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Abstract—Physics-based solvers such as the Hydrologic En-
gineering Center’s River Analysis System (HEC-RAS) provide
high-fidelity river forecasts but are too slow for on-the-fly decision-
making during floods. We present a machine learning (ML)
surrogate that treats HEC-RAS as a data generator and couples
a Gated Recurrent Unit (GRU) for short-term memory with a
geometry-aware Fourier Neural Operator (Geo-FNO) for long-
range spatial coupling. Trained on 71 reaches of the Mississippi
River Basin and evaluated on a year-long hold-out, the surrogate
achieves a median absolute stage error of 0.28 ft. For a full
71-reach ensemble forecast, it reduces wall-clock time from 139
to 40 minutes (3.5×). By reading native HEC-RAS files and
operating on a compact eight-channel feature interface, the model
delivers operational speed while preserving fidelity, enabling rapid
“what-if” ensemble guidance.

Index Terms—Fourier Neural Operator; Surrogate Modeling;
HEC-RAS; Gated Recurrent Units.

I. INTRODUCTION

During a flood, the U.S. Army Corps of Engineers (USACE)
must make critical, time-sensitive decisions—from issuing evac-
uation orders to scheduling gate operations—within minutes.
This operational tempo is fundamentally at odds with the hours-
long wall-clock times required by physics-based solvers such
as the Hydrologic Engineering Center’s River Analysis System
(HEC-RAS) to simulate unsteady flow [7], [8]. While pre-

computed scenario libraries or reduced-order models offer one
workaround, they are often too coarse to capture the specific
hydrograph that unfolds in real time [9], [11]. The central
challenge, therefore, is to deliver the fidelity of an HEC-RAS
simulation at a speed that enables rapid, on-the-fly ensemble
forecasting.

We address this challenge by reframing the HEC-RAS
workflow itself. Instead of relying on its iterative solver, we
treat its native project files as a direct source of training data
for a deep-learning surrogate. We propose an autoregressive
model that couples a Gated Recurrent Unit (GRU) for short-
term temporal memory with a geometry-aware Fourier Neural
Operator (Geo-FNO) for long-range spatial dependencies. This
hybrid architecture learns the coupled spatio-temporal dynamics
of river flow by ingesting a minimal eight-channel vector
representing dynamic state, static geometry, and boundary
forcings, and then advances the system state hour by hour.

Our primary contribution is a true plug-in surrogate that
requires no re-meshing or data conversion, reading native HEC-
RAS files directly. This is enabled by a minimalist, reusable
interface—a compact feature set sufficient for stable, multi-
day forecasts. Evaluated across 71 reaches of the Mississippi
River Basin, the model achieves a 3.45× end-to-end speedup
while maintaining a median absolute stage error of 0.28 ft on
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a year-long, unseen hold-out, elevating autoregressive neural
operators from academic prototypes to operationally promising
engines for rapid ensemble flood guidance.

The rest of the paper is structured as follows. Section II
details the HEC-RAS data pipeline. Section III reviews related
work. Section IV presents the model architecture. Section V
outlines the experimental setup, followed by results in Sec-
tion VI. Section VII discusses findings and limitations, and
Section VIII concludes.

II. BACKGROUND: HEC-RAS AS A DATA PREPROCESSOR

A. HEC-RAS: The Industry-Standard Solver

HEC-RAS, the U.S. Army Corps of Engineers’ River
Analysis System, is widely regarded as the industry-standard
platform for river hydraulics [8]. Under the hood, it solves the
one-dimensional Saint-Venant equations[7] using an implicit
Newton–Raphson finite-difference scheme, with several inner
iterations per global time step to balance continuity and
momentum [8]. This strategy delivers high numerical accuracy
but at a steep computational cost: full-reach unsteady-flow
simulations typically require hours to days of wall-clock time
[8], [11].

