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Abstract—Acoustic trawl surveys use echosounders to collect
acoustic backscatter, which is categorized and combined with
trawl samples to generate abundance indices for fisheries
assessment models. Machine learning models are being
developed to automate the acoustic target classification step,
and it is necessary to evaluate their performance in
comparison to manual processes and earlier model versions.
The data processing pipeline consists of several stages, utilizing
various software, versions, and libraries. Docker containers
provide flexibility, especially for advanced pipeline steps. Some
steps use Python virtual environments. Clearly defining data
models between processing steps is necessary and adopting
community standards where applicable is recommended. We
have set up a system to combine and run the pipeline steps, and
we have used it to compare different ML models. We are
currently working to further streamline the process.
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I. INTRODUCTION

Data from acoustic trawl surveys are an important source
of information for fisheries assessments [1]. Data are
collected with echosounders mounted on research vessels
and individual fish are sampled, usually from trawls. The
echosounder data are calibrated and used to enumerate the
abundance of fish, whereas the physical samples are used for
ground truthing the acoustic registrations and to obtain age
and other biological parameters used by the assessment
models. More recently, autonomous platforms are being used
to augment the acoustic data collection [2].

The process of allocating the acoustic backscatter to
species, the Acoustic Target Classification (ATC) step, is in
most cases a manual process. There are methods to automate
ATC [3], and both the shape of the marks on the echogram
[4], as well as the response between different echosounder
frequencies [5][6] are being used.

Machine learning methods are well suited for this
process, and convolutional neural networks have been
developed for ATC [7][8]. Training supervised machine
learning models requires training data, and the historical
records of manually annotated acoustic data is a rich source
of information but requires careful preparations before use.
The data sets are highly imbalanced since most of the
echograms contain no fish, and different methods for training
these methods have been developed [9]. Methods that require
less labels during training are also being developed, and both
semi supervised and fully supervised models [10][11] are
available [12].

To estimate the effect of the different models on the
survey results, the different models are run on the same data
set and are further processed using the standard data
processing pipeline for the survey. This way we can evaluate
the effect of the different models and compare them to the
official estimates [13].

To efficiently run the data processing pipeline with
various configurations and a range of different software and
software environments, a digital infrastructure is needed. The
objective is to have a pipeline that is modular, has sufficient
data provenance, i.e., track the dataset and model used in the
different runs, and has the flexibility to be run with different
settings and input data to evaluate different methods. The
objective of this paper is to describe the current approach,
and the plans for extending and operationalizing the pipeline.
We start by describing the different steps in the data
processing pipeline, followed by how we operationalize it.
Finally, we describe the plans and future developments.

II.  THE DATA PROCESSING PIPELINE

The different steps in the pipeline (Figure 1) have been
described earlier, c.f. the supplementary material of [13], and
are briefly summarized here. The different steps have their
own git repositories and are versioned and maintained
separately.
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Figure 1.

The data procesing pipeline for automated acoustic target classificaiton. Figure reprinted from [13] under CC-BY 4.0. (A) The preprosessing step

converting the the raw data and annotations and creating a mask that removes data below the sea bed. (B) The Machine learning models (C) The survey
estimation step.

A. Data preprocessing

The data are preprocessed (Figure 1A) from the native
data format from the echosounder manufacturer (Kongsberg
Discovery, Horten, Norway) to a self-documented gridded
format (Figure 2). The data is gridded to the same grid as the
primary 38 kHz frequency. We have used the Zarr store [14],
which is a chunked cloud friendly format similar to NetCDF.
The Python Xarray package [15] can work seamlessly
between NetCDF and Zarr, and offer a convenient method
for working with the data. The data processing is done using
Korona (Marec, Bergen Norway) combined with the python
libraries Zarr and Xarray, and results in a three-dimensional
gridded data structure with dimensions “range”, “time” and
“acoustic frequency”.

The labels are read from the Large Scale Survey System
(LSSS) [16] “work” files (Figure 3). LSSS is the standard
tool at the Institute of Marine Research (IMR) for annotating
the acoustic data. The annotations are converted to the same
grid as the echosounder files resulting in a gridded data
structure with dimensions “range”, “time” and “acoustic
category”, where the “range” and “time” dimensions are
identical to the preprocessed echosounder data. A bottom
detection algorithm is used to mask the data below the
seabed.
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Figure 2. The 200 kHz channel slice in range and time from the regridded
data structure.
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Figure 3. The annotations converted from the LSSS system.

B.  Running ML model predictions

Several machine learning models are developed, mostly
using PyTorch [17], and trained on segments of processed
acoustic data to detect and classify acoustic categories and
background. To prevent empty water segments from
dominating the training dataset, an effective sampling
strategy must be used during training [7][9].

The ML models were trained on a NVIDIA GTX 1080 Ti
GPU using the PyTorch framework. The inference is run on
a Dell PowerEdge R730 server with 80x Intel(R) Xeon(R)
CPU ES5-2698, 768GB memory, two Tesla P100-PCIE-12GB
graphical processing units running CUDA version 13.0 and
rootless docker.

