
Multi-Source Constrained Machine Learning for Oceanic Parameters Forecasting

Pujan Pokhrel
GulfSCEI,

University of New Orleans
New Orleans, United States
email: ppokhre1@uno.edu

Austin B. Schmidt
GulfSCEI,

University of New Orleans
New Orleans, United States

email: sbaustin@uno.edu

Md Meftahul Ferdaus
GulfSCEI,

University of New Orleans
New Orleans, United States
email: mferdaus@uno.edu

Elias Ioup
Center for Geospatial Sciences

Naval Research Laboratory
Mississippi, United States

email: elias.z.ioup.civ@us.navy.mil

Julian Simeonov
Sediment Dynamics Section
Naval Research Laboratory
Mississippi, United States

email: julian.a.simeonov.civ@us.navy.mil

Mahdi Abdelguerfi
GulfSCEI,

University of New Orleans
New Orleans, United States

email: gulfsceidirector@uno.edu

Abstract—This study evaluates multi-source fusion techniques
for environmental forecasting, focusing on their effectiveness
in predicting oceanic and atmospheric variables. Three neural
network architectures are examined: a baseline Long Short
Term Memory (LSTM) model, a Softmax Fusion model, and a
Lagrangian Fusion model. A central component of the approach
is the incorporation of physics-based constraints during training
to ensure physically consistent predictions. Results based on
Root Mean Squared Error (RMSE) indicate that fusion-based
models consistently outperform the baseline for wave-related and
thermodynamic variables such as air and water temperature.
RMSE reductions for these variables range from approximately
5% to over 40%, driven by the models’ ability to enforce
spatiotemporal smoothness and reduce spatial variability. In
contrast, wind components show higher RMSE in fusion models,
highlighting a trade-off between global physical consistency and
the accurate representation of localized, high-variance wind
phenomena. These findings demonstrate the advantages of fusion
architectures for improving buoy-based wave and thermody-
namic forecasts, while suggesting that future work on wind
predictions may benefit from adaptive regularization or hybrid
loss functions to capture both global coherence and local detail
better.

Keywords-multi-source fusion, physics-informed neural net-
works, constrained machine learning.

I. INTRODUCTION

Accurate short-term forecasting of oceanic and atmospheric
variables is important for a wide range of applications, includ-
ing maritime navigation, coastal hazard mitigation, and climate
monitoring [1][2]. Traditional Numerical Weather Prediction
(NWP) uses partial differential equations based on physics [3],
which provide physically consistent forecasts. However, these
models require substantial computation and exhibit sensitivity
to initial conditions, restricting their real-time utility. In con-
trast, data-driven methods based on Long Short Term Memory
Networks (LSTMs) have demonstrated strong performance in
forecasting buoy-observed quantities such as gush speed, wave
height, pressure, and sea surface temperature [4]–[8]. These
methods offer faster inference and ease of deployment, but
frequently rely on single-source input, not exploiting auxiliary

information from satellite retrievals or reanalysis datasets that
can offer broader spatial and temporal perspectives.

In practice, buoy measurements are often noisy and sparse,
and simulations may not capture the full dynamics at rele-
vant scales. These limitations motivate the study of fusion
architectures, which aim to produce well-calibrated initial
states that physical laws can later constrain during forecasting.
Multisource fusion combines diverse observations, such as
buoy recordings, ECMWF Reanalysis v5 (ERA5) reanalysis,
and NOAA Global Forecast System (GFS) analysis data to
generate more accurate estimates of surface wind components
(u10, v10). Adaptive fusion models, especially those that use
softmax-based weight mechanisms, dynamically allocate trust
among sources in response to measurement discrepancies.
However, the model outputs are not always physically plau-
sible. The weights can be negative or do not sum up to one,
and the forecasts may violate the principles of energy or mass
conservation [9]. Physics-Informed Neural Networks (PINNs)
address these issues by embedding PDEs into loss functions.
Still, they often require explicit physical equations and incur
heavy training costs, which limit their applicability in noisy
or incomplete data regimes [9].

Schmidt et al. [6][7] and Pokhrel et al. [10][11] studied
fusion models in the context of physics-based forecasting. In
these models, numerical model predictions are integrated with
observations in a weighting scheme to generate fused predic-
tions. Specifically, Pokhrel et al. extended this to multiple data
sources in [12]. In this study, we extend the previous studies by
using differentiable constraints to obtain physically consistent
predictions. This study focuses on architectures that both fuse
multisource data effectively and enforce physical constraints
on learned outputs. This study frames fusion as a method for
generating physically meaningful initial estimates that remain
valid when subjected to downstream constraints. Our primary
contribution is the Lagrangian Fusion Model, which employs
an augmented Lagrangian formulation to constrain fusion
weights (ensuring non-negativity and unit sum) to enforce
consistency between predicted wind vectors and observed Gust
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Speed (GST ≈
√
u2
10 + v210), without requiring explicit PDE

formulas.
To validate our approach, three end-to-end architectures are

compared:
1) Baseline Model: a sequence-to-sequence LSTM that

forecasts Gust Speed (GST), Wave Heights (WVHT),
Pressure (PRES), Water Temperature (WTMP), and
wind components (u10 and v10) using buoy data alone.
This model benchmarks single-source performance un-
der noisy conditions.

