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Abstract—In cognitive radio (CR) networks, the knowledge
of primary user (PU) traffic plays a crucial role in designing
the sensing slot duration and synchronization with PU traffic.
However, the secondary user (SU) sensing unit usually does not
have the knowledge of the exact time slot structure in the primary
network. Moreover, it is also possible that the communication
among PUs are not based on synchronous schemes at all. In
this paper, the effect of unknown primary user (PU) traffic on
the performance of multi-antenna spectrum sensing is evaluated
under a flat fading channel. In contrast to the commonly used
continuous time Markov model of the existing literature, a
realistic and simple PU traffic model is proposed which is based
only on the discrete time distribution of PU free and busy periods.
Furthermore, in order to assess the effect of PU traffic on the
detection performance, analytical expressions for the probability
density functions of the decision statistic are derived considering
Energy Detection (ED) test as spectrum sensing method. It is
shown that the time varying PU traffic severely affects the
spectrum sensing performance. Most importantly, our results
show that the performance gain due to multiple antennas in the
sensing unit is significantly reduced by the effect of PU traffic
when the mean lengths of free and busy periods are of the same
order of magnitude of the sensing slot.

Index Terms—Energy Detection, Unknown Primary Traffic,
Spectrum Sensing, Cognitive Radio

I. INTRODUCTION

By accessing the unoccupied spectrum of licensed band,
cognitive radio (CR) based dynamic spectrum sharing (DSS)
is initially intended to alleviate the most challenging problems
of future wireless communications, namely, spectrum scarcity.
With real-time perception of surroundings and bandwidth
availability and with the help of spectrum sensing functionality
of CR, secondary users (unlicensed users) may dynamically
use the vacant spectrum and perform opportunistic transmis-
sions, by adapting the functionality intelligently to accommo-
date current wireless environments [1]. Thus, the domain of
spectrum sensing techniques has long been investigated by
many researchers: a detailed bibliography of the contributions
in this area can be found in [2], [3]. Despite the significant
volume of available literature on spectrum sensing under
ideal scenarios, investigation under practical constraints and
imperfections are still lacking [3]. Thus, recent research efforts
are devoted to improve the accuracy and efficiency of sensing
techniques under practical constraints and imperfections.

Currently, most of the existing research on cognitive radio
spectrum sensing has been conducted based on the assumption

that SUs are perfectly synchronized with PUs, thus providing
a solid basis for guaranteeing that PU traffic transitions occur
only at the beginning of the SU sensing frames. However,
the SUs may not have the knowledge of the exact time
slot structure in the primary network. Moreover, it is also
possible that the communications among PUs are not based
on synchronous schemes at all [5], [6]. Thus, under practical
scenarios, the primary traffic transition may occur during the
sensing period, especially when a long sensing period is used
to achieve a good sensing performance, or when spectrum
sensing is performed for a network with high traffic load.

Among a limited number of literature including [9]–[14]
that deal with unknown primary traffic scenario, [9] was the
first one to study the performance of well known semi-blind
spectrum sensing algorithms including Energy Detection (ED)
and Roy’s Largest Root Test (RLRT) under bursty primary
traffic, in which the burst interval is comparable to or smaller
than the spectrum sensing interval. The traffic model used
is limited to constant length bursts of the PU data, whose
length is smaller than the SU sensing duration. However, the
burst length of the PU may be varying with time following
some stochastic models [7], [8]. A more general scenario, in
which the PUs traffic transition is completely random, may
affect the spectrum sensing performance. The analysis of the
spectrum sensing performance has been presented in [11]–[14]
by modeling the PU traffic as an independent and identically
distributed two state Markov’s model. Using this primary traf-
fic model, authors in [11], [13], [14] analyzed the effect of PU
traffic on the sensing performance and the sensing-throughput
trade-off considering ED as a sensing technique under the half
duplex scenario. Moreover, the effect of multiple PUs traffic
on the sensing-throughput trade-off of the secondary system
has been studied in [12]. Although all the aforementioned
contributions recognized the fact that the PU traffic might
affect the sensing performance including sensing-throughput
trade-off, none of them considered the realistic scenario of
multi-antenna spectrum sensing in a complex signal sample
domain.

