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Abstract— Target Strength (TS) is the logarithmic measure of
the backscattered acoustic energy reflected toward a sound
source when an acoustic wave encounters an organism. It
depends on the organism’s size, shape, material properties,
orientation, and the frequency of the wave, and thus carries
information useful for identifying and characterizing marine
organisms. Advanced broadband echosounders now allow
detailed TS measurements of marine organisms over nearly
continuous frequency ranges, which provide valuable
information for biomass estimation and ecosystem monitoring.
However, interpreting these TS measurements has
traditionally relied on manual classification, which makes it
difficult to extract biological characteristics for target
classification or ecological analysis, especially given the
complexity of broadband data. Physics-based backscattering
models are versatile tools for modeling the TS frequency
response given the shape and material properties of the
scatterers. In this study, we employ an exact prolate spheroid
model, representative of many marine organisms, to simulate
broadband TS spectra for training machine learning models.
These models aim to classify and characterize targets based on
their TS frequency signatures. A hybrid one-Dimensional
Convolutional Neural Network (1D-CNN) is proposed for the
simultaneous classification (gas- vs. liquid-filled) and
regression of geometric properties and compared against K-
Nearest Neighbors (KNN), Support Vector Machine (SVM),
and Random Forrest (RF). Results show that while all models
achieved perfect classification accuracy, the hybrid 1D-CNN
clearly outperformed the others in parameter estimation. This
demonstrates that simulation-driven machine learning can
help overcome data scarcity and enable automated acoustic
identification of mesopelagic organisms.

Keywords-Acoustic target classification; machine learning;
Convolutional neural network; prolate spheroid backscattering
modeling.

L INTRODUCTION

Active acoustics is a versatile tool for monitoring marine
life, offering unrivaled spatial and temporal resolution
compared to other methods, such as net-based biological
sampling, optical systems, or video recording. However,
interpreting the collected echoes to classify organism size
and species remains challenging. Converting acoustic data to
biomass is especially difficult when the insonified volume
contains mixed species and/or a diverse size distribution

within the same species [1][2][3]. Broadband echosounders
provide detailed spectra, but these are difficult to interpret
manually, making large-scale analysis time-consuming and
thereby motivating automated approaches.

When an acoustic wave encounters organisms along its
propagation path, the acoustic energy scatters in different
patterns depending on the organism's size, shape, material
properties, orientation, and the frequency of the wave [4][5].
A portion of this energy is reflected back toward the source,
referred to as backscattering. Therefore, the backscattered
signal—or its logarithmic measure, known as Target
Strength (TS)—carries information that can be used to
identify the object from which it originated. Since the TS of
an organism varies with frequency, measuring TS over a
broad, continuous frequency band provides more detailed
information about the scatterers, thereby enhancing the
ability to characterize organisms [6]. Broadband fisheries
echosounders transmit frequency-modulated pulses, offering
two main advantages [7][8]: (1) measurement across a nearly
continuous frequency range, and (2) enhanced range
resolution through pulse compression, which improves
single-target detection. Therefore, the use of broadband
echosounders improves the ability to identify organisms and
to resolve their spatial distribution within aggregations, both
of which are crucial for interpreting and converting acoustic
echoes into meaningful biological information.

Backscattering models are an essential tool for
interpreting measured backscattered data from marine
organisms [9]. Techniques to model acoustic backscattering
range from analytical to numerical models. Numerical
models can accommodate arbitrary geometries and
inhomogeneous material properties, allowing detailed and
realistic simulations [10]. However, their high computational
cost can limit their practical use. Although most marine
organisms have complex geometries and consist of
inhomogeneous materials, backscattering models from
canonical geometries with homogeneous material properties
are often sufficient to acoustically represent key
characteristics such as size, elongation, and orientation. For
example, spherical models have long been used in fisheries
acoustics due to their simplicity [11][12]. However, spherical
models cannot capture elongation, which is a critical
parameter for accurately representing many marine
organisms or their main acoustic reflecting organ, e.g. gas-
bladder.
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Machine Learning (ML) techniques can be used to
classify targets based on trained models that learn to find
patterns within the broadband TS spectra. However, large,
accurately labeled datasets are needed to develop robust
machine learning models [13]. Acquiring such datasets is
challenging and expensive in real-world marine
environments [14].