INPUTS (native HEC-RAS)
geometry *.g## (XS, station–elevation, banks, roughness)
structures/mesh *.b##/*.c##, plan *.p## (∆t, tolerances)
unsteady/time series *.u##, *.dss (Qup(t), Hdn(t), lateral inflows,
gates)

⇓

PREPROCESS / ASSEMBLY
mesh/XS indexing, boundary setup, initial conditions

⇓

IMPLICIT SAINT–VENANT SOLVER
for t = t0 : ∆t : tend do
assemble R(H,Q); Newton update J δ = −R;
(H,Q)←(H,Q) + δ; check tol/iters; repeat

⇓

OUTPUTS
HDF5/DSS: stage H(x, t), discharge Q(x, t); profiles/ratings

Figure 1. HEC–RAS numerical pipeline (robust non-TikZ rendering).

B. Novel Use Case: From Solver to Pre-Processor

This work treats HEC-RAS not as an end-to-end simulation
tool, but as a powerful data-generation engine. By leveraging
its mature GIS and project-management capabilities [8], we
can assemble consistent geometries, meshes, and boundary
hydrographs directly from the native project bundle [8], [12],
[25], [26]. We then export this curated file set into a machine-
learning pipeline. The surrogate ingests these inputs, learns
the hydraulic relationships and returns reach-scale forecasts
in seconds rather than hours [11]. In this workflow HEC-RAS
becomes a build tool for high-quality training data, while the
surrogate supplies the speed needed for rapid what-if analyses.

C. The HEC-RAS File Ecosystem

The key to this approach is the structured, information-rich
file bundle that constitutes a standard HEC-RAS project. These
files contain all the static, quasi-static, and dynamic information
required to train a robust surrogate model, as summarized in
Table I.

TABLE I. HEC-RAS FILE BUNDLE ORGANISED BY INFORMATION
TYPE. ‘##’ DENOTES VERSION INDICES.

Files Class Key contents

Static geometry

*.g## XS/1-D Station–elevation pairs, banks, centre-line
*.c## 2-D mesh Cell polygons, bed elevation, roughness zones
*.b## 1-D structs Bridge and culvert shapes, pier spacing

Quasi-static metadata

*.p## Plan Geometry/flow linkage, solver tolerances

Dynamic time-series

*.u## Unsteady flow Hydrograph pointers, gate schedules, run
window

*.dss DSS Upstream Q(t), downstream H(t), lateral
inflows

D. Key Hydraulic Terminology

To interpret the model inputs and outputs, we define the
following core terms:

Reach
A contiguous channel segment between two network
break-points (e.g. a confluence or control structure)[8].
Our model operates on a single reach at a time,
advancing from an upstream node (boundary inflow
Qup) to a downstream node (boundary stage Hdn).

Stage (H)
The water-surface elevation at a cross-section, refer-
enced to a project datum such as NAVD 88[7]. Units:
metres.

Discharge (Q)
The volumetric flow rate through a cross-section,
defined as positive in the downstream direction[7].
Units: m3 s−1.

III. RELATED WORK

Our work builds on advances in three key areas: data-driven
hydraulic modeling, autoregressive sequence prediction, and
neural operators for scientific computing.

A. Data-Driven Surrogates for River Hydraulics

Early data-driven surrogates for river hydraulics often relied
on feed-forward neural networks or polynomial meta-models to
emulate one or two cross-sections at a time [11]. More recent
studies have scaled to full reaches by coupling convolutional
encoders with graph neural networks [10], and physics-informed
neural networks have now been demonstrated for single-reach
stage prediction [24]; yet many approaches remain restricted to
steady-flow conditions or simplified rectangular channels [9],
[11]. In contrast, our study targets the entire unsteady-flow

39Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

COCE 2025 : The Second International Conference on Technologies for Marine and Coastal Ecosystems



regime of the Mississippi River model, encompassing 71
distinct reaches and thousands of irregularly spaced, natural-
geometry cross-sections.

B. Autoregressive Models for Temporal Dynamics
Autoregressive (AR) models, which forecast the next state

by feeding back their own previous outputs, form the backbone
of classical time-series analysis [20]. The closed-loop structure
is computationally efficient for long-horizon roll-outs, but a
known weakness is error accumulation: small mistakes are
recycled and amplified, ultimately drifting the forecast away
from reality [21].