In this paper, the effect of PU traffic on the performance
of multi-antenna spectrum sensing is evaluated under the
complex domain of PU signal, noise and channel considering
ED as a sensing technique. In contrast to the commonly used
continuous time Markov model in the existing literature, a

15Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-456-5

COCORA 2016 : The Sixth International Conference on Advances in Cognitive Radio



novel technique of modeling PU traffic is proposed which is
only based on the discrete time distribution of PU free and
busy periods. The proposed model is more realistic and simple
compared to the continuous time Markov model proposed
in the previous literature [11]–[14]. Moreover, an analytical
performance evaluation of the decision statistic under the
considered scenario is carried out. It is shown that the time
varying PU traffic severely affects the performance of ED.
More importantly, it is shown that the performance gain
due to multiple antennas in the sensing unit is significantly
suppressed by the effect of PU traffic when the mean lengths
of free and busy periods are small.

The rest of the paper is organized as follows: A system
model is presented in Section II. Simple characterization of
the PU traffic model is described in Section III. The sensing
performance is derived in Section IV. The simulation results
are discussed in Section V and finally, the conclusion in
Section VI.

II. SYSTEM MODEL

We consider a scenario where multiple antennas are em-
ployed by an SU. Suppose the SU has K antennas and each
antenna receives N samples in each sensing slot. We focus on
a single source scenario (single primary transmitter), which
is of particular interest in many detection problems in CRNs.
In a given sensing frame, the detector calculates its decision
statistic TD by collecting N samples from each one of the K
antennas. Subsequently, the received samples are stored by the
detector in the K ×N matrix Y .

As described in Section I, when the primary transmissions
are not based on some synchronous schemes or the sensing
unit at the SU does not have any information about the
primary traffic structure, the received vector at the sensing
unit may consist of partly the samples from one PU state and
the remaining from alternate PU state as shown in Figure
1. To simplify the scenario, we begin with the following
classification of the sensing slots based on the PU traffic status,

1) Steady State (SS) sensing slot: In such type of sensing
slot, all the received samples in one sensing slot are
obtained from the same PU state.

2) Transient State (TS) sensing slot: In such type of sensing
slot, a part of the received samples within the sensing
slot are obtained from one PU state and the remaining
from the next PU state.

In general, the probabilities of receiving SS and TS sensing
slots are dependent on the PUs traffic model. At the end of the
sensing interval, based on the received samples, the detector
must distinguish between null and alternate hypothesis.

H0: the channel is going to be free,
H1: the channel is going to be busy.

This hypothesis formulation implies that in a TS sensing
slot, a transition from the PU busy state to the PU free state
is considered H0, while a transition from the PU free state to
the PU busy state is considered H1.

In the considered scenario, in an SS sensing interval, the
generic received signal matrix under each hypothesis can be
written as,

YSS =

{
V (H0),
hs+ V (H1),

(1)

where V , [v(1) · · ·v(n) · · ·v(N)] is the K × N noise
matrix , h = [h1 · · ·hK ]T is the channel vector and
s , [s(1) · · · s(n) · · · s(N)] is a 1×N signal vector.

And in the TS sensing interval, the generic received signal
matrix under each hypothesis can be written as,

YTS =

{
hsN−D0 + V (H0),
hsD1 + V (H1),

(2)

where D0 represents the number of pure noise samples
in TS sensing slot under H0, D1 represents the number of
noise plus PU signal samples in TS sensing slot under H1,
sD0

, [s1×(N−D0)|01×D0
] with s1×(N−D0) a 1× (N −D0)

signal vector and 01×D0
a 1 × D0 zero vector. Similarly,

sD1
, [01×(N−D1)|s1×(D1)] with 01×(N−D1) a 1×(N−D1)

zero vector and s1×D1
a 1×D1 signal vector. In each of these,

the unknown primary transmitted signal s(n) at time instant
n is modeled as independent and identically distributed (i.i.d.)
complex Gaussian with zero mean and variance σ2

s : s(n) ∼
NC(0, σ

2
s). The noise sample vk(n) at the kth antenna of the

SU at the time instant n is also modeled as complex Gaussian
with mean zero and variance σ2

v : vk(n) ∼ NC(0, σ
2
v). The

channel coefficient hk of kth antenna is assumed to be constant
and memory-less during the sensing interval.

