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Abstract—Accurate and sustainable monitoring of marine
biodiversity is crucial for effective fisheries management and
conservation. Traditional fish population assessments, relying on
manual annotation and invasive techniques, are labor-intensive
and potentially harmful to marine ecosystems. This work presents
a Semi-Supervised Learning (SSL) approach that leverages ex-
tensive unlabeled underwater video data to significantly enhance
object detection performance for fish species. By integrating the
YOLOVS object detector with Multi-Object Tracking (MOT) al-
gorithms, specifically ByteTrack, a novel methodology is proposed
to generate high-quality pseudolabels from temporal sequences.
Iterative training incorporating these pseudolabels consistently
improved model precision and recall, with the best-performing
approach (ByteTrack with an extrapolated heuristic) demonstrat-
ing average precision of 90%, recall of 70%, mAPS50 of 74%,
and mAP50-95 of 59%. Notably, scores improved substantially
over the baseline supervised model on all metrics. These results
underscore the potential of temporally informed pseudolabeling
in enhancing fish detection accuracy and robustness, reducing
reliance on manual annotations and supporting sustainable
marine monitoring practices.

Keywords-Image classifcation; machine learning; species recog-
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I. INTRODUCTION

Traditionally, methods for monitoring marine ecosystems
include trawling, netting, and manual visual surveys by divers,
which are labor intensive, costly, and often disruptive to
habitats or producing bycatch. Less invasive methods using
underwater cameras, such as Baited Remote Underwater Video
(BRUV) and Remote Underwater Video (RUV), are often an
attractive alternative [1][2]. To process the large volumes of
collected video data, it is necessary to use automated analy-
sis tools, typically object detection models [3][4]. However,
training such models requires large amounts of high-quality,
labeled data, which is costly to produce.

To address this limitation, we here investigate semi-
supervised learning [5], an automated method to iteratively
generate training data sets using predictions from preliminary
models (pseudolabels) that are considered sufficiently reliable.
In contrast to earlier work, we selected the pseudolabeled data
to use based on temporal information (i.e., tracking) rather than
more commonly used confidence scores. This is particularly
advantageous in this setting, since an abundance of temporally
contiguous video or image data can be produced, but expert
annotation is time consuming and requires skilled curators.

The rest of the paper is structured as follows. In Section
I, we describe the data set and the method for generating
pseudolabels, as well as the training regime. In Section III,
we present the results, and select the best performing method

Figure 1. An example from the data set showing several annotated fish of
various species (Photo by Erling Svendsen, used with permission).

to investigate further. In Section IV, we discuss the results
and their implications, and propose an explanation for the
observations, before we conclude in Section V.

II. METHODS

For this study, we used a data set consisting of 1248 images
from a combination of sources (RUVs, photos by divers)
under different conditions and with variable resolutions (see
Figure 1 for an example). The annotation by experts from the
Institute of Marine Research include 10 categories (Figure 2):
corkwing wrasse (Symphodus melops; male and female), two-
spotted goby (Pomatoschistus flavescens), goldsinny (Cteno-
labrus rupestris, rock cook (Centrolabrus exoletus, cuckoo
wrasse (Labrus mixtus male and female), pollack (Pollachius
pollachius), ballan wrasse (Labrus bergylta), and unknown fish
that could not be labeled to the species level due to low
visibility or by being too distant from the camera. In addi-
tion, six unannotated videos from similar habitats were used
as sources of pseudolabeled frames for the semi-supervised
training. As some species were not present or very scarce in
the unlabeled data, the semi-supervised method is only trained
on five of the classes: male and female corkwing, two-spotted
goby, goldsinny, and ballan.

The object detection model used was YOLOv8 (Ultralytics,
2023), a state-of-the-art single pass object detector [6], com-
bined with two advanced tracking algorithms ByteTrack [7]
and DeepSort [8] to construct an iterative pipeline:

1. Base Model Training: An initial YOLOvVS model
(YOLOV8x, the largest variant) was trained using a smaller,
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Figure 2. The distribution of the classes of annotated objects in the data set.

manually annotated dataset. This provides the baseline for
performance evaluation.