2) Softmax Fusion Model: adds softmax-weighted fusion
of multisource inputs for u10 and v10, while maintaining
direct forecasting for other variables. It demonstrates the
benefit of fusing information, along with enforcing the
physical constraints. The weights of different sources
are generated implicitly using the softmax layer in this
approach.

3) Lagrangian Fusion Model: enhances the softmax ap-
proach by incorporating augmented Lagrangian penalties
to enforce physically meaningful fusion weights and
outputs, ensuring meteorological consistency and robust-
ness in the presence of noisy measurements.

All fusion models are trained using buoy-observed targets
and multi-source wind input. Physics-inspired loss terms,
including constraint penalties and temporal smoothing, are
integrated to improve the forecast fidelity. Evaluated on three
years of data (2021–2023) with an 80/20 train/test split
and rolling-horizon validation, the Lagrangian Fusion Model
achieves substantial improvements while maintaining physi-
cally consistent behaviors. Our study advances the state-of-
the-art by presenting a robust and interpretable fusion strategy
that combines data-driven flexibility with physical realism,
generating reliable initial states for downstream constrained
forecasting or data assimilation frameworks.

This paper is organized as follows. Section 2 reviews related
work. Section 3 details the dataset, model architectures, and
training procedures. Section 4 presents the experimental results
and their analysis. Section 5 discusses the limitations of
the study and outlines directions for future research. Finally,
Section 6 concludes the study.

II. RELATED WORK

A. Neural Forecasting for Marine Variables

LSTMs have become important in marine environmental
forecasting because of their ability to model temporal de-
pendencies. For example, Bonino et al. combined buoy and
reanalysis inputs in an LSTM framework and achieved a sig-
nificant error reduction in sea surface temperature prediction
compared to purely physical models [4]. Park et al. and Kim
et al. showed comparable improvements in wave height and
wind speed forecasting using buoy-only LSTM [13]. These
models demonstrate the benefits of data-driven modeling but
remain constrained by single-source inputs and lack of ex-
plicit physical constraints, which our work overcomes through
multi-source fusion and constrained optimization.

B. Multisource Fusion Techniques

Optimal interpolation and classical data assimilation meth-
ods combine multiple sources of observational data by model-
ing error covariances [14]. Recent deep learning-based fusion
approaches learn weighting schemes directly from data. Scher
and Messori fused satellite and reanalysis data using convo-
lutional architectures for global weather forecasts, reporting
improved accuracy in spatial detail [15]. Shaw et al. used Spa-
tiotemporal Dynamic Graph (SDG) networks to fuse multiple
features to improve prediction accuracy for significant wave
heights prediction [16]. However, neither approach enforces
explicit physical constraints on fusion outputs. Our Softmax
Fusion Model extends these works by enabling component-
specific weighting for wind vectors, while our Lagrangian Fu-
sion Model further ensures weight validity and meteorological
consistency.

C. Physics-Informed Learning and Constrained Optimization

PINNs integrate physical laws into deep networks via loss-
term penalties, enabling PDE-informed prediction capabili-
ties [9]. While effective, they require explicit PDE formu-
lations and tend to be computationally expensive, particu-
larly in noisy or incomplete-data regimes [9]. Constrained
optimization frameworks, such as those reviewed by Kotari
et al., embed structural constraints into network parameters
using Lagrange multipliers, without relying on full physical
equations [17]. Gramacy et al. demonstrated this approach
in fluid dynamics by enforcing mass conservation using aug-
mented Lagrangian methods [18]. Our Lagrangian Fusion
Model adopts this strategy, applying constraints to both fusion
weights and output predictions, ensuring that noisy, fused
initial estimates remain physically consistent and usable for
downstream data assimilation or forecasting frameworks.

Furthermore, we frame fusion as a preconditioning step
that enhances subsequent constraint enforcement and data-
assimilation efforts. This is supported by assimilation liter-
ature, which highlights the importance of good-quality initial
states for robust real-time forecasts and correction of model
deficiencies [19]–[21].

III. METHODOLOGY

A. Dataset

Table 1 presents the essential summary statistics (count,
mean, standard deviation, minimum, and maximum) for each
variable. Note that the fusion models are weighted using ERA-
5 and NOAA wind fields in the cost function and not used as
a part of input to the models.

