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Abstract—Acoustic trawl surveys use echosounders to collect 

acoustic backscatter, which is categorized and combined with 

trawl samples to generate abundance indices for fisheries 

assessment models. Machine learning models are being 

developed to automate the acoustic target classification step, 

and it is necessary to evaluate their performance in 

comparison to manual processes and earlier model versions. 

The data processing pipeline consists of several stages, utilizing 

various software, versions, and libraries. Docker containers 

provide flexibility, especially for advanced pipeline steps. Some 

steps use Python virtual environments. Clearly defining data 

models between processing steps is necessary and adopting 

community standards where applicable is recommended. We 

have set up a system to combine and run the pipeline steps, and 

we have used it to compare different ML models. We are 

currently working to further streamline the process. 
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I.  INTRODUCTION 

Data from acoustic trawl surveys are an important source 
of information for fisheries assessments [1]. Data are 
collected with echosounders mounted on research vessels 
and individual fish are sampled, usually from trawls. The 
echosounder data are calibrated and used to enumerate the 
abundance of fish, whereas the physical samples are used for 
ground truthing the acoustic registrations and to obtain age 
and other biological parameters used by the assessment 
models. More recently, autonomous platforms are being used 
to augment the acoustic data collection [2]. 

The process of allocating the acoustic backscatter to 
species, the Acoustic Target Classification (ATC) step, is in 
most cases a manual process. There are methods to automate 
ATC [3], and both the shape of the marks on the echogram 
[4], as well as the response between different echosounder 
frequencies [5][6] are being used. 

Machine learning methods are well suited for this 
process, and convolutional neural networks have been 
developed for ATC [7][8]. Training supervised machine 
learning models requires training data, and the historical 
records of manually annotated acoustic data is a rich source 
of information but requires careful preparations before use. 
The data sets are highly imbalanced since most of the 
echograms contain no fish, and different methods for training 
these methods have been developed [9]. Methods that require 
less labels during training are also being developed, and both 
semi supervised and fully supervised models [10][11] are 
available [12]. 

To estimate the effect of the different models on the 
survey results, the different models are run on the same data 
set and are further processed using the standard data 
processing pipeline for the survey. This way we can evaluate 
the effect of the different models and compare them to the 
official estimates [13]. 

To efficiently run the data processing pipeline with 
various configurations and a range of different software and 
software environments, a digital infrastructure is needed. The 
objective is to have a pipeline that is modular, has sufficient 
data provenance, i.e., track the dataset and model used in the 
different runs, and has the flexibility to be run with different 
settings and input data to evaluate different methods. The 
objective of this paper is to describe the current approach, 
and the plans for extending and operationalizing the pipeline. 
We start by describing the different steps in the data 
processing pipeline, followed by how we operationalize it. 
Finally, we describe the plans and future developments. 

II. THE DATA PROCESSING PIPELINE 

The different steps in the pipeline (Figure 1) have been 
described earlier, c.f. the supplementary material of [13], and 
are briefly summarized here. The different steps have their 
own git repositories and are versioned and maintained 
separately. 
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Figure 1.  The data procesing pipeline for automated acoustic target classificaiton. Figure reprinted from [13] under CC-BY 4.0. (A) The preprosessing step 
converting the the raw data and annotations and creating a mask that removes data below the sea bed. (B) The Machine learning models (C) The survey 

estimation step.  

A. Data preprocessing 

The data are preprocessed (Figure 1A) from the native 
data format from the echosounder manufacturer (Kongsberg 
Discovery, Horten, Norway) to a self-documented gridded 
format (Figure 2). The data is gridded to the same grid as the 
primary 38 kHz frequency. We have used the Zarr store [14], 
which is a chunked cloud friendly format similar to NetCDF. 
The Python Xarray package [15] can work seamlessly 
between NetCDF and Zarr, and offer a convenient method 
for working with the data. The data processing is done using 
Korona (Marec, Bergen Norway) combined with the python 
libraries Zarr and Xarray, and results in a three-dimensional 
gridded data structure with dimensions “range”, “time” and 
“acoustic frequency”. 

The labels are read from the Large Scale Survey System 
(LSSS) [16] “work” files (Figure 3). LSSS is the standard 
tool at the Institute of Marine Research (IMR) for annotating 
the acoustic data. The annotations are converted to the same 
grid as the echosounder files resulting in a gridded data 
structure with dimensions “range”, “time” and “acoustic 
category”, where the “range” and “time” dimensions are 
identical to the preprocessed echosounder data. A bottom 
detection algorithm is used to mask the data below the 
seabed. 

 

Figure 2.  The 200 kHz channel slice in range and time from the regridded 

data structure. 
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Figure 3.  The annotations converted from the LSSS system. 

B. Running ML model predictions 

Several machine learning models are developed, mostly 
using PyTorch [17], and trained on segments of processed 
acoustic data to detect and classify acoustic categories and 
background. To prevent empty water segments from 
dominating the training dataset, an effective sampling 
strategy must be used during training [7][9]. 

The ML models were trained on a NVIDIA GTX 1080 Ti 
GPU using the PyTorch framework. The inference is run on 
a Dell PowerEdge R730 server with 80x Intel(R) Xeon(R) 
CPU E5-2698, 768GB memory, two Tesla P100-PCIE-12GB 
graphical processing units running CUDA version 13.0 and 
rootless docker. 

