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Abstract—In this paper, a performance analysis of multi-antenna
spectrum sensing techniques is carried out. Both well known al-
gorithms, such as Energy Detector (ED) and eigenvalue based de-
tectors, and an eigenvector based algorithm, are considered. With
the idea of auxiliary noise variance estimation, the performance
analysis is extended to the hybrid approaches of the considered
detectors. Moreover, optimization for Hybrid ED under constant
estimation plus detection time is performed. Performance results
are evaluated in terms of Receiver Operating Characteristic
(ROC) curves and performance curves, i.e., detection probability
as a function of the Signal-to-Noise Ratio (SNR). It is concluded
that the eigenvector based detector and its hybrid approach are
able to approach the optimal Neyman-Pearson performance.

Keywords–hybrid detector; largest eigenvector; noise estimation;
spectrum sensing; cognitive radio.

I. INTRODUCTION

Spectrum sensing is the enabling unit of Secondary Users
(SUs) in Cognitive Radio Networks (CRN) [1] for the accurate
identification and exploitation of unused Primary User’s (PU)
spectrum in temporal and spatial domain. Precise identification
of the spectrum holes is the major constraint for the establish-
ment of Cognitive Radio, which ensures the dynamic exploita-
tion of existing wireless spectrum. As an example, the Wireless
Regional Area Network (WRAN) standard imposes stringent
requirement on the probability of detection (Pd) ≥ 0.9 with
probability of false alarm PFa ≤ 0.1 at Signal-to-Noise Ratio
(SNR) −20dB (for Digital TV band) [3].

In order to satisfy the constraint of high performance and
considering the dependence of noise uncertainty and the imple-
mentation complexity under wireless fading channels, several
detection algorithms are put forward in context of Cognitive
Radio applications including Uniformly Most Powerful (UMP)
test derived according to the Neyman-Pearson Lemma known
as Neyman-Pearson (NP) test [2], Energy Detection (ED) [4],
Match Filtering [5], Feature Detection Algorithms [6] proposed
for individual SU and their cooperative counterpart for multiple
SU sensing. A multidimensional CR receiver has been studied
considering multiple receive dimensions at the CR receiver
in the form of multiple antennas, over-sampled branches and
cooperative nodes [7]–[10]. These methods are mostly based
on the statistics of the eigenvalues of the received signal
covariance matrix and use recent results from Random Matrix
Theory (RMT).

In the last few years, Eigenvalue Based Detection (EBD)
techniques received considerable attention in spectrum sensing
literature with improved performance and less dependent on
noise uncertainty [7]–[16]. Some of the popular EBD based
techniques in present literature include Maximum Eigenvalue

(ME) based [14], Eigenvalue Ratio Detector (ERD) [17], Sig-
nal Condition Number (SCN) based [10][12], Scaled Largest
Eigenvalue (SLE) based [15][16], Akaike Information Crite-
rion (AIC) [18], Minimum Description Length(MDL) [18].
Recently, more powerful techniques based on largest eigen-
value of the received covariance matrix, like Generalized
Likelihood Root Test (GLRT) [20] and Roy’s Largest Root
Test (RLRT) [19] have been proposed and analyzed. Recently,
a new algorithm known as EigenVEctor (EVE) test [21] has
been introduced exploiting channel estimation parameter in the
detection statistic whose performance is comparable with NP
test.

Considering high performance detection algorithms like
ED, RLRT and EVE test, the problem of unknown noise vari-
ance is crucial. In our previous work [21][22], the performance
of hybrid approach of ED and Roy’s Largest Root Test using
estimated noise variance was carried out. It was suggested that,
the optimum performance of ED and RLRT can be achieved
even with the use of estimated noise variance by using a large
number of slots for noise variance estimation.

In this work, we present a performance analysis of Roy’s
Largest Root Test (RLRT), Energy Detection (ED), EigenVEc-
tor Test (EVE) and their hybrid approaches with noise variance
estimation. Section II describes the system model and the NP
test, which will be used as a benchmark. Section III illustrates
the test statistics with known noise variance, while Section IV
presents the hybrid approaches with estimated noise variance.
Simulation results are presented in Section V, while in Section
VI, some preliminary results of the optimization of Hybrid
Energy Detection are presented. Finally, Section VII concludes
the paper.

II. SYSTEM MODEL

Let us denote by K the number of antennas or cooperative
sensors and by N the number of samples per sensing slot.
We focus on a single source scenario, which is of interest
for many detection problems in cognitive radio networks. The
K×1 received vector at time n collects the baseband complex
samples from the K antennas. The received samples are stored
by the detector in the K ×N matrix Y .

