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Abstract—In cognitive radio networks, systems operating
in digital television white spaces are particularly interesting
for practical applications. In this paper, we consider single-
antenna and multi-antenna spectrum sensing of real DVB-T
signals under different channel conditions. Some of the
most important algorithms are considered and compared,
including energy detection, eigenvalue based techniques and
methods exploiting OFDM signal knowledge. The obtained
results show the algorithm performance and hierarchy in
terms of ROC and detection probability under fixed false
alarm rate, for different channel profiles in case of true
DVB-T signals.
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I. INTRODUCTION

The increasing demand for higher data rates in wire-
less communications is a strong driver for research and
development of new communication technologies able
to exploit transmission opportunities wherever licensed
channels are not employed by primary users. One of most
relevant developments in this context aims at exploiting
the so called TV white spaces in order to provide internet
access through broadband wireless communications.

Cognitive radio networks and systems [1] are based
on an efficient spectrum sensing unit [2] in order to
gain awareness of the available transmission opportunities
through the observation of the surrounding electromag-
netic environment. Such unit’s ultimate goal consists in
providing an indication on whether a primary transmission
is taking place in the considered channel. Such indication
is determined as the result of a binary hypothesis testing
experiment wherein hypothesis Hy (1) corresponds to
the absence (presence) of the primary signal. Thus, the
sensing unit collects samples of kind

w(n)

(D
2

y(n)ln,
y(n)lw, =

where x(n) are samples of the primary transmitted signal
and w(n) are noise samples.

Given the vector y of all samples, the sensing algorithm
builds a test statistics 7'(y) and compare it against a
predefined threshold 6. The performance of each detector
is usually assessed in terms of probability of detection and
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as a function of the signal-to-noise ratio (SNR) p, defined
as
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Several methods have been proposed for the computation
of the test statistics: a comprehensive description can be
found in [3] and references therein. In this paper, we
consider the most important of these algorithms, including
energy detection, multi-antenna eigenvalue based tech-
niques under both known and unknown noise variance,
and techniques exploiting the signal characteristics.

The added value of this paper is that the algorithms are
applied to real DVB-T signals generated by a transmitter
implemented on a DSP board and applied to different
realistic channel profiles. This way, the algorithms perfor-
mance are evaluated and compared in realistic conditions,
providing useful results for practical realizations.

This paper is organized as follows: Section II describes
the main characteristics of the DVB-T standard OFDM
signal and the considered channel models. Section III
describes the sensing algorithms employed in this inves-
tigation. Finally, in Section IV the obtained results are
shown and commented.

®)

II. PRIMARY SIGNAL

The DVB-T standard [4] specifies a set of coded OFDM
transmission schemes to be used for broadcasting of
multiplexed digital television programs.

The transmitted signal consists of a sequence of
fixed-duration OFDM symbols. A cyclic prefix (CP) is
prepended to each symbol in order to avoid inter-symbol
interference over frequency-selective fading channels. The
most relevant parameters of DVB-T signals are shown in
Table I.

The signal bandwidth is approximately 7.61 MHz, with
an intercarrier frequency spacing of 8MHz. A subset of
the available 2048 subcarriers (in 2k mode) or 8192
subcarriers (in 8k mode) are used to carry higher layer data
and PHY-layer signalling information. The latter consists
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Table 1
MAIN PARAMETERS OF DVB-T.
| 2k mode | 8k mode
Symbol duration (T77) 224 us 896 s
Guard interval duration (A) 7 — 56us 28 — 224pus
Number of active subcarriers 1705 6817
Subcarrier spacing (approx.) 4464Hz 1116Hz

CP duration ratio (A/Ty)
Constellations
Code rate

1/4,1/8,1/16, 1/32
QPSK, 16-QAM, 64-QAM
1/, 2/3, 3/4, 5/6, 7/8

of pilot sequences, either allocated to fixed subcarriers
(continual pilots) or scattered throughout OFDM sym-
bols according to a periodic pattern, which are used for
channel estimation at the receiver side, and Transmission
Parameter Signaling (TPS) information, wherein encoded
information about the current transmission parameters
used on data subcarriers is delivered.

OFDM symbols with CP are grouped into frames and
superframes: each frame consists of 68 symbols and each
superframe consists of 4 frames.

In our study, we used a real encoded and modulated
MPEG transport stream (TS) with code rate 5/6, 64-
QAM constellation and CP ratio 1/4. The resulting bit
rate is approx. 24.88 Mbits/s. At the sensing unit, the
DVB-T signal was sampled at the nominal rate of 64/7
Msamples/s.