To mitigate this, modern hydrology has shifted from classical
ARMA models to Recurrent Neural Networks (RNNs) such
as Long Short-Term Memory (LSTM) and Gated Recurrent
Units (GRUs) [17], [22]. GRUs use update and reset gates to
regulate information flow, capturing temporal dependencies
while remaining parameter-efficient. When applied to river
networks these RNNs typically predict each gage independently,
failing to capture the spatial physics that connect them [22].
Our work addresses this by embedding a GRU within a spatial
operator, allowing the recurrence to span both time and space.
Furthermore, we anchor the AR loop at every step with the true
boundary hydrographs (Qup, Hdn), providing a strong physical
constraint that drastically reduces long-term drift.

C. Neural Operators for Spatial Dependencies
To model the spatial physics, we turn to the Fourier Neural

Operator (FNO), which learns mappings between function
spaces via global convolutions in the spectral domain [2]. By
modulating Fourier modes directly, FNOs capture long-range
spatial dependencies with high efficiency and are essentially
discretisation invariant [2], [4]. The Geo-FNO variant extends
this concept to irregular meshes by injecting coordinate
information into the spectral block, making it well suited to the
non-uniform cross-section spacing found in river models [3].
Previous studies have already employed two-dimensional FNOs
for rapid flood-inundation mapping [23]; here we adopt a one-
dimensional Geo-FNO specifically tailored to the chain-like
topology of a river reach.

D. Positioning This Work
Combining recurrent networks with neural operators is an

emerging and powerful tool for modeling complex spatio-
temporal systems [18].

A key aspect of our work is its training methodology.
We show that the network learns the underlying hydraulic
behavior implicitly from the data itself. This is achieved
through a carefully engineered eight-channel feature vector that
encodes the system’s essential physical drivers: the channel
geometry (zbed, zbank), frictional properties (nman), and the mass
and energy constraints imposed by boundary hydrographs
(Qup, Hdn).

The success of this approach, using a standard mean-squared
error objective with a smoothness regularizer, demonstrates that
meticulous feature engineering is a powerful and efficient tool
for instilling physical consistency in a data-driven surrogate.

IV. METHODOLOGY

We build a one–hour-ahead, autoregressive surrogate that
advances using the last L=12 hours of state. At each step,
the network consumes this history and outputs the next-hour
stage and discharge (Ĥt+1, Q̂t+1); the prediction is appended
to the history and the loop repeats over the forecast horizon
(Figure 2).

A. Input Feature Vector

At hour t and cross-section i, we form a per-section feature
vector xt(i) composed of three groups:

xt(i) = [Ht(i), Qt(i)︸ ︷︷ ︸
dynamic (2)

| zbed(i), zbank(i), nman(i), xcoord(i)︸ ︷︷ ︸
static (4)

| Qup(t), Hdn(t)︸ ︷︷ ︸
boundary (2, broadcast over N )

]. (1)

This base interface has Cin=8 channels. In our implemen-
tation, we also include two lightweight auxiliaries: depth
Dt(i) = max{Ht(i) − zbed(i), 0} and a seasonal phase,
yielding Cin=10 total channels. We assemble training tensors
of shape [B,L,N,Cin] with L=12 hours. The 1-D coordinate
is also passed as a positional input to the encoder, so its first
layer receives (Cin+1) inputs.

B. Network Architecture: A Recurrent Neural Operator

The surrogate employs a hybrid architecture that couples a
GRU for temporal feature extraction with a Geometry-Aware
1-D Fourier Neural Operator (FNO) for spatial dependencies.

1) Encoder: A linear layer lifts the 10-channel input vector
and its spatial coordinate xcoord (11 total inputs) to a
96-dimensional latent space.

2) Temporal Block: A single-layer GRU (hidden size 96)
processes the 12-hour encoded sequence at each cross-
section, capturing temporal dynamics and outputting its
final hidden state.

3) Spatial Block: The resulting tensor of final hidden states
(shape [B,N, 96]) is processed by a 1-D FNO. The FNO
applies a global convolution in the frequency domain
across the spatial dimension (N ), efficiently modeling
long-range dependencies. We use up to 48 Fourier modes,
proportional to N .

4) Decoder: A final linear layer maps the 96-dimensional
FNO output to the two target variables: the predicted
stage (Ĥt+1) and discharge (Q̂t+1) for the next hour.