Let us introduce the 1 × N signal matrix
s , [s1 · · · sn · · · sN ] and the K × N noise matrix
V , [v1 · · ·vn · · ·vN ] where,

• sn is the transmitted complex signal sample at time
n, modeled as Gaussian with zero mean and variance
σ2
s : sn ∼ NC(0, σ

2
s)
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• vn is a noise vector at time n, modeled as Gaus-
sian with mean zero and variance σ2

v : vn ∼
NC(0K×1, σ

2
vIK×K)

As all the signal samples sn of s and the noise vectors vn
of V are assumed statistically independent, the detector must
distinguish between Null and Alternate Hypothesis given by,

Y |H0
= V and Y |H1

= hs+ V

where, h is the complex channel vector h = [h1 · · ·hK ]T ;
assumed to be constant and memory-less during the sampling
window.

Under H1, the average SNR at the receiver is defined as,
ρ , E‖xn‖2

E‖vn‖2 =
σ2
s‖h‖

2

Kσ2
v

where, ||.|| denotes the Euclidean norm
and E the mean operator. The sample covariance matrix is
given by R , 1

NY Y H and λ1 ≥ · · · ≥ λK its eigenvalues
sorted in decreasing order.

The usual criterion for comparing two tests is to fix the
false alarm rate Pfa and look for the test achieving the higher
Pd. The Neyman Pearson (NP) lemma is known to provide the
Uniformly Most Powerful (UMP) test, achieving the maximum
possible Pd for any given value of Pfa. The NP criterion
is applicable only when both both H0 and H1 are simple
hypotheses. In our setting this is the case when both the noise
level σ2

v and the channel vector h are a priori known. The NP
test is given by the following likelihood ratio:

TNP =
p1(Y ;h, σ2

s , σ
2
v)

p1(Y ;σ2
v)

(1)

and is known to be optimal, i.e., to achieve the maximum
possible Pd for any given value of Pfa.

As an example, under the considered model, if the signal
samples are independent Gaussian samples, the NP test is
obtained by using:

p0(Y ;σ2
v) =

1

(πσ2
v)
NK

exp

(
−NtrR

σ2
v

)
(2)

and

p1(Y ;h, σ2
s , σ

2
v) =

1

(πKdetΣ)N
exp

(
−RΣ−1

)
(3)

where, Σ = σ2
vIk + σ2

shh
H

The NP test provides the best possible performance, but
requires exact knowledge of both h and σ2

v . For most practical
applications, the knowledge of h and σ2

v is questionable.

III. TEST STATISTICS WITH KNOWN NOISE VARIANCE

To make the decision between H0 and H1, a test statistic
compares a quantity T against a pre-defined threshold t: if T >
t,H1 is selected, otherwiseH0 is chosen. The test performance
is evaluated by the false alarm probability and the detection
probability, defined as:

Pd = P(T > t|H1) (4)
Pfa = P(T > t|H0) (5)

In practice, the decision threshold t is typically computed as
a function of the target Pfa, to guarantee the Constant false
Alarm rate (CFAR) property.

A. Roy’s Largest Root Test (RLRT)
Using the information of the received signal matrix Y and

assuming a perfect knowledge of the noise variance σ2
v and

the channel parameter h, test statistic for RLRT is given by

TRLRT =
λ1
σ2
v

. (6)

If TRLRT < t it decides in favor of Null Hypothesis H0

otherwise in favor of Alternate Hypothesis H1. The detection
probability PRLRTd > t|H1

and false alarm PRLRTfa > t|H0

probabilities for this detector are well-known in the literature
(e.g., [24]).

The optimality of RLRT in the class of semi-blind algo-
rithms was pointed out in [25]. For a single emitting source,
if the SNR is above the identifiability threshold given by
ρ > ρCric = 1√

KN
[26], the signal is detectable by the

largest eigenvalue λ1 value. Starting from the NP test and using
the asymptotic expansion of the hypergeometric function, it
was shown in that, under known noise variance, distinguishing
between H0 and H1 in the asymptotic regime (N →∞ with
K fixed) depends to leading order only on λ1.

B. Energy Detection (ED)
ED computes the average energy of the received signal

matrix Y normalized by the noise variance σ2
v and compares

it against a predefined threshold ted.

TED =
1

KNσ2
v

K∑
k=1

N∑
n=1

|yk(n)|2. (7)

If TED < ted it decides in favor of Null Hypothesis H0

otherwise in favor of Alternate Hypothesis H1. The detection
probability Pd = Prob{TED > t|H1

} and false alarm Pfa =
Prob{TED > t|H0

} probabilities for this detector are well-
known in the literature (e.g., [4]).

C. EigenVEctor Test (EVE)
The starting idea of the new test is that given a H1 slot,

the eigenvector e1 associated to largest eigenvalue λ1 provides
an estimation of the channel vector h.