A. DVB-T signal characteristics

As a common assumption in the literature on spectrum
sensing, the primary signal is modeled as a Gaussian
process. Fig. 1 shows that, in the case of DVB-T sig-
nals, this assumption is well motivated. In fact, Fig. 1(a)
shows the pdf of the real and imaginary parts of the
DVB-T signal’s complex envelope. Clearly, the Gaussian
distribution is very well approximated. A more accurate
evaluation is provided in Fig. 1(b), where the quantile-
quantile plot of the DVB-T distribution vs. a zero-mean
Gaussian distribution with same variance is shown.

Let us assume that the primary signal is detected
through K sensors (receivers or antennas). Typically, a flat
Rayleigh fading channel is considered in the literature. In
such case, the received signal can be modeled as a linear
mixture model of kind

y(n) = ha(n) +v(n) (6)

where h is the K-element channel vector of size K x 1
whose elements h; ~ N¢(0,07) are mutually indepen-
dent. Moreover we apply the following normalization:

K
> hah;, =K. (7)
n=1

Moreover, v(n) is the additive white Gaussian noise
distributed as Nc¢(0xx1, 0215 x5 ).

In order to assess the performance of the considered
algorithms in a more realistic case, we used a frequency-
and time-selective channel model, the 6-path Typical Ur-
ban (TU6) mobile radio propagation model developed by
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Figure 1. Statistics of the DVB-T signal.

the COST 207 European project [5]. The Doppler spread
has been set to 10Hz.

III. TEST STATISTICS

Let us suppose that the detector sensing algorithm builds
its test statistic from K sensors (receivers or antennas) and
N time samples. Let y(n) = [y1(n) ... yx(n) ... yx(n)]"
be the K x 1 received vector at time n, where the element
yr(n) is the n-th discrete baseband complex sample at
receiver k.

The noise is modeled as an additive white Gaussian
noise process with zero mean and variance o2 = Ny /2,
Ny being the two-sided power spectral density of noise.

The received samples are stored in a X x N matrix:

Y £ [y(1)...y(N)]. ®)

13



COCORA 2013 : The Third International Conference on Advances in Cognitive Radio

Pr[Detection]

L

=

o ED
RLRT

zj o LRT
0.2% « ERD | |

LRT-
aGLRT

0 I I I I I I I I T
01 02 03 04 05 06 07 08 09 1

Pr[False Alarm]

(a) Receiver operating curves (SNR = -10dB).

—= ED ||
RLRT
- LRT
ERD |
LRT-
4 GLRT

Pr[Detection]

SNR [dB]

(b) Detection probability.

Figure 2. DVB-T signal through flat-fading channel.

The sample covariance matrix R is:

1
R2 _yYy”? 9
i 9

We will denote by A\; > ... > Ag the eigenvalues of
R, sorted in decreasing order.

Many spectrum sensing algorithms have been proposed
in the literature. Reviews and comparisons can be found,
for example, in [3], [6] and [7]. In this paper, we consider
some of the most popular tests, with the aim of comparing
them against true DVB-T signals. The considered tests are
divided in three classes.

A. Non-parametric tests, known noise variance

These tests are non-parametric, i.e., do not exploit
the knowledge of the signal characteristics. An excellent
estimation of the noise variance o2 is supposed (obtained,
for example, during a long training phase).

Energy Detection (ED): the test statistic is the average
energy of the received samples, normalized by the noise
variance:

Tgp = (10)

K N
~ o7 o 2 el

The energy detection method is probably the most
popular technique for spectrum sensing, also thanks to
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Figure 3. Gaussian signal through flat-fading channel.

its simplicity. Analytical performance expressions for this
detector are well-known in the literature (e.g., [8]).

Roy’s Largest Root Test (RLRT): this method tests the
largest eigenvalue of the sample covariance matrix against
the noise variance. The test statistic is

(1)

1
TrLrT = —
O-'U

The RLRT was originally developed in [9]. Performance
analysis can be found, for example, in [10], [11], and [7].
For Gaussian signals and not too low signal-to-noise ratio,
the RLRT is the best test statistics in this class.

Likelihood Ratio Tests (LRT): different LRT-based de-
tectors were given in [6]. The complete, noise-dependent,
log-likelihood ratio test statistic is given by

K ) ] (12)

02K trR
T =2(N — I —_ =
war =201 s (22 ) + (1
Performance analysis for this test can be found, for
example, in [6].