2. Pseudolabel Generation using Temporal Information:
The trained model is then used to process unlabeled un-
derwater video recordings and extract pseudolabeled data as
illustrated in Figure 3. By integrating Multi-Object Tracking
(MOT) algorithms (ByteTrack and DeepSORT), frames with
objects that are missed or given low score by the detector can
still be identified with high confidence. Two heuristics were
investigated for selecting frames to generate pseudolabels:

A. Interpolated Intermediate Labels: This heuristic infers
an object’s presence in intermediate frames if it is detected by
the model in preceding and subsequent frames, and the MOT
algorithm assigns the same track ID. This method yields fewer
but potentially highly accurate pseudolabels.

B. Extrapolated Labels: This more inclusive approach re-
quires an object to be natively detected at least three times
consecutively. All subsequent detections of that object by the
MOT algorithm are included, forming an unbroken chain, even
if the native model fails to detect it in every frame. This
significantly increases the volume of pseudolabeled data.

3. Iterative Retraining: The pseudolabels generated are
combined with the original labeled dataset, and the model is
retrained. It is crucial to retain the original data to prevent
catastrophic forgetting of classes not present in the video
recordings. The learning rate of the AdamW optimizer is
reset at the start of each new training phase to facilitate rapid
adjustment and prevent trapping in suboptimal local minima.
This iterative process (pseudolabel generation followed by
retraining) is repeated for multiple cycles to progressively
improve the model.
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Figure 3. The process for generating the base model and the four
pseudolabeled data sets (step 1 and step 2), using automated labeling of
video data, tracking, and label interpolation and extrapolation.

TABLE I. PERFORMANCE METRICS AFTER 100 EPOCHS OF TRAINING.

Model Prec Recall mAP50 | mAP50-95
DS, inp | 0.74988 | 0.56890 | 0.61023 | 0.47017
DS, exp | 0.66251 | 0.56209 | 0.57969 | 0.45028
BT, inp | 0.70776 | 0.53875 | 0.58142 | 0.44878
BT, exp | 0.88792 | 0.62665 | 0.69120 | 0.52972

III. RESULTS

The study rigorously evaluated four configurations: Byte-
Track with interpolated intermediate labels, DeepSORT with
interpolated intermediate labels, ByteTrack with extrapolated
labels, and DeepSORT with extrapolated labels. Each configu-
ration was run for 100 epochs (50 supervised, followed by 50
semi-supervised with pseudolabels) which yielded the results
in Table I. We see that all models perform adequately, but
ByteTrack with extrapolated labels consistently outperformed
the other models.

In order to explore the limits of semi-supervised training, the
baseline and ByteTrack with extrapolation models were trained
for 250 epochs. In Figure 4, we can see how the different
components of the loss rapidly decrease both for training
(top row) and validation (bottom row) data, while the four
different performance measures increase correspondingly. We
also observe five distinct jumps in the graphs, these are caused
by introduction of new data and resetting of the learning rate
for each iteration, which cause an initial worsening of scores
before the model gradually converges again.

The performance statistics on the test set after 250 epochs is
shown in Table II. We see that using semi-supervised training
with ByteTrack and the extrapolated pseudolabeling scheme
results in substantial improvements for all metrics.

Per class improvements are shown in Figure 5. As expected,
classes present in the semi-supervised training data (shown
in solid colors) see substantial improvements on all metrics.
Classes not present (shown with faded colors) see slight
degradation in precision, and mAP, but surprisingly recall
improves also for these classes.
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Figure 4. Training from ByteTrack tracks with extrapolated labels for 250 epochs (one iterations of supervised followed by four iterations of
semi-supervised training).

TABLE II. PERFORMANCE OF BASELINE AND BYTETRACK WITH
EXTRAPOLATION MODELS AFTER EXTENSIVE (250 EPOCHS) TRAINING.