While real acoustic datasets exist, they rarely provide
reliable ground truth. To overcome this limitation, we use a
physics-based simulation model to generate large synthetic
datasets for training. On this basis, a novel hybrid one-
Dimensional Convolutional Neural Network (1D-CNN) is
proposed for simultaneous classification (gas-filled vs liquid)
and regression of geometric properties such as size,
elongation and orientation. The performance of the 1D-CNN
is then compared against traditional ML models.

The remainder of the paper is organized as follows.
Section II describes the methods for data generation and
machine learning model training. Section III reports the

wide frequency range and for all incident angles, i.e. relative
orientation of the prolate spheroid axis to the direction of
wave propagation.

The prolate spheroids are represented by their volume
(quantified by the equivalent spherical radius R.,) and
elongation (or aspect ratio a) instead of directly using semi
major and minor axes, a and b, respectively. They are related
by the following equations:

b =Reg/(a?), (1)
a=oaxb. 2)

This parameterization facilitates direct control over the size
and shape of the modeled organisms, making it easier to
explore a wide range of biologically relevant geometries.
The range of parameters used to model different organisms
are given in Table I.

results, and Section IV provides a discussion of the findings. TABLE L PARAMETER RANGES USED FOR GENERATING SYNTHETIC
Section V concludes the paper and outlines directions for ACOUSTIC DATA
future work. T Targets
Gas-filled Liquid-filled
II.  METHOD Equivalent radius (Req) 0.1-5 mm 520 mm
Aspect ratio (o) 1.05-8.0 1.05-8.0
A.  Physics-based acoustic backscattering modeling for Spheroid Density (p,) 2-80 kg/m’ 1.01-1.07 x (p,,) kg/m*
synthetic data generation Water Density (pw) 1027 kg/m® 1027 kg/m’
. . Spheroid Sound Speed (c¢;) 343 m/s 1.01-1.07 X (¢y) m/s
To generate synth@tlc broadbanq backgcatterlng ' data oo Speed (ca) 1500 m/s 1500 m/s
from objects representing mesopelagic marine organisms,  [Tucident angle (6) 0.01-90° 0.01-90°
with and without gas bladders, we employed an optimized Frequency range 10260 kHz (0.5 kHz steps)
version of the fluid-filled prolate spheroid backscattering
model [15]. This physics-based model provides accurate
backscattering for liquid—and gas—filled targets over a
Direction of
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Figure 1. Examples of TS(f) for prolate spheroids with parameters within the ranges in Table I. An illustration of a prolate spheroid with semi-major and
semi-minor axes, a and b respectively, along with the incident angle 0, is shown in the upper left corner.
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B. Data Preprocessing and Machine Learning Setup

The synthetic acoustic data generated by the prolate
spheroid  backscattering model underwent several
preprocessing steps to prepare it for machine learning. The
dataset consists of 30,000 simulated TS spectra, 15,000
liquid-filled and 15,000 gas-filled targets.

Each target is represented by a feature vector with
corresponding labels. The input features consist of the
broadband TS spectra. Each spectrum is represented as a
vector of TS values, sampled at 0.5 kHz steps across the
frequency range of 10 to 260 kHz. The models were trained
to predict a classification label (liquid-filled or gas-filled)
and three regression labels corresponding to the geometric
properties of the prolate spheroid: the incident angle (0), the
semi-major axis (a), and the semi-minor axis (b).

Normalization procedures are applied separately to the
feature and label columns to ensure consistent scaling and
improve model stability [16]. Each frequency TS value is
standardized independently using training set statistics,
transforming the data to have zero mean and unit variance.
The continuous regression labels (0, a and b) are also
normalized to ensure that each parameter contributes equally
to model training regardless of original scale.

The complete dataset of 30,000 target instances is then
partitioned into training, validation, and test subsets using an
80/10/10 split. The training set (80%) is used for training the
ML models and deriving normalization statistics. The
validation set (10%) is used for hyperparameter tuning and
model selection during training, as well as for monitoring
overfitting. Finally, the test set (10%) is reserved for the
final, unbiased evaluation of the trained models'
performance.

C. Machine learning models

To classify the type and estimate geometric parameters
from the TS spectra, a hybrid 1D-CNN was developed. The
architecture was chosen for its effectiveness in automatically
extracting hierarchical features from sequential data, like
acoustic frequency spectra [17].