The models return predictions of size 256 x 256 samples,
and the data segments are extracted using a sliding window
with 40 samples overlap to mitigate edge effects. SoftMax is
applied to the predictions to obtain normalized class scores
for each sample, and the predictions are subsequently
stitched together [7] to a data structure that is the same as the
annotations, except that the values are SoftMax predictions
instead of binary annotation data.

C. Model thresholding and abundance estimates

To convert the SoftMax predictions to binary masks
identical to the annotations, a thresholding approach is
applied, c.f. [13] for details. The predictions can then be used
interchangeably with the annotations to calculate the
integrated backscatter (nautical area scattering coefficient,
NASC) in a 0.1 nautical mile by 10 m depth channels.

The survey estimates are calculated using the StoX
software [18], where the NASC values from the manual
annotation process are replaced with the ML generated
reports to evaluate the effect on the survey estimate. This has
allowed us to compare the performance of different ML
models in relation to the survey estimate. The general
impression is that which training years are used are more
important than the various model and training approaches,
c.f. [13] for more details.

III. OPERATIONALIZING THE PIPELINE

Each step in the pipeline is an individual step connected
by data structures shared by the connected components. The
individual steps use various software and tools with different
programming languages and versions of libraries.
Maintaining computational environments for all the
individual steps can be challenging to set up in a
conventional compute environment, especially when the
pipelines are composed of components across different
disciplines or organizational units.

In our case, each individual step in the pipeline is
currently handled somewhat different depending on its
maturity. The preprocessing steps (Figure 1A) are embedded
in individual Docker containers, and the Docker image is
defined in a versioned Dockerfile that describes the
environment. The machine learning models (Figure 1B) and
the thresholding and report generation steps (Figure 1C) are
run in Python using virtual environments (venv), and the
environments are specified in a requirements file in
individual git repositories. A working python environment is
needed to run these. The survey estimate is packaged in a
Docker container running R and StoX [18] and are specified
in a Dockerfile.

In cases where a step is fully coded in python and uses a
set of python libraries, the use of Python virtual
environments works well. However, different environments
are used for different steps, and the approach is restricted to
python only. Container technologies, e.g., Docker, to
package the individual steps are a powerful technology that
allows us to set up the compute environment with a range of
different software and programming languages. It also
allows the different steps in the pipeline to be upgraded and
rolled out independently of each other. This is highly
flexible and allows a pipeline to be coded up using any
programming language or software as long as it can be run
in a container, i.e., headless and scripted.

After the individual steps are coded and set up in separate
containers or environments, they need to be orchestrated.
This must also include documentation of the data
provenance, i.e., which versions of the various data and
algorithms were used to generate the result. Except for the
preprocessing step, we are currently manually running the
steps using shell scripts and ad hoc provenance.

We have deployed an automated continuous integration
and continuous delivery (CI/CD) pipeline using a GitLab
instance running on IMRs servers. This approach improves
efficiency and reproducibility and keep track of version
control throughout the preprocessing stages. When a new
version of the preprocessor is made, the data set is updated.
We do not keep earlier versions of the data sets, but we keep
track of which version of the preprocessor that was used. The
pipeline facilitates the orchestration of the three
preprocessing tasks (Figure 1A), where each step is
maintained in separate Git repositories and connected to a
continuous integration and continuous delivery (CI/CD)
pipeline. Each time modifications are made to the
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repositories, it triggers a job within the pipeline, and this is
manually initiated to execute the preprocessing workflow.
The current CI/CD pipeline is effective in converting raw
data to preprocessed data. However, it remains static in
configuring  experiments and managing  different
combinations of data and processing steps. It lacks flexibility
for efficiently modifying or replacing components within the
processing chain and for handling data provenance.

IV. CONCLUSION AND FUTURE WORK

Setting up the pipelines is a work in progress, and the
maturity of the different steps varies. The preprocessing
pipeline is at a more advanced stage, and we use that to test
various approaches for orchestration.

Regardless of technology, the data model that sits
between the steps must be agreed upon and specified. This
can be a challenging task unless the pipeline is well
established. Community data conventions and open data
formats should be used where possible. Since the pipeline is
scripted, reprocessing the data is straight forward, but
downstream code must be adjusted to accommodate changes
in data formats.

The containerization of the processing steps is
particularly useful since it allows separation of concerns.
Different groups and have full flexibility to use and maintain
their part of the pipeline as they prefer, but it is important to
define the steps to reflect the organizational units.

The CI/CD is still in the works. Currently we have a
system for the preprocessing step where the data is updated
when a new version of the preprocessor is available. We are
currently working on methods to more flexibly set up data
processing pipelines where we can use different models or
preprocessed data to generate the results.

In conclusion, we have a clearly defined data lineage for
the problem. The containerization approach is particularly
useful and helps separation of concerns. The data models
need to be upgraded to community standards where
applicable, and we need a better orchestration of the pipeline
to set up and track experiments and test the effects on new
algorithms for the data processing.
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