III. CHARACTERIZATION OF PRIMARY USER TRAFFIC

In this paper, the PU traffic is modeled as an i.i.d. on-
off random process with geometrically distributed busy and
free periods. To be in-line with the binary hypothesis testing
of a spectrum sensing problem, a two state on-off modeling
of the PU traffic is rather realistic especially when we are
more concerned only about if the PU is transmitting or not.
Furthermore, we are actually dealing with the discrete set of
samples with a fixed sensing interval, thus the geometrically
distributed busy and free periods are perfectly relevant in our
considered scenario.

Let Nb be the geometrically distributed random variable
denoting the number of consecutive busy samples with a
parameter pb. Similarly, let Nf be another identical and in-
dependent geometrically distributed random variable denoting
the number of consecutive free samples with a parameter pf .
Then, the probability mass function (pmf) for each of them
can be written as,

fNb(Nb = nb) = (1− pb)nb−1pb, for nb = 1, 2, ..,∞ (3)

fNf (Nf = nf ) = (1− pf )nf−1pf , for nf = 1, 2, ..,∞ (4)

In the TS sensing slot, depending on the length of the free
period or the busy period, the PU state can change anywhere
within the sensing slot resulting the random variables (RVs)
D0 and D1. For instance, suppose the PU is previously in
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Fig. 1. Primary user traffic scenario and sensing slot classification

the busy state. The PU state transition from busy to the free
state may occur anywhere, let’s say after (N −D0) samples
within the sensing slot. Thus, in each PU state transition from
busy state to free state, the sensing unit has to decide based
on D0 pure noise samples and (N −D0) noise plus primary
signal samples, which actually affects the overall sensing
performance. The following Lemmas compute the pmfs of
D0 and D1 respectively, based on the distribution of the busy
period Nb, free period Nf and the sensing length N .

Lemma 1. Given the number of samples in a sensing duration
N , the length of PU busy period Nb distributed as in (4), the
probability of having D0 noise only (PU signal free) samples
in a TS sensing slot under H0 is given by,

PD0(D0 = d0)|H0 =
pb(1− pb)N−d0−1

1− (1− pb)N
. (5)

Proof. As mentioned earlier during binary hypothesis formu-
lation, the PU state transition from busy state to the free state
corresponds to H0 sensing slot. We consider thus, without loss
of generality, while dealing TS sensing slot underH0, PU state
transition from busy to free state depends only on PU busy
period Nb. Thus, for given Nb, the additional number of noise
only samples D0 which is required to complete a TS sensing
slot under H0 is given by,

D0 =

⌈
Nb
N

⌉
N −Nb. (6)

Using the pmf of Nb, the probability of D0 can be written
as,

PD0 = pb(1− pb)aN−D0−1, (7)

where a =
⌈
Nf

N

⌉
. Now, from (6) and (7), it is clear that D0

can be obtained from many different values of Nb. To be more
precise, we obtain D0 for all Nb such that Nb = aN − D0.
Thus, in order to evaluate the pmf of D0, we need to sum
the probability of occurrence of all the instances of Nb, i.e.,
Nb = aN −D0, obtaining

PD0(D0 = d0) =

+∞∑
a=1

pb(1− pb)aN−d0−1. (8)

After some algebra and the truncation of infinite sum of
geometric series, we obtain the pmf of D0 as in (5).

Lemma 2. Given the number of samples in a sensing duration
N , the length of PU free period Nf distributed as in (3), the
probability of having D1 noise plus primary signal samples in
a TS sensing slot under H1 is given by,

PD1(D1 = d1)|H1 =
pf (1− pf )N−d1−1

1− (1− pf )N
(9)

Proof. Using the same line of reasoning as in the proof of
Lemma 1, the proof of Lemma 2 is straightforward.

As depicted from (1) and (2), to find the distribution of the
decision statistic under different hypotheses, the prior deduc-
tion of the chances of occurrence of SS sensing interval, TS
sensing interval, pmf of D0 and pmf of D1 is inevitable. The
following proposition computes the probability of occurrence
of SS sensing slot pSS |H0 under H0 and the probability of
occurrence of TS sensing slot is normally the complementary
of pSS |H0

, i.e., pTS |H0
= 1− pSS |H0

.