Input
ConvlD
MaxPool1D

i |F._.-‘.f\\ L

ResidualBlock with SE Details:

Squeeze-and-Excitation (SE) Block

Global Avg

Pooling >

- Sigmoid

ResBlock
with SE
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The network architecture, illustrated in Figure 2, was
designed to process sequential TS data. The architecture
incorporates advanced deep learning components,
specifically residual blocks [18] and Squeeze-and-Excitation
(SE) attention mechanisms [20], to improve feature
extraction and training stability. The TS spectra is first
processed through an initial 1D convolution layer, followed
by a series of residual blocks. The residual blocks contain
two 1D convolutional layers, batch normalization [19] and
ReLU activations. Also integrated in these residual blocks
are Squeeze and Excitation (SE) attention mechanisms that
perform channel-wise feature weighting by compressing
information through global average pooling and then
learning channel relationships via two fully connected layers.
The network ends in fully connected layers that lead to a
multi-head output structure with dedicated heads for
classification and regression. One head for classification of
target type, one for regression of the incident angle (0) and
one for regression of the size parameters (a and b).

For comparative analysis of the performance of the 1D-
CNN, three additional traditional machine learning models
previously used in acoustic target classification research
were tested.

. K-Nearest Neighbors (KNN) [21]: An instance-
based learner classifying targets based on the
majority class of their k nearest neighbors in the
feature space, as applied by Cotter et al. [22].

. Support Vector Machine (SVM) [23]: Seeking an
optimal hyperplane to separate classes or predict
continuous values, utilized by Yang et al. [24] for
underwater target recognition.

. Random Forest (RF) [25]: An ensemble method
constructing multiple decision trees on random
subsets of data and features, aggregating their
predictions, as employed by Gugele et al. [26].

These traditional models were not hyperparameter tuned
and served as a baseline to evaluate the 1D-CNN.

Fully connected layers Prediction
—
ConvlD » Class
Flattened
Features
_’éz —»{ Theta (9)
—> (ab)
-

Figure 2. Hybrid one-dimensional convolutional neural network architecture for acoustic target classification.
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D. Training and evaluation

The 1D-CNN was trained using a custom multi-
component loss function designed to address both the
classification and regression tasks. The total loss (A) is a
weighted sum of four components as shown in (3):

A=wc¢  Ac+ o - (AG + Aab) + Mcons * Acons~ (3)

where A. is cross-entropy loss for the binary classification
task. For regression, Huber loss [27] was used for the angle
(Ap) and Mean Squared Error (MSE) for the size parameters
(Aav). To enforce the geometric relationship between the
semi-major and minor axes, a consistency 10ss (Acons.), also
based on Huber loss, was applied by comparing the predicted
aspect ratio (Opred = apred / bpred) to its ground truth value. The
weights were determined through hyperparameter tuning and
setto . = 0.1, ®r = 2.0, and ®cons = 0.5 to prioritize the more
challenging regression task.

Model performance was evaluated on the unseen test set.
Classification performance was measured by accuracy, while
regression performance was assessed using the coefficient of
determination (R?) and Root Mean Squared Error (RMSE)
for 6, a, b, and the derived a. A composite score, averaging
the classification accuracy and the R? scores of the three
primary regression targets, was used for overall model
comparison.

III. RESULTS

A.  Performance Comparison Across Models

Using the simulated backscattering frequency responses,
we first classified the targets (i.e., liquid- or gas-filled), then
estimated the geometrical properties (semi-major and semi-
minor axes) and the incident angle of the prolate spheroids
based on their wideband target strength frequency responses,
using different ML models. Since the data are simulated, the
true model parameters are known, allowing us to
quantitatively evaluate the estimates produced by the various
ML models. The performance of the models in both
classification and morphological parameter estimation is
summarized in Table II.

TABLE I COMPARATIVE REGRESSION PERFORMANCE (R? SCORES),
CLASSIFICATION ACCURACY AND COMPOSITE SCORE ON SYNTHETIC TEST
DATA

Parameter SVM KNN RF 1D-CNN
R? for 0 0.742 0.751 0.853 0.974
R? for a 0.795 0.898 0.902 0.997
R? for b 0911 0.931 0.942 0.996
Clas. Acc 1.000 1.000 1.000 1.000
Composite 0.719 0.804 0.867 0.992
score
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Figure 3. Regression performance of the hybrid 1D-CNN model on test data showing true values against predicted values for (top-left) angle (), (top-
right) semi-major axis (a), (bottom-left) semi-minor axis (b), and (bottom-right) dervided aspect ratio (o = a/b). Blue points represent gas-filled targets, and
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B.  Detailed performance of Hybrid 1d-CNN

All tested models achieved a perfect classification
accuracy of 1.00, correctly identifying every target as either
gas-filled or liquid-filled. The primary differences between
the models emerged in the regression tasks. Given its
superior regression performance, the results of the hybrid
1D-CNN were analyzed in further detail. Figure 3 presents
scatter plots of the model's predicted values against the true
values for each regression target.