Given Saux signal slots available before the current sensing
slot, we can construct a matrix of size K×(Saux ·N) from all
the samples and evaluate the eigenvector eaux corresponding
to largest eigenvalue. The proposed statistical test known as
EVE test [10], which exploits the channel estimation parameter
eaux in its test statistic is defined as,

TEV E =
Saux

[
eHauxReaux

]
+
[
eHRe

]
σ2
v(Saux + 1)

(8)

Note that if Saux = 0, the test reduces to

TEV E =
eHRe

σ2
v

=
‖e‖2λ1
σ2
v

=
λ1
σ2
v

(9)

and has the same statistical power of the RLRT.
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IV. HYBRID TEST STATISTICS

It is evident that the knowledge of the noise variance is
imperative for the optimum performance of RLRT, ED and
EVE tests. Unfortunately, the variation and the unpredictability
of noise variance is unavoidable. Thus, the knowledge of the
noise variance is one of the critical limitations of those tests
for their ideal operation in low SNR. Under the considered
scenario, noise variance can be estimated from Saux auxiliary
noise-only slots in which we are sure that the primary signal
is absent.

Consider a sampling window of length M prior and
adjacent to the detection window which contains noise-only
samples for sure. Then the estimated noise variance from the
noise-only samples using a Maximum Likelihood Estimation
(MLE) can be written as,

σ̂2
v =

1

KM

K∑
k=1

M∑
m=1

|vkm|2 (10)

If the noise variance is constant, the estimation can be
averaged over Saux successive noise-only slots and (10) can be
modified by averaging over Saux successive noise-only slots
as,

σ̂2
v(Saux) =

1

KSauxM

Saux∑
s=1

K∑
k=1

M∑
m=1

|vkm|2 (11)

A. Hybrid RLRT (HRLRT)
Knowledge of the noise power is one of the critical

limitation of RLRT for its operation in low SNR. Hybrid RLRT
(HRLRT) [22] deals with the study of detection performance
of the RLRT algorithm using noise variance estimated from
Saux auxiliary noise only slots where we are sure that the
primary signal is absent. The test statistic of HRLRT can now
be presented as,

THRLRT =
λ1

σ̂2
HRLRT (Saux)

(12)

where, σ̂2
HRLRT (Saux) is the Maximum Likelihood Estimate

of the true noise variance σ2
v given by (11).

Performance of HRLRT in terms of ROC parameters are
derived and well justified in [22][23].

B. Hybrid ED (HED)
Hybrid ED (HED) [22] deals with the study of detection

performance of the ED algorithm using noise variance esti-
mated from Saux auxiliary noise only slots where we are sure
that the primary signal is absent. The test statistic of HED can
be presented as,

THED =
1

KNσ̂2
HED(Saux)

K∑
k=1

N∑
n=1

|yk(n)|2 (13)

where σ̂2
HED(Saux) is computed as in (11) for HRLRT.

The detection probability Pd = Prob{THED > t|H1
} and

false alarm Pfa = Prob{THED > t|H0
} probabilities for this

Hybrid ED can be referred in literature [22][23].
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Figure 1. Performance curve, Pd vs. SNR, K = 4, N = 200

C. Hybrid EVE (HEVE)
If we apply the same hybrid approach for RLRT and ED

of [22][23] to the new EVE test, we define a new Hybrid
EigenVEctor (HEVE) test:

THEV E =
Saux

[
eHauxReaux

]
+
[
eHRe

]
σ̂2
HEV E(Saux) · (Saux + 1)

(14)

where σ̂2
HEV E(Saux) is computed as in (11) for HRLRT and

HED. In fact, we use in HEVE the same number of slots Saux
both to compute the eigenvector eaux for channel estimation
and to estimate the noise variance σ̂2

HEV E(Saux). Similarly to
(9) if Saux = 0, the test reduces to λ1/σ̂2

HEV E(Saux), which
has the same statistical power of HRLRT.

V. SIMULATION RESULTS

Results are shown in terms of Receiver Operating Charac-
teristic (ROC) curves (Pd vs. Pfa) and performance curves,
in which Pd is plotted against SNR, by fixing Pfa. All the
tests described in Section III-IV have been simulated by using
a Montecarlo approach with 10000 iterations for each SNR
value. The primary signal has a Gaussian distribution and
the typical Rayleigh flat fading channel scenario has been
considered. In performance curves, Pfa is fixed to 10−2 while
in ROC curves, SNR = -12 dB.

Figures 1 and 2 show respectively the performance and
ROC curves of all the test statistics with 4 antennas, 200
samples per slot and 4 auxiliary slots. It can be noticed that
EVE and HEVE are clearly capable to significantly reduce the
gap with NP wrt RLRT. The gap between EVE and RLRT is
1 dB at Pd = 0.9. In general, the hybrid approaches HEVE,
HRLRT and HED are very close in performance with their
respective known-noise tests.