Model | Prec | Recall | mAP50 | mAP50-95
Base 0.75652 | 0.52468 | 0.57954 | 0.48811
BT, exp | 0.90011 | 0.69644 | 0.73863 | 0.59468

IV. DISCUSSION

The most effective approach was ByteTrack combined with
the extrapolated heuristic. This configuration consistently out-
performed all other tested methods, as well as the baseline
supervised model. The results demonstrate that leveraging
temporal information through pseudolabeling significantly en-
hances fish detection accuracy and consistency. The substantial
improvements in precision, recall, and mAP for the pseu-
dolabeled classes, coupled with minimal negative impact on
other classes, validate the effectiveness of this approach in
mitigating annotation scarcity.

A crucial insight from this study is the progressive mitiga-
tion of initial model biases through iterative pseudolabeling.
For instance, a systematic error where parts of the monitoring
equipment were misclassified as "corkwing male" in early
iterations (Figure 6) was effectively corrected and eliminated
in later iterations using ByteTrack with extrapolated labels.
This highlights the self-correcting nature of the temporal
semi-supervised framework, guiding the model towards more
accurate predictions over time.

The choice of MOT algorithm also proved critical. Byte-
Track consistently outperformed DeepSORT in this semi-
supervised setup. We suspect the discrepancy is caused by the
use of Kalman filters in DeepSORT, which can interpolate

predictions even when the object is lost by the detection
model. While beneficial in predictable scenarios, this can
lead to inaccurate pseudolabels for fish due to their often
erratic movements, possibly creating an "off-policy" learn-
ing situation akin to the "Deadly Triad" in Reinforcement
Learning, which can impede stable convergence. ByteTrack,
by contrast, relies solely on the detector’s predictions, ensuring
a stronger alignment between pseudolabels and the model’s
current capabilities, thus avoiding such instability.
Semi-supervised learning has been used effectively in many
different settings, but selecting pseudolabeled data to train on
can be difficult. Using classifier confidence is an option [9],
but tends in our experience to improve the classifier where
it is already strong. Using augmentation [10] or taking class
balance into account [11] may help to mitigate this, but by
extracting presudolabels from temporal information removes
(or at least reduces) the dependence on the classifier itself
from the selection process. Although temporal pseudolabeling
methods have been attempted before (e.g., [12]), our approach
distinguishes itself by targeting the model’s weaknesses rather
than reinforcing its strengths. By relying on MOT algorithms
to generate labels specifically where the base model fails to
detect objects, it directly addresses gaps in detection capability.

V. CONCLUSION AND FUTURE WORK

We have successfully demonstrated the significant potential
of semi-supervised learning leveraging temporal information
for enhancing object detection in marine life monitoring. By
integrating YOLOvS with ByteTrack, a robust methodology
was developed to generate high-quality pseudolabels from un-
labeled video data, substantially improving model performance

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

29



COCE 2025 : The Second International Conference on Technologies for Marine and Coastal Ecosystems

Precision
o o
o o0
T
]
|

<
i~

<
o

mAP50

Recall

mAP50-95

Figure 5. Precision (top left), recall (top right), mAP50 (bottom left) and mAP50-95 (bottom right) for baseline (red) and semi-supervised (blue) models.
Classes not present in the pseudolabeled data shown with faded color.

for fish species. This approach reduces the reliance on costly
and labor-intensive manual annotations, paving the way for
more sustainable and scalable marine life assessment practices.
The insights gained regarding iterative bias mitigation and
the critical role of MOT algorithm selection provide valuable
directions for future research and practical deployment in real-
world marine conservation efforts.

ACKNOWLEDGEMENT

This work is based on results from the Master’s degree
thesis of VHE [13], which includes a more detailed exploration
of the methods and data. The image data was collected and

annotated as part of the CoastVision project, RCN grant
number 325862.

