parameters α
,β , and σ and is defined as [31]:

fw(w) =
c

σ
√

2Π
[αexp(−c

2w2

2σ2
) +

1− α
β

exp(− c2w2

2σ2β2
)]

(11)

where c =
√
α+ (1− α)β2

In Fig. 3, we depict a PDF of a white non Gaussian
noise (GM) with the following selected parameters α = 0.9,
β = 5 and σ = 1. The methodology explaining how the GM
parameters may be estimated can be found in [29]. The CDF
F0 of the energy of the non-Gaussian noise samples under H0

hypothesis can be derived from the GM’s PDF. For that, we
have: if Y = X2 and X is GM noise with CDF FX(x)

F0(y) = P (Y ≤ y) = P (−√y ≤ X ≤ √y)

= FX(
√
y)− FX(−√y)

(12)

Once we get the CDF of the non Gaussian noise, we
apply the proposed algorithm in section III. Note that the
knowledge of F0 is required to apply the GoF test, therefore,
if the parameters of the GM model are unknown, they must
be estimated first.

To evaluate the effect of a non Gaussian noise on the
sensing performance, we have performed simulations with the
selected GM noise. We set the parameters of the non Gaussian
noise as: α = 0.9, β = 5 and σ = 1. Fig. 4 presents the
results of the AD GoF sensing under Gaussian noise and non
Gaussian noise. It is shown that the effect of considering a
non Gaussian noise is to slightly decrease the performance of
the AD GoF sensing. However, it can be seen in Fig. 5 that
the performance of the ED is significantly influenced by the
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Figure 4. Detection probability versus SNR under Gaussian and non
Gaussian noise for AD-GoF, with Pfa = 0.05 and n = 80 samples
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Figure 5. Detection probability versus SNR under Gaussian and non
Gaussian noise for ED, with Pfa = 0.05 and n = 80 samples

considered non Gaussian noise. It has to be noted that the
considered non Gaussian noise (α = 0.9, β = 5 and σ = 1) is
very unfavorable for ED. In order to obtain a Pfa = 0.05, the
threshold λ in the binary hypothesis test needs to be shifted to
the right at a certain level. GoF sensing is less affected by the
non Gaussian noise, as the test is performed on the mismatch
between the measured CDF and the reference CDF F0.

B. Impact of a noise uncertainty

One of the main issues with ED is the impact of noise
uncertainty on the detection performance. It is shown in [33]
and [32] that ED is very sensitive to noise uncertainty. The aim
of this subsection it to study the effect of noise uncertainty on
GoF sensing methods compared to ED.

Through simulation, we have compared the impact of noise
uncertainty on both methods, ED based spectrum sensing and
GoF sensing. The noise uncertainty is modeled by letting
the actual noise variance be limited within a set given by a
nominal noise variance and an uncertainty parameter ρ such
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Figure 6. Impact of noise uncertainty on ED with Pfa = 0.05 and n = 80
samples

that σ2
n ∈ [ 1ρσ

2, ρσ2].
There is a fundamental difference between ED and GoF

sensing when it comes to noise uncertainty. The energy de-
tector suffers under noise uncertainty because computing the
threshold λ for the binary test requires knowledge of the
underlying noise variance. In order to guarantee a given false
alarm rate Pfa, the threshold λ will be calculated for the worst
case, i.e., a noise variance of ρσ2, leading to higher values of
λ and hence to a decrease in detection probability.

In GoF sensing, the distribution of the test statistic A2
n un-

der the H0 hypothesis is independent of the noise distribution.
As a consequence, the value of the threshold λ for the GOF
binary test will not be influenced by the noise uncertainty.
However, the calculation of the test statistic (A2

n) requires
the exact knowledge of the underlying theoretical noise CDF
F0. In summary, for GoF sensing, noise uncertainty will, via
F0, indirectly affect the value of the test statistic, but not the
detection threshold. For the simulation of the GoF sensing
under noise uncertainty, we will also follow a worst case
approach, by considering a reference noise CDF F0 given
in (9) based on the highest noise variance ρσ2, which will
eventually lead to a reduction of the detection probability.

