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Abstract— Target Strength (TS) is the logarithmic measure of 

the backscattered acoustic energy reflected toward a sound 

source when an acoustic wave encounters an organism. It 

depends on the organism’s size, shape, material properties, 

orientation, and the frequency of the wave, and thus carries 

information useful for identifying and characterizing marine 

organisms. Advanced broadband echosounders now allow 

detailed TS measurements of marine organisms over nearly 

continuous frequency ranges, which provide valuable 

information for biomass estimation and ecosystem monitoring. 

However, interpreting these TS measurements has 

traditionally relied on manual classification, which makes it 

difficult to extract biological characteristics for target 

classification or ecological analysis, especially given the 

complexity of broadband data. Physics-based backscattering 

models are versatile tools for modeling the TS frequency 

response given the shape and material properties of the 

scatterers. In this study, we employ an exact prolate spheroid 

model, representative of many marine organisms, to simulate 

broadband TS spectra for training machine learning models. 

These models aim to classify and characterize targets based on 

their TS frequency signatures. A hybrid one-Dimensional 

Convolutional Neural Network (1D-CNN) is proposed for the 

simultaneous classification (gas- vs. liquid-filled) and 

regression of geometric properties and compared against K-

Nearest Neighbors (KNN), Support Vector Machine (SVM), 

and Random Forrest (RF). Results show that while all models 

achieved perfect classification accuracy, the hybrid 1D-CNN 

clearly outperformed the others in parameter estimation. This 

demonstrates that simulation-driven machine learning can 

help overcome data scarcity and enable automated acoustic 

identification of mesopelagic organisms. 

Keywords-Acoustic target classification; machine learning; 

Convolutional neural network; prolate spheroid backscattering 

modeling. 

I.  INTRODUCTION 

Active acoustics is a versatile tool for monitoring marine 
life, offering unrivaled spatial and temporal resolution 
compared to other methods, such as net-based biological 
sampling, optical systems, or video recording. However, 
interpreting the collected echoes to classify organism size 
and species remains challenging. Converting acoustic data to 
biomass is especially difficult when the insonified volume 
contains mixed species and/or a diverse size distribution 

within the same species [1][2][3]. Broadband echosounders 
provide detailed spectra, but these are difficult to interpret 
manually, making large-scale analysis time-consuming and 
thereby motivating automated approaches. 

When an acoustic wave encounters organisms along its 
propagation path, the acoustic energy scatters in different 
patterns depending on the organism's size, shape, material 
properties, orientation, and the frequency of the wave [4][5]. 
A portion of this energy is reflected back toward the source, 
referred to as backscattering. Therefore, the backscattered 
signal—or its logarithmic measure, known as Target 
Strength (TS)—carries information that can be used to 
identify the object from which it originated. Since the TS of 
an organism varies with frequency, measuring TS over a 
broad, continuous frequency band provides more detailed 
information about the scatterers, thereby enhancing the 
ability to characterize organisms [6]. Broadband fisheries 
echosounders transmit frequency-modulated pulses, offering 
two main advantages [7][8]: (1) measurement across a nearly 
continuous frequency range, and (2) enhanced range 
resolution through pulse compression, which improves 
single-target detection. Therefore, the use of broadband 
echosounders improves the ability to identify organisms and 
to resolve their spatial distribution within aggregations, both 
of which are crucial for interpreting and converting acoustic 
echoes into meaningful biological information. 

Backscattering models are an essential tool for 
interpreting measured backscattered data from marine 
organisms [9]. Techniques to model acoustic backscattering 
range from analytical to numerical models. Numerical 
models can accommodate arbitrary geometries and 
inhomogeneous material properties, allowing detailed and 
realistic simulations [10]. However, their high computational 
cost can limit their practical use. Although most marine 
organisms have complex geometries and consist of 
inhomogeneous materials, backscattering models from 
canonical geometries with homogeneous material properties 
are often sufficient to acoustically represent key 
characteristics such as size, elongation, and orientation. For 
example, spherical models have long been used in fisheries 
acoustics due to their simplicity [11][12]. However, spherical 
models cannot capture elongation, which is a critical 
parameter for accurately representing many marine 
organisms or their main acoustic reflecting organ, e.g. gas-
bladder. 
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Figure 1.  Examples of TS(f) for prolate spheroids with parameters within the ranges in Table I. An illustration of a prolate spheroid with semi-major and 

semi-minor axes, a and b respectively, along with the incident angle , is shown in the upper left corner. 