REFERENCES

[1] A. W. Bicknell, B. J. Godley, E. V. Sheehan, S. C. Votier,
and M. J. Witt, “Camera technology for monitoring marine
biodiversity and human impact,” Frontiers in Ecology and the
Environment, vol. 14, no. 8, pp. 424-432, 2016. DOI: https:
//doi.org/10.1002/fee.1322. eprint: https://esajournals.
onlinelibrary. wiley.com/doi/pdf/10.1002/fee.1322. [Online].
Available: https://esajournals.onlinelibrary.wiley.com/doi/abs/
10.1002/fee.1322.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

30


https://doi.org/https://doi.org/10.1002/fee.1322
https://doi.org/https://doi.org/10.1002/fee.1322
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/fee.1322
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/fee.1322
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/fee.1322
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/fee.1322

COCE 2025 : The Second International Conference on Technologies for Marine and Coastal Ecosystems

Figure 6. Equipment incorrectly predicted as “corkwing male” by the initial
classifier.

(2]

(3]

(4]

S. K. Whitmarsh, P. G. Fairweather, and C. Huveneers, “What
is Big BRUVver up to? methods and uses of baited underwater
video,” Reviews in Fish Biology and Fisheries, vol. 27, no. 1,
pp. 53-73, 2017, 1SSN: 1573-5184. por: 10.1007/s11160-016-
9450-1. [Online]. Available: https://doi.org/10.1007/s11160-
016-9450-1.

H. Liu, X. Ma, Y. Yu, L. Wang, and L. Hao, “Application
of deep learning-based object detection techniques in fish
aquaculture: A review,” Journal of Marine Science and En-
gineering, vol. 11, no. 4, p. 867, 2023.

P. Rubbens et al., “Machine learning in marine ecology: An
overview of techniques and applications,” ICES Journal of
Marine Science, vol. 80, no. 7, pp. 1829-1853, 2023.

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

J. E. Van Engelen and H. H. Hoos, “A survey on semi-
supervised learning,” Machine learning, vol. 109, no. 2,
pp- 373-440, 2020.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only
look once: Unified, real-time object detection, 2016. arXiv:
1506.02640 [cs.CV]. [Online]. Available: https://arxiv.org/
abs/1506.02640.

Y. Zhang et al., Bytetrack: Multi-object tracking by associating
every detection box, 2022. arXiv: 2110.06864 [cs.CV].
[Online]. Available: https://arxiv.org/abs/2110.06864.

N. Wojke, A. Bewley, and D. Paulus, Simple online and
realtime tracking with a deep association metric, 2017. arXiv:
1703.07402 [cs.CV]. [Online]. Available: https://arxiv.org/
abs/1703.07402.

K. Sohn et al., “A simple semi-supervised learning framework
for object detection,” arXiv preprint arXiv:2005.04757, 2020.
J. Jeong, S. Lee, J. Kim, and N. Kwak, “Consistency-based
semi-supervised learning for object detection,” Advances in
neural information processing systems, vol. 32, 2019.

M. Xu et al., “End-to-end semi-supervised object detection
with soft teacher,” in Proceedings of the IEEE/CVF interna-
tional conference on computer vision, 2021, pp. 3060-3069.

R. J. Veiga et al., “Autonomous temporal pseudo-labeling for
fish detection,” Applied Sciences, vol. 12, no. 12, p. 5910,
2022.

V. H. Elvevoll, “Semi-supervised object detection using tem-
poral information,” M.S. thesis, Department of Informatics,
The University of Bergen, 2025.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.

ISBN: ISBNFILL

31


https://doi.org/10.1007/s11160-016-9450-1
https://doi.org/10.1007/s11160-016-9450-1
https://doi.org/10.1007/s11160-016-9450-1
https://doi.org/10.1007/s11160-016-9450-1
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/2110.06864
https://arxiv.org/abs/2110.06864
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/1703.07402

	Introduction
	Methods
	Results
	Discussion
	Conclusion and future work