In Fig. 6, we have plotted the detection probability versus
SNR for several values of noise uncertainty (0 dB, 0.5 dB, 2
dB, 4 dB) in the case of the ED spectrum sensing method.
It is shown that the performance of the ED is significantly
decreasing when the noise uncertainty level is increasing. At
80 % of detection probability, due to noise uncertainty of 0.5
dB, the SNR drops to about 2 dB.

In a similar way, in Fig. 7, we have plotted the detection
probability as a function of SNR when considering a noise
uncertainty for GoF based spectrum sensing. It can be seen
that under uncertainty in the noise statistic of the CDF under
hypothesis H0 (F0), the impact on the performance of the GoF
based spectrum sensing is significantly less than the impact on
energy detection. Intuitively, this can be explained by the fact
that in ED, the values of Pfa and Pd are directly affected by
the noise uncertainty. In case of GoF based sensing the statistic
such as: A2

n, is indirectly affected by the noise uncertainty via
the CDF F0 under hypothesis H0.
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Figure 7. Impact of noise uncertainty on GoF test based sensing with
Pfa = 0.05 and n = 50 samples

Note also that, in Fig. 6, for high values of noise uncer-
tainty, the Pd drops to 0. This effect is known as the SNR
wall [33]. This effect is not observed in GoF based spectrum
sensing for the given simulation parameters.

C. Impact of a Rayleigh fading channel

Under fading, the value of SNR may vary. In this case, the
probability of detection must be given for the instantaneous
SNR. This means that the resulting probability of detection
may be derived by averaging over the fading statistics. Under
Rayleigh fading, SNR has an exponential distribution [34].

In Fig. 8, we provide a plot of the ROC curve, under
AWGN (Additive White Gaussian Noise) and Rayleigh fading
scenarios. SNRavg (the average over SNR values) and n are
assumed to be -5 dB and 60 samples, respectively. It is shown
that Rayleigh fading significantly degrades the performance of
the energy detector.

To evaluate the impact of Rayleigh channel on GoF sensing
methods, we have plotted in Fig. 9, the detection probability
versus SNRavg under AWGN and Rayleigh fading channel
for AD GoF sensing with Pfa fixed to 0.05 and n = 80
samples. According to Fig. 9, it can be observed that the effect
of considering a Rayleigh fading channel has a slight decrease
in the performance of the AD GoF sensing.

V. NEW GOF SPECTRUM SENSING METHODS

A. IQ GoF based spectrum sensing

We have proposed in [22] to calculate the energy samples
Yi = |Xi|2, and then test the sequence Yi against the chi-square
distribution to determine if there exits a primary signal.

However, we could also form another sequence from
the same observed complex samples by using its real and
imaginary part, i.e.,(Re(Xi), Im(Xi)) and then test it against
the Gaussian distribution to make a decision. The authors in
[13] have considered a model (the received signal is real and
Si = constant) which does not reflect a realistic scenario for
spectrum sensing in cognitive radio, as normally the received
signal is complex and varies in time. Compared to the proposed
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Figure 8. ROC curves for the energy detection under AWGN and Rayleigh
fading channels
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Figure 9. Detection probability versus SNRavg under AWGN and Rayleigh
fading channels for AD-GoF sensing, with Pfa = 0.05 and n = 80

samples

method in [13], we proposed in this method to start from the
more general model as in (8) and test the IQ samples against
the Gaussian distribution to make a decision.

In summary, the proposed IQ GoF sensing methods follow
these steps:

Step1 From the complex received samples Xi, separate the
Xi to (Re(Xi), Im(Xi)).

Step2 Sort the sequence {Re(Xi)} in increasing order such
as Re(X1) ≤ Re(X2) ≤ · · · ≤ Re(Xn). Perform the
same thing for Im(Xi).

Step3 Calculate the GoF test statistic using (7) for AD GoF
sensing , with F0 given in (9). We use the function
’Adtest’ of Matlab, which combines the GoF from
both real and imaginary parts, into a single GoF.