 

Machine Learning (ML) techniques can be used to 
classify targets based on trained models that learn to find 
patterns within the broadband TS spectra. However, large, 
accurately labeled datasets are needed to develop robust 
machine learning models [13]. Acquiring such datasets is 
challenging and expensive in real-world marine 
environments [14]. 

While real acoustic datasets exist, they rarely provide 
reliable ground truth. To overcome this limitation, we use a 
physics-based simulation model to generate large synthetic 
datasets for training. On this basis, a novel hybrid one-
Dimensional Convolutional Neural Network (1D-CNN) is 
proposed for simultaneous classification (gas-filled vs liquid) 
and regression of geometric properties such as size, 
elongation and orientation. The performance of the 1D-CNN 
is then compared against traditional ML models. 

The remainder of the paper is organized as follows. 
Section II describes the methods for data generation and 
machine learning model training. Section III reports the 
results, and Section IV provides a discussion of the findings. 
Section V concludes the paper and outlines directions for 
future work. 

II. METHOD 

A. Physics-based acoustic backscattering modeling for 

synthetic data generation  

To generate synthetic broadband backscattering data 
from objects representing mesopelagic marine organisms, 
with and without gas bladders, we employed an optimized 
version of the fluid-filled prolate spheroid backscattering 
model [15]. This physics-based model provides accurate 
backscattering for liquid—and gas—filled targets over a 

wide frequency range and for all incident angles, i.e. relative 
orientation of the prolate spheroid axis to the direction of 
wave propagation. 

The prolate spheroids are represented by their volume 
(quantified by the equivalent spherical radius Req) and 
elongation (or aspect ratio α) instead of directly using semi 
major and minor axes, a and b, respectively. They are related 
by the following equations: 

b  = Req()  () 

a  =  × b  () 

This parameterization facilitates direct control over the size 
and shape of the modeled organisms, making it easier to 
explore a wide range of biologically relevant geometries. 
The range of parameters used to model different organisms 
are given in Table I. 

TABLE I.  PARAMETER RANGES USED FOR GENERATING SYNTHETIC 

ACOUSTIC DATA 

Parameter 
Targets 

Gas-filled Liquid-filled 

Equivalent radius (Req)  0.1–5 mm  5–20 mm 

Aspect ratio (α)  1.05–8.0  1.05–8.0 

Spheroid Density (ρs)  2–80 kg/m3  1.01–1.07 × (ρw) kg/m3 

Water Density (ρw)  1027 kg/m3  1027 kg/m3 

Spheroid Sound Speed (cs)  343 m/s  1.01-1.07 × (cw) m/s 

Water Sound Speed (cw)  1500 m/s  1500 m/s 

Incident angle (θ)  0.01–90°  0.01–90° 

Frequency range 10–260 kHz (0.5 kHz steps) 
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Figure 2.  Hybrid one-dimensional convolutional neural network architecture for acoustic target classification. 

 

 

B. Data Preprocessing and Machine Learning Setup 

The synthetic acoustic data generated by the prolate 

spheroid backscattering model underwent several 

preprocessing steps to prepare it for machine learning. The 

dataset consists of 30,000 simulated TS spectra, 15,000 

liquid-filled and 15,000 gas-filled targets. 
Each target is represented by a feature vector with 

corresponding labels. The input features consist of the 
broadband TS spectra. Each spectrum is represented as a 
vector of TS values, sampled at 0.5 kHz steps across the 
frequency range of 10 to 260 kHz. The models were trained 
to predict a classification label (liquid-filled or gas-filled) 
and three regression labels corresponding to the geometric 
properties of the prolate spheroid: the incident angle (θ), the 
semi-major axis (a), and the semi-minor axis (b). 

Normalization procedures are applied separately to the 
feature and label columns to ensure consistent scaling and 
improve model stability [16]. Each frequency TS value is 
standardized independently using training set statistics, 
transforming the data to have zero mean and unit variance. 
The continuous regression labels (θ, a and b) are also 
normalized to ensure that each parameter contributes equally 
to model training regardless of original scale. 

The complete dataset of 30,000 target instances is then 
partitioned into training, validation, and test subsets using an 
80/10/10 split. The training set (80%) is used for training the 
ML models and deriving normalization statistics. The 
validation set (10%) is used for hyperparameter tuning and 
model selection during training, as well as for monitoring 
overfitting. Finally, the test set (10%) is reserved for the 
final, unbiased evaluation of the trained models' 
performance. 

C. Machine learning models 

To classify the type and estimate geometric parameters 
from the TS spectra, a hybrid 1D-CNN was developed. The 
architecture was chosen for its effectiveness in automatically 
extracting hierarchical features from sequential data, like 
acoustic frequency spectra [17]. 