C. Rationale for the GRU–Geo-FNO Architecture

Figure 3 highlights that river hydraulics can be viewed as
two coupled 1-D signals: (i) a spatial profile along chainage at
a fixed time (bed and stage across all cross-sections), and (ii)
a temporal trace at a fixed cross-section (stage/flow through
time). We therefore split modeling duties accordingly.

Spatial coupling (Geo-FNO). At each step, we form an
ordered vector over the N cross-sections and apply a 1-D
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INPUT SEQUENCE X — 12 h history per XS

dynamic : H, Q (2 channels)
static : zbed, zbank, manning_n, x_coord (4 channels)
forcings : Qup, Hdn (2 channels)

Total: 8
Tensor shape: [B, L = 12, N, 8]

Linear Encoder
(in_channels = 8 + 1 −→ hidden = 96)

concatenate 1-D XS coords (broadcast over time)

GRU (single layer)
• operates along 12-step sequence
• hidden size = 96

keep time dimension

1-D Geo-FNO over the reach
• Fourier modes: 48
• input 96→ output 96

last hidden state → drop time

Linear Decoder
96→ 2 dynamic heads
• Ĥ : next-hour Stage (m)
• Q̂ : next-hour Flow (m3 s−1)

latent → heads

PREDICTION ŷt+1 (shape [B, N, 2])
concatenate with static + forcings for t+1

output

Figure 2. Autoregressive GRU-GeoFNO surrogate architecture. Vertical arrows share a
common inset; the dashed loop feeds predictions back as inputs for the next step.

Fourier neural operator across this spatial axis. Because the
FNO performs a global spectral convolution, every output
depends on all cross-sections simultaneously, enabling up-
stream–downstream interactions (e.g., backwater/attenuation)
to be learned in a single pass. Injecting the 1-D coordinate
(xcoord) makes the operator geometry-aware, accommodating
irregular cross-section spacing without re-meshing.

Temporal memory (GRU). For each cross-section,
short-term dynamics are encoded by a single-layer GRU that
processes a 12-hour window and returns a compact latent state.
This summarizes the recent hydrograph (rising/falling limbs,
lags) and supplies the per-section features that the FNO then
exchanges across space.

Result. The GRU provides local temporal context; the
Geo-FNO propagates that context globally along the reach.
This division cleanly matches the physics of 1-D hydraulics
while remaining efficient and discretization-robust.

D. Training Objective and Inference

Training Objective. The network minimizes a composite
loss that combines a data-fidelity term with physics-informed
regularizers to promote stable, realistic predictions. The total

(a) Spatial signal at selected times: bed and stage snapshots vs. distance along the reach.

(b) Temporal signal at one cross-section: daily stage (fill shows depth) and discharge.

Figure 3. River hydraulics as 1-D signals in space and time: space is modeled
by a Geo-FNO, time by a GRU.

loss L is

L = WH LHuber(Ĥn, Hn) +WQ MSE(Q̂n, Qn)

+ λn ∥∆2Ĥn∥22 + λt ∥∆2
t Ĥ∥22

+ λ∆ ∥∆tĤ −∆tH∥22 + λbias ∥Ĥ −H∥22. (2)

Here, (·)n denotes normalization by training-set statistics. The
stage (H) term uses a Huber loss (with β=0.02); discharge
(Q) uses the mean squared error (MSE). The regularizers act
on stage in physical units: spatial smoothness (∆2), temporal
smoothness (∆2

t ), change-in-stage matching (∆t), and mean-
bias control (·).

Here, (·)n denotes variables normalized by training-set
statistics. The primary data-fidelity loss is computed in this
normalized space, using a Huber loss (β=0.02) for stage (H)
and MSE for discharge (Q). The four regularizers, which act
only on stage, are computed in real physical units to enforce
consistent behavior:
• Spatial Smoothness: Penalizes the second spatial differ-

ence (∆2) of the normalized stage prediction to discourage
noisy outputs.

• Temporal Smoothness: Penalizes the second temporal
difference (∆2

t Ĥ = Ĥt − 2Ht−1 +Ht−2) to reduce high-
frequency oscillations over time.

• Change in Stage: Encourages the predicted one-hour
change in stage (∆tĤ = Ĥt −Ht−1) to match the true
change.