B. Non-parametric tests, unknown noise variance

These tests are again non-parametric, but the noise
variance is supposed unknown.

Generalized Likelihood Ratio Test (GLRT): this
method uses as test statistic the ratio
A1
TGLRT = T ¢ (13)
xtr(R)
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Performance analysis can be found for example in [12].
It is interesting to note that the GLRT is equivalent (up
to a nonlinear monotonic transformation) to [7]:

A1
—_—F
ﬁ Zi:2 Ai

The denominator of Ty ry is the maximum-likelihood
(ML) estimate of the noise variance assuming the presence
of a signal, hence the GLRT can be interpreted as a largest
root test with an estimated 62 instead of the true o2.

Eigenvalue Ratio Detector (ERD): the test statistic
(also called maximum-minimum eigenvalue, or condition
number test) is the ratio between the largest and the
smallest eigenvalue of R

Tarrr = (14)

A1
Terp = e
Performance analysis can be found, for example, in [13],
[14].
Noise-independent LRT (LRT-): an alternative log-
likelihood ratio was derived in [6], under the assumption
of unknown noise variance:

15)

% Zszl Ai )
(Hfil )‘i) e

In statistics, this method has been known for many years
as the sphericity test [15], [16]. Performance analysis for
cognitive radio applications can be found, for example, in

[6].

Trrr— =2(N —1) (16)

C. Parametric tests

Primary OFDM signal detection is considered. Primary
signal detectors that exploit the presence of the CP in
OFDM transmissions have been proposed. In [17] the
detectors based on CP correlation described in [18] have
been improved, applied to a real scenario and implemented
using a software-defined radio platform.

As previously stated, DVB-T signal consists of OFDM
modulated symbols of which a-priori parameter knowl-
edge is assumed, such as: the number of subcarriers, cyclic
prefix length, constellation type or the code rate. The aim
of parametric test statistics is to exploit signal parameter
knowledge (i.e., signal features) in order to enable primary
signals detection with high sensitivity.

The algorithm implemented in [19] using SDR is the well
known CP-based spectrum sensing. Assuming N,=N.+Ny
as the samples in a captured OFDM symbol (cyclic prefix
plus data samples respectively), the correlation function
(3) in [17], reproduced in (17) for clarity, provides the
analysis of 2Ngz+N. samples coherently averaged over K
symbols.

K—17+(k+1)Ns—1

x*[n)xz[n + Ny

7)
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where 7 represents the synchronization mismatch be-
tween our capture and the symbol start. It can be modelled
as uniformly distributed over the interval [0,N_.+Ny-1],
that defines the minimum period in which one correlation
maximum occurs.
The coherent averaging before taking the absolute value
allow us to improve sensitivity, in presence of AWGN
noise, at the cost of a larger capturing interval. Moreover,
to enable the implementation of these algorithms, it is
necessary to define a noise estimation algorithm to set a
threshold that guarantees certain detection performance in
terms of probability of false alarm (Pr4) and probability
of detection (Pp).
In this paper, a slight improvement in terms of noise
estimation accuracy (i.e., correlation noise) with respect to
[17] is presented. In fact, without any a-priori assumption,
the correlation noise estimation should be performed by
analyzing the received samples when the H, hypothesis
is true. Hence training periods with only noise samples
must be performed periodically (e.g., to track system
temperature changes). To avoid dedicated training, we
observed that noise samples can be gathered in between
two consecutive correlation maxima. The correlation func-
tion R used to estimate the average correlation noise
level, correspond to the function R excluding 2N, samples
around the detected maxima. Our optimized CP-based
algorithm can thus be resumed as following:
1) Receive K(N .+Ngy)+N, samples
2) Perform (17) over captured samples
3) Record the correlation maximum and its index i
4) Copy only correlation noise values from function in
2. by excluding values that have index in the range
i—N.<t1<i1+ N,
5) Decide if channel is occupied by evaluating the
following metric:

(cop)

maxRgz ' [n,T]

RGE) [n, 7]

In order to obtain the curve plotted in Fig. 5, we firstly
have calculated the threshold . To reproduce H, white
Gaussian distributed input noise samples were considered.
In this way the ~+ value at which the Pr4 = 102 can be
evaluated. We used a Monte Carlo approach over 1000
repetitions for K=1 (1 symbol). Once the threshold ~ has
been set, we varied the input SNR during H; tests to plot
the corresponding Pp function.