The network architecture, illustrated in Figure 2, was 
designed to process sequential TS data. The architecture 
incorporates advanced deep learning components, 
specifically residual blocks [18] and Squeeze-and-Excitation 
(SE) attention mechanisms [20], to improve feature 
extraction and training stability. The TS spectra is first 
processed through an initial 1D convolution layer, followed 
by a series of residual blocks. The residual blocks contain 
two 1D convolutional layers, batch normalization [19] and 
ReLU activations. Also integrated in these residual blocks 
are Squeeze and Excitation (SE) attention mechanisms that 
perform channel-wise feature weighting by compressing 
information through global average pooling and then 
learning channel relationships via two fully connected layers. 
The network ends in fully connected layers that lead to a 
multi-head output structure with dedicated heads for 
classification and regression. One head for classification of 
target type, one for regression of the incident angle (θ) and 
one for regression of the size parameters (a and b).   

For comparative analysis of the performance of the 1D-
CNN, three additional traditional machine learning models 
previously used in acoustic target classification research 
were tested. 

• K-Nearest Neighbors (KNN) [21]: An instance-
based learner classifying targets based on the 
majority class of their k nearest neighbors in the 
feature space, as applied by Cotter et al. [22]. 

• Support Vector Machine (SVM) [23]: Seeking an 
optimal hyperplane to separate classes or predict 
continuous values, utilized by Yang et al. [24] for 
underwater target recognition. 

• Random Forest (RF) [25]: An ensemble method 
constructing multiple decision trees on random 
subsets of data and features, aggregating their 
predictions, as employed by Gugele et al. [26]. 

These traditional models were not hyperparameter tuned 
and served as a baseline to evaluate the 1D-CNN. 
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Figure 3.  Regression performance of the hybrid 1D-CNN model on test data showing true values against predicted values for (top-left) angle (θ), (top-
right) semi-major axis (a), (bottom-left) semi-minor axis (b), and (bottom-right) dervided aspect ratio (α = a/b). Blue points represent gas-filled targets, and 

orange points represent liquid targets. 

 
 

D. Training and evaluation 

The 1D-CNN was trained using a custom multi-
component loss function designed to address both the 

classification and regression tasks. The total loss () is a 
weighted sum of four components as shown in (3): 

  = c  c + r  ( + ab) + cons  cons () 

where c is cross-entropy loss for the binary classification 
task. For regression, Huber loss [27] was used for the angle 

(θ) and Mean Squared Error (MSE) for the size parameters 

(ab). To enforce the geometric relationship between the 

semi-major and minor axes, a consistency loss (cons.), also 
based on Huber loss, was applied by comparing the predicted 
aspect ratio (αpred = apred / bpred) to its ground truth value. The 
weights were determined through hyperparameter tuning and 

set to c = 0.1, r = 2.0, and cons = 0.5 to prioritize the more 
challenging regression task. 

Model performance was evaluated on the unseen test set. 
Classification performance was measured by accuracy, while 
regression performance was assessed using the coefficient of 
determination (R²) and Root Mean Squared Error (RMSE) 
for θ, a, b, and the derived α. A composite score, averaging 
the classification accuracy and the R² scores of the three 
primary regression targets, was used for overall model 
comparison. 

III. RESULTS 

A. Performance Comparison Across Models 

 Using the simulated backscattering frequency responses, 
we first classified the targets (i.e., liquid- or gas-filled), then 
estimated the geometrical properties (semi-major and semi-
minor axes) and the incident angle of the prolate spheroids 
based on their wideband target strength frequency responses, 
using different ML models. Since the data are simulated, the 
true model parameters are known, allowing us to 
quantitatively evaluate the estimates produced by the various 
ML models. The performance of the models in both 
classification and morphological parameter estimation is 
summarized in Table II.  

TABLE II.  COMPARATIVE REGRESSION PERFORMANCE  (R² SCORES), 
CLASSIFICATION ACCURACY  AND COMPOSITE SCORE  ON  SYNTHETIC  TEST 

DATA 

Parameter SVM KNN RF 1D-CNN 

R2 for θ 0.742  0.751 0.853 0.974 

R2 for a 0.795 0.898 0.902 0.997 

R2 for b 0.911 0.931 0.942 0.996 

Clas. Acc 1.000 1.000 1.000 1.000 

Composite 
score 

0.719 0.804 0.867 0.992 
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B. Detailed performance of Hybrid 1d-CNN 

All tested models achieved a perfect classification 

accuracy of 1.00, correctly identifying every target as either 

gas-filled or liquid-filled. The primary differences between 

the models emerged in the regression tasks. Given its 

superior regression performance, the results of the hybrid 

1D-CNN were analyzed in further detail. Figure 3 presents 

scatter plots of the model's predicted values against the true 

values for each regression target. 