The models return predictions of size 256 x 256 samples, 
and the data segments are extracted using a sliding window 
with 40 samples overlap to mitigate edge effects. SoftMax is 
applied to the predictions to obtain normalized class scores 
for each sample, and the predictions are subsequently 
stitched together [7] to a data structure that is the same as the 
annotations, except that the values are SoftMax predictions 
instead of binary annotation data. 

C. Model thresholding and abundance estimates 

To convert the SoftMax predictions to binary masks 
identical to the annotations, a thresholding approach is 
applied, c.f. [13] for details. The predictions can then be used 
interchangeably with the annotations to calculate the 
integrated backscatter (nautical area scattering coefficient, 
NASC) in a 0.1 nautical mile by 10 m depth channels. 

The survey estimates are calculated using the StoX 
software [18], where the NASC values from the manual 
annotation process are replaced with the ML generated 
reports to evaluate the effect on the survey estimate. This has 
allowed us to compare the performance of different ML 
models in relation to the survey estimate. The general 
impression is that which training years are used are more 
important than the various model and training approaches, 
c.f. [13] for more details. 

III. OPERATIONALIZING THE PIPELINE 

Each step in the pipeline is an individual step connected 
by data structures shared by the connected components. The 
individual steps use various software and tools with different 
programming languages and versions of libraries. 
Maintaining computational environments for all the 
individual steps can be challenging to set up in a 
conventional compute environment, especially when the 
pipelines are composed of components across different 
disciplines or organizational units. 

In our case, each individual step in the pipeline is 
currently handled somewhat different depending on its 
maturity. The preprocessing steps (Figure 1A) are embedded 
in individual Docker containers, and the Docker image is 
defined in a versioned Dockerfile that describes the 
environment. The machine learning models (Figure 1B) and 
the thresholding and report generation steps (Figure 1C) are 
run in Python using virtual environments (venv), and the 
environments are specified in a requirements file in 
individual git repositories. A working python environment is 
needed to run these. The survey estimate is packaged in a 
Docker container running R and StoX [18] and are specified 
in a Dockerfile. 

In cases where a step is fully coded in python and uses a 

set of python libraries, the use of Python virtual 

environments works well. However, different environments 

are used for different steps, and the approach is restricted to 

python only. Container technologies, e.g., Docker, to 

package the individual steps are a powerful technology that 

allows us to set up the compute environment with a range of 

different software and programming languages. It also 

allows the different steps in the pipeline to be upgraded and 

rolled out independently of each other. This is highly 

flexible and allows a pipeline to be coded up using any 

programming language or software as long as it can be run 

in a container, i.e., headless and scripted.  

After the individual steps are coded and set up in separate 

containers or environments, they need to be orchestrated. 

This must also include documentation of the data 

provenance, i.e., which versions of the various data and 

algorithms were used to generate the result. Except for the 

preprocessing step, we are currently manually running the 

steps using shell scripts and ad hoc provenance. 
We have deployed an automated continuous integration 

and continuous delivery (CI/CD) pipeline using a GitLab 
instance running on IMRs servers. This approach improves 
efficiency and reproducibility and keep track of version 
control throughout the preprocessing stages. When a new 
version of the preprocessor is made, the data set is updated. 
We do not keep earlier versions of the data sets, but we keep 
track of which version of the preprocessor that was used. The 
pipeline facilitates the orchestration of the three 
preprocessing tasks (Figure 1A), where each step is 
maintained in separate Git repositories and connected to a 
continuous integration and continuous delivery (CI/CD) 
pipeline. Each time modifications are made to the 
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repositories, it triggers a job within the pipeline, and this is 
manually initiated to execute the preprocessing workflow. 

The current CI/CD pipeline is effective in converting raw 
data to preprocessed data. However, it remains static in 
configuring experiments and managing different 
combinations of data and processing steps. It lacks flexibility 
for efficiently modifying or replacing components within the 
processing chain and for handling data provenance. 

IV. CONCLUSION AND FUTURE WORK  

Setting up the pipelines is a work in progress, and the 
maturity of the different steps varies. The preprocessing 
pipeline is at a more advanced stage, and we use that to test 
various approaches for orchestration.  

Regardless of technology, the data model that sits 
between the steps must be agreed upon and specified. This 
can be a challenging task unless the pipeline is well 
established. Community data conventions and open data 
formats should be used where possible. Since the pipeline is 
scripted, reprocessing the data is straight forward, but 
downstream code must be adjusted to accommodate changes 
in data formats.  

The containerization of the processing steps is 
particularly useful since it allows separation of concerns. 
Different groups and have full flexibility to use and maintain 
their part of the pipeline as they prefer, but it is important to 
define the steps to reflect the organizational units. 

The CI/CD is still in the works. Currently we have a 
system for the preprocessing step where the data is updated 
when a new version of the preprocessor is available. We are 
currently working on methods to more flexibly set up data 
processing pipelines where we can use different models or 
preprocessed data to generate the results.  

In conclusion, we have a clearly defined data lineage for 
the problem. The containerization approach is particularly 
useful and helps separation of concerns. The data models 
need to be upgraded to community standards where 
applicable, and we need a better orchestration of the pipeline 
to set up and track experiments and test the effects on new 
algorithms for the data processing. 
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