The model demonstrated high precision in predicting the
semi-major axis a and semi-minor axis b; data points were
tightly clustered along the identity line for both gas-filled
and liquid-filled targets, indicating the model's robustness
across target types and size ranges. Predictions for the
incident angle # were also strong, though with more visible
scatter compared to the size parameters a and b, with
notable gas-filled outliers. The derived aspect ratio (a=a/b)
also showed good performance, but with some increased
scatter for targets with higher aspect ratios (a > 4).

C. Analysis of prediction outliers

Outlier analysis revealed consistent patterns for both
incident angle (0) and aspect ratio (o).

For incident angle (0) estimation, the largest errors
occurred with small, gas-filled targets with simple TS
spectra containing few distinct resonance peaks. The model
therefore defaulted toward predicting the training mean
(45°), creating the horizontal band of outliers seen in Figure
3. In contrast, liquid-filled outliers showed smaller angle
errors and were typically targets with low aspect ratio (o ~
1.05), where the orientation is less defined physically as the
target approaches a perfect sphere.

A similar pattern emerged for aspect ratio (o)) prediction,
where most outliers were again small, gas-filled targets with
spectrally simple signatures. This result aligns with the
physical principle that accurate estimation of elongation
requires at least two distinct resonance peaks [28], a feature
these outlier spectra lacked.

IV. DISCUSSION

The tested machine learning models, including shallow
learners (KNN, SVM, and RF) and a deep learner (1D-
CNN), successfully classified gas- versus liquid-filled
targets. This is primarily due to the distinct differences in the
TS(f) responses between gas- and liquid-filled targets, as
observed in Figure 1. In contrast, the models showed varying
levels of performance in the regression task. Among them,
the 1D-CNN demonstrated the highest accuracy in
estimating the model parameters, evidenced by high R?
scores for a, b, and @ (see Table II). However, some outliers
were observed in the predictions, where the parameters were
not correctly estimated. This was especially the case for gas-
filled targets in the prediction of angle 6 and the computed
aspect ratio o. Further investigation of the outliers revealed
that they mostly corresponded to small targets (i.e. small Req)

(see [29] for more details). The TS frequency response of
small gas-filled targets is known to be insensitive to shape
and incident angle near the resonance frequency [30],
explaining the model's difficulty in the 10-260 kHz
frequency band. An example TS(f) response of such small
targets is shown in the lower right panel of Figure 1. For
deep learning approaches such as neural networks, large
amounts of data are typically required; therefore, the use of
optimized code for computing TS(f) was critical. Although
the shallow learners achieved lower R? scores, it is important
to note that less effort was devoted to tuning these models
compared to the 1D-CNN. It is possible that more extensive
hyperparameter optimization and validation could lead to
improved performance for the shallow models.

V. CONCLUSION AND FUTURE WORK

This study demonstrates that using machine learning,
more particularly a 1D-CNN trained exclusively on physics-
based simulated data, can accurately classify and estimate
geometric properties of acoustic targets. We demonstrated
that the hybrid 1D-CNN outperforms traditional machine
learning methods such as KNN, SVM, and RF. While all
models achieved perfect classification of gas- and liquid-
filled targets, the 1D-CNN was notably more accurate in the
regression task of estimating the targets' geometric
properties, including semi-major/minor axes (a, b) and
incident angle (8).

Outlier analysis revealed specific challenges, particularly
in estimating geometric parameters of small, gas-filled
targets, with simpler spectral features lacking distinct
resonance peaks. Addressing these limitations by expanding
frequency ranges or incorporating additional acoustic
parameters in future research could enhance performance
further. Although this study focused on simulated data,
preliminary tests on a small real dataset [29] showed
encouraging results, indicating potential for application to in
situ measurements.

We conclude that this simulation-driven approach is a
powerful and viable strategy for overcoming data-scarcity in
marine acoustics. It represents a promising step toward the
automated, non-invasive classification of marine organisms,
with potential application in real-time classification of
mesopelagic organisms during acoustic surveys, supporting
biomass estimation and reducing the need for manual
analysis.
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