• Mean Bias: Penalizes deviations in the spatial mean of
the predicted stage (Ĥ) from the true mean (H).

We use weights WH=1, WQ=0.3, and regularization coeffi-
cients λn=3e − 5, λt=3e − 5, λ∆=0.35, and λbias=8e − 4.
An Exponential Moving Average (EMA) of the model weights
(decay 0.995) is maintained and used for all evaluations.
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Inference. For multi-step forecasting, we use a 12-
hour-seeded autoregressive loop. The model’s prediction
(Ĥt+1, Q̂t+1) is used to construct the input for the next step
by combining it with the derived depth D̂t+1 = max(Ĥt+1 −
zbed, 0), the static geometric features, the seasonal phase, and
the true boundary forcings for hour t+1. This complete feature
vector is then re-normalized before being passed to the model.

V. EXPERIMENTAL SETUP

A. Study Area and Data Sources

We use the U.S. Army Corps of Engineers (USACE) HEC-
RAS model of the Mississippi River Basin, which contains
71 distinct one-dimensional river reaches. Data is extracted
from the project’s HDF5 files, which provide static geometry
(cross-section shape, roughness) and hourly simulation results
(Stage H , Flow Q) for three major flood years. All data were
converted from imperial to SI units (metres, m³/s).

Year Primary Flood Event # Hourly Snapshots

2002 June–Sept. Moderate Flood 8,737
2008 May 50-Year Flood 8,783
2011 April Historic Flood 8,737

B. Training and Evaluation Protocol

A separate surrogate model is trained for each of the 71
river reaches using a strict temporal data split.

a) Data Splits: The 2002 and 2008 simulations ( 17.5k
hours) form the training set. The first quarter of 2011 ( 2.2k
hours) serves as the validation set for early stopping. The
entire 2011 year is the final test set.

b) Implementation Details: Each model is trained for up
to 120 epochs using the AdamW optimizer (lr = 2 × 10−4)
and a batch size of 64.

c) Evaluation via Autoregressive Rollout.: Final perfor-
mance is measured via an autoregressive rollout on the year-
long 2011 test set, mimicking a real-world forecast. After
seeding the model with an initial 12-hour history of true data,
it iteratively predicts the next 8,725 hourly steps. At each step,
the model’s prediction is combined with the true boundary
forcings (Qup, Hdn) to form the input for the subsequent step.

d) Evaluation Protocol.: The primary evaluation metric
is the Mean Absolute Error (MAE) in predicted stage, as it
provides a direct, interpretable measure of the average error in
feet, which is most relevant for operational flood guidance.

MAE =
1

T

T∑
t=1

|ypred
t − ytrue

t | (3)

Reporting convention. Unless noted otherwise, we report
per-reach MAE in feet (Table III).

VI. RESULTS

We evaluate each of the 71 per-reach surrogates via a
full-length autoregressive rollout on the unseen 2011 hold-out
year. Results are reported in wall-clock time for the full
ensemble and in Mean Absolute Error (MAE, feet) for stage.

A. Computational Speedup

A primary goal of this work is to accelerate forecasting.
Table II summarizes the end-to-end wall-clock time required
for a 1-year (8,737-hour) ensemble forecast across all reaches.
The surrogate completes this task in 40 minutes compared to
139 minutes for the HEC-RAS solver, a 3.45× speedup. This
acceleration is operationally significant, enabling minute-scale
“what-if" analysis.

It is important to note that this benchmark represents a
conservative estimate of potential gains. While the neural
network itself is highly parallelizable, our current rollout
implementation is a single-threaded Python loop running on
a CPU. Porting this autoregressive data-handling pipeline
to a GPU would unlock substantial further acceleration,
representing a key avenue for future optimization.

TABLE II. INFERENCE TIME FOR 1-YEAR, 71-REACH FORECAST.