The model demonstrated high precision in predicting the 

semi-major axis a and semi-minor axis b; data points were 

tightly clustered along the identity line for both gas-filled 

and liquid-filled targets, indicating the model's robustness 

across target types and size ranges. Predictions for the 

incident angle θ were also strong, though with more visible 

scatter compared to the size parameters a and b, with 

notable gas-filled outliers. The derived aspect ratio (α=a/b) 

also showed good performance, but with some increased 

scatter for targets with higher aspect ratios (α > 4). 

C. Analysis of prediction outliers 

Outlier analysis revealed consistent patterns for both 

incident angle (θ) and aspect ratio (α).  

For incident angle (θ) estimation, the largest errors 

occurred with small, gas-filled targets with simple TS 

spectra containing few distinct resonance peaks. The model 

therefore defaulted toward predicting the training mean 

(45°), creating the horizontal band of outliers seen in Figure 

3. In contrast, liquid-filled outliers showed smaller angle 

errors and were typically targets with low aspect ratio (α ≈ 

1.05), where the orientation is less defined physically as the 

target approaches a perfect sphere. 

A similar pattern emerged for aspect ratio (α) prediction, 

where most outliers were again small, gas-filled targets with 

spectrally simple signatures. This result aligns with the 

physical principle that accurate estimation of elongation 

requires at least two distinct resonance peaks [28], a feature 

these outlier spectra lacked. 

IV. DISCUSSION 

The tested machine learning models, including shallow 
learners (KNN, SVM, and RF) and a deep learner (1D-
CNN), successfully classified gas- versus liquid-filled 
targets. This is primarily due to the distinct differences in the 
TS(f) responses between gas- and liquid-filled targets, as 
observed in Figure 1. In contrast, the models showed varying 
levels of performance in the regression task. Among them, 
the 1D-CNN demonstrated the highest accuracy in 
estimating the model parameters, evidenced by high R2 

scores for a, b, and  (see Table II). However, some outliers 
were observed in the predictions, where the parameters were 
not correctly estimated. This was especially the case for gas-

filled targets in the prediction of angle  and the computed 
aspect ratio α. Further investigation of the outliers revealed 
that they mostly corresponded to small targets (i.e. small Req) 

(see [29] for more details). The TS frequency response of 
small gas-filled targets is known to be insensitive to shape 
and incident angle near the resonance frequency [30], 
explaining the model's difficulty in the 10–260 kHz 
frequency band. An example TS(f) response of such small 
targets is shown in the lower right panel of Figure 1. For 
deep learning approaches such as neural networks, large 
amounts of data are typically required; therefore, the use of 
optimized code for computing TS(f) was critical. Although 
the shallow learners achieved lower R2 scores, it is important 
to note that less effort was devoted to tuning these models 
compared to the 1D-CNN. It is possible that more extensive 
hyperparameter optimization and validation could lead to 
improved performance for the shallow models.   

V. CONCLUSION AND FUTURE WORK  

 This study demonstrates that using machine learning, 
more particularly a 1D-CNN trained exclusively on physics-
based simulated data, can accurately classify and estimate 
geometric properties of acoustic targets. We demonstrated 
that the hybrid 1D-CNN outperforms traditional machine 
learning methods such as KNN, SVM, and RF. While all 
models achieved perfect classification of gas- and liquid-
filled targets, the 1D-CNN was notably more accurate in the 
regression task of estimating the targets' geometric 
properties, including semi-major/minor axes (a, b) and 
incident angle (θ). 

Outlier analysis revealed specific challenges, particularly 
in estimating geometric parameters of small, gas-filled 
targets, with simpler spectral features lacking distinct 
resonance peaks. Addressing these limitations by expanding 
frequency ranges or incorporating additional acoustic 
parameters in future research could enhance performance 
further. Although this study focused on simulated data, 
preliminary tests on a small real dataset [29] showed 
encouraging results, indicating potential for application to in 
situ measurements. 

We conclude that this simulation-driven approach is a 
powerful and viable strategy for overcoming data-scarcity in 
marine acoustics. It represents a promising step toward the 
automated, non-invasive classification of marine organisms, 
with potential application in real-time classification of 
mesopelagic organisms during acoustic surveys, supporting 
biomass estimation and reducing the need for manual 
analysis. 
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