Figures 3 and 4 show how the number of slots affects the
performance of these tests. The number of antennas is equal to
4, while we used 200 samples per slot. It is evident that there
is an important gap between 2 and 4 auxiliary slots (especially
for HEVE), while the curves with 4 and 6 auxiliary slots are
almost overlapped.

Finally, we show 2 other performance curves. In Figure
5, the detection probability is plotted against the number of
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Figure 2. ROC curve, K = 4, N = 200
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Figure 3. Performance curve, Pd vs. SNR, with 2, 4, 6 auxiliary slots

antennas, with 100 samples per slot and 6 auxiliary slots, while
in Figure 6, Pd is plotted against the number of samples, with
4 antennas and 6 auxiliary slots. NP and the EVE group tests
require a much smaller number of antennas or sensors to reach
Pd ' 1 wrt to all other tests.

VI. OPTIMIZATION OF HYBRID ENERGY DETECTION

In this section, we show some preliminary results on the
optimization of Hybrid Energy Detection. Let us assume that
the secondary user has a fixed time window for both noise
estimation and detection, i.e., the number of samples that the
SU can use for both noise estimation and signal detection is
constant. For the sake of simplicity, the Maximum Likelihood
expression of (10) will be considered for the optimization of
HED described in IV-B. Considering K antennas, M samples
are used for estimation and N samples for detection. Our fixed
time constraint implies M+N = c where c is a constant, hence
our goal is to find the optimal M (and consequently optimal
N ) that gives the maximum detection probability.

In [22][23] the mathematical analysis of HED was per-
formed, the false alarm and detection probability expressions
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Figure 4. ROC curve, with 2, 4, 6 auxiliary slots
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Figure 5. Performance curve, Pd vs. K, N = 100

are the starting point of our optimization task. The False
Alarm Probability P (HED)

fa for number of sensors K, number
of samples N , number of noise estimation samples M and
threshold t is given by,

P
(HED)
fa = Q

 t− 1√
M+Nt2

KMN

 (15)

Similarly, the Probability of Detection P (HED)
D in similar

scenario is given by,

P
(HED)
d = Q

 (t− 1− ρ)√
t2

KM + Kρ2+2ρ+1
KN

 (16)

where ρ is the signal-to-noise ratio.
First of all, from (15) we find the threshold t expression
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as a function of the Pfa,

t =

M

(
K + ε

√
KM+KN−ε2

MN

)
KM − ε2 (17)

where ε = Q−1[Pfa]. This is the only acceptable solution
(t > 1) of a second degree equation. Unless KM is smaller
than ε2 (which is of no interest), this is always true.

By substituting (17) in (16) we obtain the following ex-
pression:

Pd = Q


M

(
K+ε

√
KM+KN−ε2

MN

)
KM−ε2 − 1− ρ√

M

(
K+ε

√
KM+KN−ε2

MN

)2

K(KM−ε2)2 + Kρ2+2ρ+1
KN

 (18)

Let us now use the following substitutions:

M = x (19)
N = c− x (20)

where x ∈ N and c =M +N .
We first rewrite the threshold expression in (17):

t =
x(K + ε

√
Kc−ε2
xc−x2 )

Kx− ε2 (21)

Then, we rewrite the argument of the Q-function of (18):

f(x) =

x

(
K+ε

√
Kc−ε2
cx−x2

)
Kx−ε2 − 1− ρ√

x

[
K2+

ε2(Kc−ε2)

cx−x2
+2KQ

√
Kc−ε2
cx−x2

]
K(K2x2+ε4−2ε2Kx) + Kρ2+2ρ+1

Kc−Kx

(22)

Figure 7 shows the probability of detection of HED as a
function of M for different values of M+N , with 4 antennas,
SNR equal to -10dB and Pfa equal to 10−2. It is clear to see
that, when c samples are available for both estimation and
detection, the highest probability of detection occurs for:

M ≈ N ≈ M +N

2
(23)
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Figure 7. Probability of detection as a function of M given M +N = const.

Hence, given a time slot for spectrum sensing, the best
performance occurs when estimation and detection slots are
equally split.

VII. CONCLUSIONS

In this paper, some important classes of multi-antenna
spectrum sensing algorithms have been considered. The hybrid
approach of method based on the eigenvector of the covariance
matrix has been introduced. Performance of the new hybrid
test has been compared with the well-known RLRT end ED
together with their hybrid approaches HRLRT and HED. It is
shown that the EVE test and its hybrid approach are able to
outperform RLRT, ED and they respective hybrid approaches,
furthermore it can significantly reduce the gap with the NP test.
Finally, given a fixed time slot or number of samples for HED,
it is concluded that estimation and detection slots should be
equally divided in order to achieve the optimal performance.
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