Model Wall-Clock Time

HEC-RAS 5.0.1 139 minutes
Recurrent FNO Surrogate 40 minutes

Speedup Factor 3.45×

B. Predictive Accuracy

We report accuracy using Mean Absolute Error (MAE) in
feet, as this metric directly answers the operational question:
“Is the predicted stage within a tolerable deviation of the HEC-
RAS result?”

a) Per-Reach Performance: Table III details the MAE for
each of the 71 reaches. The performance is strong across the
majority of the basin, with a median MAE of 0.28 ft and an
InterQuartile Range (IQR) of 0.06–1.04 ft. Overall, 91.5% of
reaches (65 of 71) achieve a MAE of 2.0 ft or less, meeting
a key fidelity target for stage guidance.

b) Error Analysis: While most reaches perform well, a
smaller subset of primarily smaller tributaries drives a long tail
in the error distribution. Only 6 of 71 reaches (8.4%) exceed a
MAE of 2.0 ft. These challenging cases, such as the ‘Hatchie
River‘ and ‘St. Francis‘, are known to exhibit more complex
hydraulics or have sparser data representation, and they are
the focus of ongoing improvements.
TABLE III. PER-REACH MEAN ABSOLUTE STAGE ERROR (MAE)
FOR THE 2011 HOLD-OUT YEAR, WITH THE NUMBER OF CROSS-
SECTIONS (N) AND REACH LENGTH (MILES). SORTED ASCENDING
BY MAE

Reach ID (River—Reach) XS Len [mi] MAE [ft]
CouleeDesGrues—1 56 5.47 0.0066
Black River—R1 3 0.24 0.0131
OldRiver6—1 2 0.12 0.0131
BayouBourdeaux—1 71 6.23 0.0164
OldRiver2—1 14 6.95 0.0164
Ouachita River—R2 79 24.16 0.0164
OldRiver4—1 78 6.06 0.0230
Ouachita River—R1 237 50.89 0.0295
BayouJeansonne—1 42 3.27 0.0328

Continues on next column/page
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Table III continued from previous column/page

Reach ID (River—Reach) XS Len [mi] MAE [ft]
BigCanal—1 40 3.07 0.0361
OldRiverOutflow—SidneyMurray 8 19.39 0.0427
Mississippi—Below Loosahatch 2 0.60 0.0459
OldRiverOutflow—OverBank-Aux 6 1.51 0.0459
OldRiverOutflow—RedRiv-SidMur 10 3.91 0.0492
YazooRiver—Reach1 202 59.60 0.0525
OldRiver3—1 43 3.28 0.0558
DUMMY—1 3 0.04 0.0558
outlet—1 2 100.00 0.0591
OldRiver1—1 24 3.22 0.0623
Mississippi—Below Wolf 13 18.90 0.0722
Mississippi—Below Hatchie 14 7.67 0.0755
RedRiver—BelowBlack 9 8.24 0.0755
Mississippi—Below Nonconnah 11 6.88 0.0820
OldRiverOutflow—LowSill 4 0.45 0.0984
Boeuf River—R1 78 24.17 0.0984
Mississippi—Upper Miss 63 29.63 0.0984
OldRiverOutflow—Auxiliary 5 10.10 0.1017
Ohio River—Lower SOHS 2 0.20 0.1083
Ohio River—LD 52-53 10 10.23 0.1115
BayouJoson—1 70 25.79 0.1411
Mississippi—Below Obion 30 24.48 0.1509
Mississippi—Below St. Fran 31 39.52 0.1509
Tensas River—R1 16 7.89 0.2395
Cumberland River—Cumberland River 56 10.17 0.2461
Forked Deer—Forked Deer 42 4.62 0.2493
Tennessee River—Tennessee River 138 28.06 0.3117
Forked Deer—North Fork 58 6.10 0.3150
RedRiver—AboveBlackRiver 7 7.19 0.3314
Mississippi—Below Big Muddy 51 76.37 0.4197
RedRiver—BelowNatch 9 24.66 0.4364
Straight Slough—Straight Slough 5 1.22 0.4495
Mississippi—Below Cairo 72 112.65 0.4495
Obion River—Below Forked 83 12.34 0.4724
White River—White River 90 24.36 0.5229
Mississippi—Below Arkansas 81 100.58 0.5528
Atchafalaya—BelowOldRiver 172 30.99 0.6201
St. Francis—Above SS 16 3.54 0.6412
OldRiver5—1 7 0.20 0.6537
Little River—R1 11 9.86 0.7874
Big Muddy—Reach-1 29 25.65 0.8333
Black River—R3 35 23.70 0.8825
Nonconnah Cr—Nonconnah Cr 57 14.62 1.0335
Cat Oua R—R1 41 8.21 1.0542
YazooRiver—Reach2 53 12.65 1.2172
Mississippi—Below Vicksburg 42 137.20 1.2412
Arkansas River—Arkansas River 31 28.06 1.2967
YazooRiver—Reach1.5 43 10.63 1.3419
Wolf River—Wolf River 140 15.40 1.3484
BayNatch—1 160 12.32 1.4633
White River—Below Cache 77 15.34 1.4699
W-Wit—1 7 0.07 1.8209
Morganza Outlet—To Atchafalaya 26 25.08 1.9127
Forked Deer—South Fork 56 5.18 2.0046
Black River—R2 70 26.39 2.0965
Cache River—Cache River 72 49.58 2.1428
Loosahatchie—Loosahatchie 146 35.33 2.1555
Ohio River—OHS 3 0.13 2.2605
Obion River—Reach_1 198 33.77 3.6059
St. Francis—Below SS 21 5.61 3.9633
Hatchie River—Hatchie River 161 41.16 5.7316