Proposition 1. Given the sample length of a sensing interval
N , the length of PU free period Nf distributed as in (3), the
probability of receiving SS sensing slot under H0 is given by,

pSS |H0 =

∑+∞
s0=0 s0P (s0)∑+∞

s0=0(s0 + 1)P (s0)
, (10)

where P (s0) =
[
(1− pf )s0N−1 − (1− pf )N(s0+1)−1].

Proof. Under H0, the probability of receiving s0 number of
SS sensing slot is given by,

P (s0) = P (s0N ≤ Nf < (s0 + 1)N)

= FNf (N(s0 + 1)− 1)− FNF (Ns0 − 1)

=
[
(1− pf )s0N−1 − (1− pf )N(s0+1)−1

]
, (11)

where FNf
(·) denotes the Cumulative Distribution Function

(CDF) of Nf .
For each free period Nf , there occurs one TS sensing slot

unless the free period Nf is a perfect multiple of the sensing
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period N . Thus, the probability of receiving an SS sensing
slot can be written as the ratio of the average number of SS
sensing slot that can be received for a given distribution of
Nf to the total number of sensing slots under consideration,

pSS |H0 =

∑+∞
s0=0 s0P (s0)∑+∞

s0=0(s0 + 1)P (s0)−
∑+∞
m=1 pNf (NF = mN)

.

(12)

Since the second summation in the denominator of (12)
is negligibly small compared to the first summation, we can
neglect this summation leading to (10).

The following proposition computes the probability of
occurrence of SS sensing slot pSS |H1

under H1 and the
probability of occurrence of TS sensing slot is normally the
complementary of pSS |H1

, i.e., pTS |H1
= 1− pSS |H1

.

Proposition 2. Given the sample length of a sensing interval
N , the length of PU busy period Nb distributed as in (4), the
probability of receiving SS sensing slot under H1 is given by,

pSS |H1 =

∑+∞
s1=0 s1P (s1)∑+∞

s1=0(s1 + 1)P (s1)
, (13)

where P (s1) =
[
(1− pb)s1N−1 − (1− pb)N(s1+1)−1].

Proof. Using the same line of reasoning as in the proof of
Proposition 1, the proof of Proposition 2 is straightforward.

IV. SENSING PERFORMANCE ANALYSIS

Energy detection computes the average energy of the re-
ceived signal matrix Y normalized by the noise variance σ2

v

and compares it with a predefined threshold TED is given by,

TED =
1

σ2
v

K∑
k=1

N∑
n=1

|yk(n)|2. (14)

To analyze ED performance, it is necessary to express the
probability density function (pdf) of the decision statistic
in case of unknown primary traffic. The following theorem
computes the pdf of the ED decision statistic under both the
hypotheses using the PU traffic characterization presented in
Section III.

Theorem 1. Given a multi-antenna sensing unit with K
receiving antennas, N received samples in each slot and the
random PU traffic with geometrically distributed free state
duration, the pdf of the ED decision statistic under H0 and H1

is given by (15) and (16) (shown at the top of the next page),
respectively, where fG(x, α, β) is a pdf of Gamma distribution
with shape parameter α & rate parameter β and fN (x, µ, σ2)
is the pdf of Gaussian distribution with mean µ and variance
σ2.

Proof. As noted from Section II, the term within the summa-
tion in (14) is different for the SS sensing slot and TS sensing
slot. Under the null hypothesis H0, the ED decision statistic

in (14) can be decomposed as a probabilistic sum of TSSED|H0

and TTSED|H0 .

TED|H0 =
pSS |H0

2

K∑
k=1

N∑
n=1

∣∣∣∣ vk(n)σv/
√
2

∣∣∣∣2 + pTS |H0

2

[
K∑
k=1

D0∑
n=1

∣∣∣∣ vk(n)σv/
√
2

∣∣∣∣2
+

K∑
k=1

N∑
n=N−D0+1

∣∣∣∣hks(n) + vk(n)

σv/
√
2

∣∣∣∣2
]
. (17)

Next, the distribution of each sum in (17) can be derived
as [15],

TED|H0 =
pSS |H0

2
χ2
2KN +

pTS |H0

2

N−1∑
d0=1

PD0(d0)
[
χ2
2Kd0

+Kρχ2
2(N−d0) + χ2

2K(N−d0) +N (0, 2ρ(N − d0)K)
]
,(18)

where χ2
A represents a Chi-squared random variable with

A degrees of freedom. and N (µ, σ2) represents the Normal
random variable with mean µ and variance σ2.