Step4 Find the threshold λ for a given probability of false
alarm such that:

Pfa = P{T ∗ > λ|H0}. (13)

Pf ( false alarm probability )
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Figure 10. Detection probability versus false alarm probability with
SNR = −6 dB
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Figure 11. Detection probability versus SNR with Pfa = 0.05

Step5 Accept the null hypothesis H0 if T ∗ ≤ λ, where T ∗
is the GoF test statistic (KS, CM or AD) . Otherwise,
reject H0 in favour of the presence of the signal.

The value of λ is determined for a specific value of Pfa.
Tables listing values of λ corresponding to different false alarm
probabilities Pfa are given according to the test considered
[26]. Otherwise, these values can be computed by Monte Carlo
approach.

The simulation results when n = 20 samples are displayed
in Fig. 10 and Fig. 11. In both figures, ’IQ-GoF’ denotes our
proposed method and AD-GoF denotes the method proposed
in [22]. The simulation results are obtained via 10000 Monte
Carlo runs. Fig.10 shows the receiver operating characteristic
(ROC) curves (detection probability against false alarm prob-
ability) with a SNR equal to -6 dB and the values of the
detection probability against SNR are plotted in Fig. 11 with
false alarm probability (Pf ) set to 0.05. Both figures indicate
that the proposed sensing method is more efficient compared
to the conventional Energy Detection.
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B. Spectrum sensing method based on the new GoF statistic
test

The aforementioned GoF tests use the statistical hypothesis
testing in (1) (which means testing the hypothesis H0). How-
ever, in the H1 hypothesis, it can be noted that the overall
power of the received signal should always be larger than the
noise power, as noise and signal are uncorrelated. This results
in having a cumulative distribution function under hypothesis
H1 on the right of the cumulative distribution function of the
noise, meaning that the area above the expected continuous
CDF of the random variable (energy of samples in our case)
will also increase. The above finding is based on the property
of the expected value of a non-negative random variable.

E[X] =

∞∫
0

(1− FX(x))dx (14)

In our sensing model as in [22], the received energy Yi =
|Xi|2 is a non negative random variable and equation (14)
is applicable. As the received signal {Xi} has zero means,
E[Y ] = E[|Xi|2] = σ2

X . Hence, we find

σ2
X =

∞∫
0

(1− FY (x))dx (15)

In other words, the received signal power equals the area
of the region lying above the CDF FY (x) and below the line
at height 1 to the right of the origin. Under H0 hypothesis,
this means that the area above F0 equals the noise power σ2

w
as depicted in Fig. 12. Under H1 hypothesis, the total power
in the received signal will increase to σ2

s + σ2
w, meaning that

the area above the expected continuous CDF of the random
variable Yi will also increase, shifting this CDF to the right.
Therefore, the statistical hypothesis comes down to test one of
the following inequalities:

H0 : Fn(y) ≥ Fo(y)

H1 : Fn(y) < Fo(y)
(16)

The problem with the AD test (and also with the Von
Mises test) is that the deviation of the empirical CDF Fn(x)

to the reference CDF F0(x) can be either to the left and to
the right as the test is based on the square of the difference
[Fn(x) − F0(x)]2. For spectrum sensing application, the sign
of the difference is significant for the reason cited above.
Therefore, the associated expression of the GoF test statistic
can be given as:

Sn = n

+∞∫
−∞

[F0(y)− Fn(y)]φ(F0(y))dF0(y). (17)

According to the choice of the weight function φ(t), we
can derive the corresponding test statistic of the statistical
hypothesis in (16). When φ(t) = 1, the above equation (17)
can be simplified as

Sn = n

+∞∫
−∞

[F0(y)− Fn(y)]dF0(y)

= n

y1∫
−∞

F0(y)dF0(y)

+ ...