Z 7 (18)

IV. RESULTS

The results obtained for the DVB-T signal under linear
mixture models provided by flat fading Rayleigh channel
are reported in Fig. 2. First, we report the ROC (Receiver
Operating Characteristic) curve obtained by plotting the
detection probability versus the false alarm one. Then by
fixing the false alarm rate to 0.01, we plot the detection
probability as a function of the signal-to-noise ratio. By
fixing the detection probability, this allows to evaluate the
differences in terms of SNR between the algorithms, at
the parity of detection and false alarm probability.
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Figure 4. DVB-T signal through TU6 channel.

Simulations have been performed assuming K = 10
antennas and and observation interval corresponding to
N = 50 samples. For the CP correlation method, an
interval corresponding to one OFDM symbol has been
considered. Moreover, in such case, the signal was sam-
pled at 12.5 Msamples/s.

By looking at Fig. 2 we can observe that the best
algorithm for known noise variance is the RLRT, while
GLRT is the best under unknown variance. It is interesting
to note that these results are in agreement with the
results providing in the literature for Gaussian signals.
As a reference, results for the same algorithms obtained
by simulating Gaussian signal samples are reported in
Fig. 3 and are essentially identical to the previous one
(as expected after verifying the Gaussian properties of the
DVB-T signal).

Under a more realistic model, the TU6 channel, the
performance of the algorithms are different, as can be
observed in Fig. 4. We can see how both GLRT and RLRT
lose their predominant position when the received model
is different from the linear mixture one: simple energy
detection becomes highly competitive in this case. The
difference between algorithms with known and unknown
noise variance is larger, too.

It is important to note that in this work we have
supposed a perfect known noise variance for RLRT, LRT
and energy detection. Further analysis will be applied to

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-267-7

=
2 *
g
©
A /
= il
A~ ¥
27" —— CP-based AC
0.24 ERD B
LRT-
A GLRT

| | |
0 01 02 03 04 05 06 07 08 09 1
Pr[False Alarm]

(a) Receiver operating curves (SNR = -10dB).

1
oy
0.8 =
g o6l |
E
=
= 04 e
o
-0 - CP-based AC
0.2 ERD i
LRT-
—a— GLRT
_ 4ok ‘ ‘ :
916 —14 —12 —-10 -8 —6 —4
SNR [dB]
(b) Detection probability.
Figure 5. Comparison with the CP correlation method [17], [18].

study their performance under imperfect noise variance
knowledge, and address its impact for real DVB-T signals
(analysis for Gaussian signals can be found, for example,
in [19] for energy detection and [7] for RLRT).

Furthermore, we compare the algorithms for unknown
noise variance against the technique exploiting the cyclic
prefix autocorrelation of the received signal [17], [18]
described before. Here, the AWGN channel model is
adopted. In this case we can observe that the performance
of this algorithm is similar to that of the GLRT. This
single-antenna algorithm does not require the computation
of the sample covariance matrix eigenvalues, but resorts
to a precise knowledge of the signal characteristics.

Finally, in Fig. 6 we plot the detection probability of
GLRT as a function of the observation interval (expressed
both in time units and number of received samples per
sensor) and the number of sensors for a specific SNR value
of -10dB and -15dB, while the false alarm probability
remains fixed to 1072, The channel is Rayleigh flat-fading.
As shown, it is possible to obtain the same performance
achieved in Fig. 2 using V = 10 sensors even with a lower
and hence more realistic number of antennas.

V. CONCLUSIONS

Some of the most important sensing algorithms have
been applied to real DVB-T signals and their performance
has been assessed considering different channel profiles.
The flat fading channel analysis confirms the results

16



COCORA 2013 : The Third International Conference on Advances in Cognitive Radio

Pr[Detection]

Pr[Detection]

Figure 6.

. 65.63
43.75 600

400

21.88

20 200

Observation interval [ K ]
samples

(a) SNR = -10dB, Py, = 0.01.

iR
S e S e
FENeS =
AR
04l | \ \

;1375 546.88
407 5000
328.13 4000
218.75 3000
109.38 2000

1000

Lo s
Observation interval
samples

(b) SNR = -15dB, Py, = 0.01.

GLRT detection probability as a function of time (samples)

and sensors through flat-fading channel.

previously obtained by simulation using linear mixture
models of Gaussian signals. Under a more realistic multi-
path channel model, the performance and hierarchy of
the algorithms completely change with respect to the
flat-fading case. The obtained results are very useful for
the implementation of cognitive systems and networks
operating in the digital television white spaces.
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