In fact, the product of a Chi-squared RV with a constant is
a Gamma RV, thus, with this replacement we obtain,

TED|H0 = pSS |H0G(KN, 1) + pTS |H0

N−1∑
d0=1

PD0(d0) [G(Kd0, 1)

+ G(N − d0,Kρ) + G(K(N − d0), 1) +N (0, 2ρ(N − d0)K)] .(19)

In addition, G(α, β) represents a Gamma random variable
with a shape parameter α and a rate parameter β. Since the
goal is to find the pdf of the sum in (14) under H0, we
replace the random variables in (19) with their respective pdfs
to obtain (15).

In the similar manner, under the alternate hypothesis H1,
the ED decision statistic in (14) can be decomposed as a
probabilistic sum of TSSED|H1 and TTSED|H1 .

TED|H1 =
pSS |H1

2

K∑
k=1

N∑
n=1

∣∣∣∣hks(n) + vk(n)

σv/
√
2

∣∣∣∣2 + pTS |H1

2

·

[
K∑
k=1

D1∑
n=1

∣∣∣∣hks(n) + vk(n)

σv/
√
2

∣∣∣∣2 + K∑
k=1

N∑
n=N−D1+1

∣∣∣∣ vk(n)σv/
√
2

∣∣∣∣2
]
.(20)

Using the fact that D1 is a random variable,

TED|H1 =
pSS |H1

2

K∑
k=1

N∑
n=1

∣∣∣∣hks(n) + vk(n)

σv/
√
2

∣∣∣∣2 + pTS |H1

2

N−1∑
d1=1

PD1(d1)

·

 K∑
k=1

d1∑
n=1

∣∣∣∣hks(n) + vk(n)

σv/
√
2

∣∣∣∣2 + K∑
k=1

N∑
n=N−d1+1

∣∣∣∣ vk(n)σv/
√
2

∣∣∣∣2
 . (21)

Deriving the distribution of each sum in (21) using [15],

TED|H1 = pSS |H1 (G(N,Kρ) + G(KN, 1) +N (0, 2ρKN))

+ pTS |H1

N−1∑
d1=1

PD1(d1) [G(d1,Kρ) + G(Kd1, 1)

+ N (0, 2ρKd1) + G(K(N − d1), 1)] . (22)
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fTED|H0
(x) = pSS |H0fG(x,KN, 1) + pTS |H0

N−1∑
d0=1

PD0(d0) [fG(x, 2Kd0, 1) + fG(x,N − d0,Kρ)

+ fG(x,K(N − d0), 1) + fN (x, 0, 2ρK(N − d0))] , (15)
fTED|H1

(x) = pSS |H1 (fG(x,N,Kρ) + fG(x,KN, 1) + fN (x, 0, 2ρKN))

+ pTS |H1

N−1∑
d1=1

PD1(d1) [fG(x, d1,Kρ) + fG(x,Kd1, 1) + fN (x, 0, 2ρKd1) + fG(x,K(N − d1), 1)] . (16)

Finally, we replace the random variables in (22) with their
respective pdfs to obtain (16).

In essence, the pdfs in (15) and (16) consist of the sum
of independent random variables. From a statistical point of
view, the sum of two independent pdfs can be realized as
a convolution of these pdfs [16]. Thus, the sum of pdfs
can be computed using convolution or as an alternative, we
can exploit the characteristic function approach by computing
Fourier transform. In conclusion, (15) and (16) can be easily
evaluated by using standard Fast Fourier Transform (FFT)
techniques.

A. Probability of False Alarm: Given the pdf of the decision
statistic in (15), we can compute the false-alarm probability.
Under H0, the PU is in free state at the end of the sensing
interval, but the decision statistic is erroneously above the
threshold τ and the PU signal is declared present. For defining
the probability of false-alarm PF in our case, the following
Corollary of Theorem 1 holds.