+ n

+∞∫
y(n)

(F0(y)− 1)dF0(y)

= −n
2

+

n∑
i=1

((F0(y))

= −n
2

+

n∑
i=1

(zi)

(18)

When φ(t) =
1

t(1− t)
, the above equation (17) can be

simplified as

Sn = n

+∞∫
−∞

[F0(y)− Fn(y)]φ(F0(y))dF0(y)

= n

y1∫
−∞

F0(y)

F0(y)(1− F0(y))
dF0(y)

+ ...

+ n

+∞∫
y(n)

F0(y)− 1

F0(y)(1− F0(y))
dF0(y)

= −
n∑
i=1

(ln(1− F0(y))− ln(F0(y)))

= −
n∑
i=1

(ln(1− zi)− ln(zi))

(19)
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Figure 13. Detection probability versus SNR for the proposed GoF sensing
under different weights, with Pfa = 0.05 and n=80 samples

When φ(t) =
1

(1− t)
, the above equation (17) can be

simplified as:

Sn = n

+∞∫
−∞

[F0(y)− Fn(y)]φ(F0(y))dF0(y)

= n

y1∫
−∞

F0(y)

(1− F0(y))
dF0(y)

+ ...

+ n

+∞∫
y(n)

F0(y)− 1

(1− F0(y))
dF0(y)

= −n−
n∑
i=1

ln(1− F0(y))

= −n−
n∑
i=1

ln(1− zi)

(20)

Once the test Sn is calculated, it will be compared with a
decision threshold λ to decide whether to accept H1 or reject
it (accept H0). The threshold λ can be determined according
to the given value of the false alarm probability. The decision
threshold λ is computed through Monte Carlo simulation.

In Fig. 13, the performance comparison between the new
GoF sensing method, AD GoF sensing [22] and ED sensing
is depicted. This figure shows detection performance in terms
of detection probability as a function of SNR with n = 80
and Pfa = 0.05 for different weights. The new GoF sensing
method outperforms the AD sensing method. The best perfor-
mance is obtained with weight φ = 1

1−t corresponding to (20)
which has comparable detection performance with ED sensing.
Table I gives a corresponding λ for some critical values of
Pfa.

The simulations results show that the new GoF sensing
method has the best performance and the lowest computational
complexity.

TABLE I. THRESHOLD VALUES FOR SOME GIVEN Pfa AND n = 80
SAMPLES

φ = 1
Pfa 0.1 0.05 0.01

Threshold 3.536 4.480 6.295

φ = 1
t(1−t)

Pfa 0.1 0.05 0.01
Threshold 21.875 28.165 39.484

φ = 1
1−t

Pfa 0.1 0.05 0.01
Threshold 12.522 16.136 23.928

VI. CONCLUSION

In this paper, we present GoF sensing methods for CR. The
paper has firstly provided a comparative study among existing
GoF sensing methods. We have evaluated the performance of
the GoF sensing methods through Monte-Carlo simulation. We
have secondly studied some typical impairment for spectrum
sensing, i.e., the effect of a non Gaussian noise, noise uncer-
tainty and Rayleigh fading channel on the performance of GoF
based sensing. As a model for the non Gaussian noise, we have
used the Gaussian mixture (GM). It was observed that a non
Gaussian noise can noticeably affect the performance of ED,
but has only a limited influence on the performance of the
GoF sensing methods. The same conclusion can be drawn for
the impact of noise uncertainty and Rayleigh fading channel.
This is mainly due to the fact that the test statistics in GoF
testing is based on the difference of the measured CDF and the
reference CDF and hence only indirectly influenced by noise
parameters. Thirdly, we have proposed two new methods for
GoF sensing. The first proposed method is the IQ GoF sensing
method which consists in testing the real and the imaginary
part of the received samples against the Gaussian distribution
to make a decision. It was shown that this method exhibits
better performance compared to ED. In the second method,
we propose a new GoF test statistic by taking into account the
physical characteristics of spectrum sensing. The derived GoF
sensing method results in significant improvement in terms
of sensing performance. Finally, this paper has shown the
effectiveness of the GoF sensing methods in cognitive radio
applications.
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