C. Ablation Studies: Validating Architectural Choices

To validate our design, we conducted ablation studies on
the ‘Cache River—Cache River‘ reach, a case spanning 49.6
miles and discretized into 71 cross-sections. We systematically
removed key architectural blocks and feature groups from our
full proposed model to quantify their contribution. The results,
summarized in Table IV, demonstrate that each component is
critical for achieving high fidelity.

TABLE IV. ABLATION RESULTS ON THE CACHE RIVER.

Model Configuration Component Removed Stage MAE (ft)

Full Proposed Model (All components included) 2.14

Architecture Ablations
No FNO Block (Replaced with pointwise MLP) 9.12
No GRU Block (Replaced with last-frame encoding) 11.49

Feature Ablations
No Boundary Forcings Qup, Hdn channels 10.45
No Static Geometry zbed, zbank, nman, xcoord 12.62
No Derived Depth D = max(H − zbed, 0) 17.82
No Seasonal Phase st feature 16.04

a) Impact of Architecture: Both the temporal and spatial
blocks of the network are essential. Removing the FNO and
using a simple multilayer perceptron (MLP) head (‘noFNO‘)
degrades performance by over 4x (MAE 9.12 ft vs. 2.14 ft),
confirming that a global spatial operator is necessary to capture
long-range hydraulic dependencies. Similarly, removing the
GRU’s temporal memory (‘noGRU‘) and encoding only the
last known time step increases error by over 5x (MAE 11.49
ft), validating the need to process a sequence history.

b) Impact of Features: The ablation results confirm that
physically-informed feature engineering is vital. Removing
the derived auxiliary channels had the most severe impact:
omitting the derived depth channel increased MAE by over
8x to 17.82 ft, while removing the seasonal phase increased
it by over 7x to 16.04 ft. This highlights that providing the
model with features that encapsulate non-obvious physical
context is critical. Removing the core boundary conditions or
static geometry also caused a catastrophic drop in performance,
confirming that every channel in our proposed feature vector
contributes meaningfully to the final accuracy.

D. Qualitative Case Study: Error Propagation

To understand the nature of the errors in challenging cases,
we examine the full-year autoregressive rollout for the ‘Hatchie
River—Hatchie River‘ reach, which had the highest MAE.
Figure 4 shows the forecast hydrographs at twelve evenly
spaced cross-sections (XS) along the reach.

A clear spatial pattern emerges. At the upstream end (e.g., XS
0, XS 7), the surrogate tracks the HEC-RAS ground truth with
high fidelity, capturing the primary flood waves accurately.
However, performance degrades progressively downstream.
At the midpoint (e.g., XS 42), minor deviations appear. By
the downstream end (e.g., XS 63, XS 70, XS 77), the
model becomes unstable, introducing large, high-frequency
oscillations and diverging significantly from the ground truth.
This suggests a pattern of spatial error propagation, where
small inaccuracies from upstream are amplified as they are
passed downstream by the model.