Corollary 1. The false-alarm probability of the ED test under
unknown PU traffic and complex signal space scenario is:

PF = P (TED|H0 ≥ τ) ≡
∫ +∞

τ

fTED|H0
(x)dx. (23)

B. Probability of Detection: Given the pdf of the decision
statistic in (16), we can compute the detection probability.
Under H1, i.e., the PU is in busy state at the end of the sensing
interval. Under this scenario, if the decision statistic is above
the threshold, the PU signal is declared present. The following
Corollary of Theorem 1 holds for defining the probability of
detection PD.

Corollary 2. The detection probability of the ED test under
unknown PU traffic and the complex signal space scenario is:

PD = P (TED|H1 ≥ τ) ≡
∫ +∞

τ

fTED|H1
(x)dx. (24)

V. NUMERICAL RESULTS AND DISCUSSION

In this section, the effect of PU traffic on the multi-antenna
ED is analyzed based on the the traffic model developed in
Section II. The length of the free and busy periods of the
PU traffic are measured in terms of the discrete number of
samples where each of them has Geometric distribution with
probability of success parameters pf and pb, respectively. In
this section, more often we use mean and busy period denoting
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(a) Known PU Traffic (thus,
synchronized PU-SU sensing slots)
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p
d
f
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Fig. 2. Pdfs of the ED decision statistic: Parameters: N = 50, K = 4,
Mf = 150, Mb = 150 and SNR = −6 dB
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1
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D
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Fig. 3. ROC performance for the considered scenario, Parameters:
N = 100, K = 4 and SNR = −6 dB

Mf = 1
pf

and Mb =
1
pb

, respectively. Under multiple antenna
sensing scenario, the average SNR at the receiver is defined
as, ρ =

σ2
s‖h‖2
Kσ2

v
, where ||.|| denotes the Euclidean norm. The

analytical expressions derived in Section III are validated via
numerical simulation.

In Figure 2, the pdf of the decision statistic under ideal
PU-SU sensing slot synchronization is compared with the pdf
of the decision statistic under unknown PU traffic considering
both hypotheses. In addition, the accuracy of derived analytical
expressions of the pdfs is confirmed by the results presented in
Fig. 1(b), where the theoretical formulas are compared against
the numerical results obtained by Monte-Carlo simulation.
The perfect match of the theoretical and the numerical pdfs
validates the derived analytical expressions. Figure 3 illustrates
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Fig. 4. Probability of missed detection vs. the number of Antennas,
Parameters: N = 25, Mf = 62, Mb = 62 and PF = 0.1

the Receiver Operating Characteristic (ROC) performance of
the ED for different values of the mean free and busy period of
the PU traffic. It shows that as the mean free and busy periods
of the primary traffic increases, the detection performance
of SU also increases. The conventional model with perfect
synchronization of the PU-SU sensing slots performs better
than the one with unknown PU traffic.

The variation of the sensing performance of the detector for
different number of receiving antennas is plotted in Figure 4.
It can be observed that unlike the rapid increase in sensing
performance with the increasing number of receiving anten-
nas under synchronized PU-SU sensing slot scenario (rapid
decrease in missed-detection probability with the increasing
number of receiving antennas), the sensing performance is
almost constant even if we increase the number of antennas
under unknown PU traffic. During a TS sensing slot, from
each receiving antenna, the received signal samples are the
mixture of pure noise samples and the samples with both noise
and PU signal. Thus, even if we use multiple antennas, the
nature of the received signal doesn’t change much which is
the reason the sensing performance improvement is suppressed
by the unknown PU traffic (more specifically, the TS sensing
performance) when the length of the free and busy periods of
PU traffic are quite small (a few multiples of the length of the
sensing window).

VI. CONCLUSION

In this paper, the effect of PU traffic on the performance
of multi-antenna Energy Detector has been studied under a
flat fading channel. A realistic and simple PU traffic model
has been considered which is based only on the discrete
time distribution of PU free and busy periods. Moreover,
an analytical evaluation of the spectrum sensing performance
under the considered scenario has been carried out. It has been
shown that the performance gain due to multiple antenna in
the sensing unit is significantly reduced by the effect of PU
traffic when the mean lengths of free and busy periods are
small (in the range of a few multiples of the sensing period).
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