VII. DISCUSSION

Our results show that a recurrent neural operator can emulate
year-long HEC-RAS runs with operational fidelity while
accelerating an ensemble forecast by 3.45×. The remaining
failure modes concentrate in a small set of hydraulically
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Figure 4. Year-long autoregressive rollout on the ‘Hatchie River‘ reach at 12
evenly spaced cross-sections. The surrogate (red, dashed) tracks the HEC-RAS
ground truth (black, solid) well at the upstream end (top-left panels) but
accumulates error and develops instabilities downstream (bottom-right panels).

complex reaches, yielding a heavy-tailed error distribution
(Table III). We summarize the key lessons and scope.

a) Exposure bias despite boundary anchoring.: The
Hatchie River case (Fig. 4) illustrates classic autoregressive
drift: small upstream errors accumulate and are propagated
downstream by the FNO’s global spatial coupling. Clamping
the true boundary hydrographs (Qup, Hdn) at every step acts
as a strong physical prior mirroring HEC-RAS inputs and
prevents catastrophic divergence in most reaches. The residual
instabilities on Hatchie indicate that internal dynamics can
overwhelm this anchoring. This suggests two complementary
remedies: (i) training-time strategies that reduce exposure bias
(e.g., scheduled sampling, noise injection on inputs) and (ii)
richer boundary/forcing information or data assimilation for
reaches with complex internal hydraulics.

b) Hydraulic regime, not size, drives difficulty.: Geo-
metric scale (reach length, cross-section count) shows no
reliable relationship with MAE in Table III. Long, well-gauged
main-stem reaches (e.g., Mississippi—Below Vicksburg) are
modeled accurately, whereas shorter tributaries with backwater
effects or prolonged low-flow spells (e.g., Hatchie River,
St. Francis—Below SS) dominate the tail. In practice, the
governing factor is the frequency and persistence of regimes
under-represented in training, not the number of cross-sections.

c) Operational scope and limits.: Today, the surrogate
is best used as a scenario-analysis accelerator for known
hydrologic regimes: (i) models are trained and evaluated per
reach, so network-scale feedbacks across confluences are not
yet represented; (ii) performance depends on the hydrologic
diversity seen in training generalization to far out-of-distribution
events is fragile; and (iii) evaluation assumes true boundary

forcings; operational deployment will inherit uncertainty from
boundary forecasts. Addressing these gaps will likely require
graph neural operators for topology-aware coupling, targeted
data augmentation to balance low-flow/backwater regimes, and
experiments with perturbed or forecast boundary conditions to
quantify skill degradation.

d) Takeaway.: Accuracy at minute-scale cost came from
three ingredients: (1) an architecture that separates temporal
memory (GRU) from global spatial coupling (Geo-FNO), (2)
physics-aware features including derived depth and seasonal
phase and (3) a stabilizing loss. The ablations substantiate each
ingredient’s contribution and explain where the current model
fails, thus charting a concrete path to basin-scale, autonomous
forecasting.

VIII. CONCLUSION

We presented a recurrent neural–operator surrogate for 1-D
HEC-RAS that delivers year-long, reach-wide forecasts at
operational fidelity. On the unseen 2011 hold-out across 71
reaches, the model achieves a 3.45× end-to-end speedup (40
vs. 139 minutes) while maintaining a median stage MAE of
0.28 ft, with 91.5% of reaches ≤ 2 ft.

Accuracy at minute-scale cost follows from three ingredients
validated by ablations: (i) a GRU for short-term memory
coupled to a Geo-FNO for global spatial coupling; (ii)
physics-aware features, especially derived depth and seasonal
phase; and (iii) a stabilizing loss together reducing Cache River
MAE from 12.9 ft (plain MSE) to 2.14 ft and preventing drift.

Current scope is intentionally conservative: models are
trained per reach (no network-scale feedbacks yet), skill
degrades for out-of-distribution regimes, and rollout stability
assumes true boundary forcings. These constraints point to
clear upgrades: topology-aware operators for basin coupling,
data/augmentation to balance challenging hydraulic regimes,
assimilation or forecasted boundaries to quantify resilience,
and a GPU rollout pipeline to unlock further wall-clock gains.

The surrogate is a practical scenario-analysis accelera-
tor today and a potentially viable path toward basin-scale,
near-real-time flood guidance with some further enhancements.
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