Table 1 displays the count, mean, standard deviation, mini-
mum, and maximum for each feature. In particular, the buoy-
measured wind direction and wind speed, each with 29,778
samples, have means of 223.27◦ (std 96.07◦) and 6.06 m/s
(std 3.01 m/s), respectively. The zonal and meridional wind
components at 10 meters (u10_buoy and v10_buoy) were
derived from the gust speed and wind direction. These wind-
related variables are fused in the loss function using either
fixed Lagrangian weights or learned weights via a Softmax
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TABLE 1. BASIC SUMMARY STATISTICS FOR ALL VARIABLES

Variable Meaning (Units) Mean Std Min Max

WDIR Wind Direction (degrees) 223.27 96.07 2.44 360.00
WSPD Wind Speed (m/s) 6.48 2.94 0.00 21.00
GST Gust Speed (m/s) 8.38 3.61 0.21 26.61
WVHT Wave Height (m) 2.12 1.03 0.35 10.08
DPD Dominant Wave Period (s) 10.42 2.83 3.67 22.29
APD Average Wave Period (s) 6.66 1.27 3.29 14.11
MWD Mean Wave Direction (radians) 3.45 1.61 0.02 6.28
WTMP Water Temperature (◦C) 18.82 7.29 2.90 30.39
DEWP Dew Point Temperature (◦C) 15.08 6.74 -9.40 28.52
ATMP Air Temperature (◦C) 17.99 7.11 -3.26 30.84

layer. The data set comprises a total of 94,442 observations
that span the period from January 1, 2021, to December 31,
2023 and the points are sampled every 3 hours. We utilize
global predictions for ERA-5 and NOAA datasets.

B. Data Preprocessing

The raw time-series data is preprocessed through several
key steps to ensure temporal continuity and improve model
performance. First, the features that are redundant, irrelevant,
or represent metadata not useful for forecasting are removed.
To maintain the integrity of temporal sequences, rows with
missing values are discarded instead of applying imputation,
which can introduce artifacts. All continuous variables are
standardized to have zero mean and unit variance, which fa-
cilitates faster convergence and stabilizes training in recurrent
architectures. We then segment the data using 80/20 time-
based split for training and testing. This setup supports multi-
step forecasting aligned with short-term marine prediction
needs.

Since the buoy observations lack corresponding numerical
simulations, their values are predicted directly. The fusion
targets in this study are the 10-meter wind components, u10

and v10, estimated using multi-source integration of buoy
measurements, ERA5 reanalysis, and NOAA data products.
Although this work focuses on a single variable pair, the
approach is extendable to other features, provided suitable
numerical models are available for integration.

C. Model Architectures

This study evaluates three neural network architectures
built on a sequence-to-sequence (Seq2Seq) LSTM backbone
for multi-step environmental forecasting. All models share a
common structure and incorporate physics-based constraints
during training.

The architecture consists of an LSTM encoder and decoder,
with an optional attention layer to improve temporal represen-
tation. The overall design is:

Encoder: ht, (hT , sT ) = LSTM(xt,ht−1)

Attention: zt = Attention({ht})
Decoder: dt, (d∗, s∗) = LSTM(zt,dt−1)

(1)

Here, xt ∈ RDin is the input at time t, and the encoder
summarizes the input sequence into hidden states, and s

represents the state at the last layer. The attention layer (when
used) reweights the encoder output to form a context vector zt,
which helps the decoder focus on relevant time steps during
prediction. The decoder then produces latent outputs for the
forecast window.

To encourage physically meaningful predictions, a physics-
based loss term is added in the fusion models:

Lphysics =
∑
c∈C

wc · ϕc(Ŷ) (2)

Each constraint c ∈ C has a weight wc and penalty function
ϕc that measures violations based on model outputs Ŷ. Details
are provided in Section III-D.

1) Baseline Model: The Baseline Model employs a
straightforward prediction head applied to the decoder’s latent
representation:

Ŷ = Linear(ReLU(Linear(d))) (3)

In this model, the constraints of physics are strictly enforced
through the Lphysics term, acting as a soft regularization.

2) Softmax Fusion Model: The Softmax Fusion Model ex-
tends the Baseline by incorporating a dynamic, attention-based
fusion mechanism for wind component prediction. This model
learns softmax-normalized weights to combine wind estimates
from multiple input data sources (e.g., buoy, ERA5and NOAA
inputs). The architecture integrates source-aware fusion with
physics-constrained training:

Λu = Softmax(MLPu(d))

Λv = Softmax(MLPv(d))

Ŷdirect = gd(d)

Ŷwind = gw(d)

ûfused =
∑
s

λ(s)
u us

v̂fused =
∑
s

λ(s)
v vs

Ltotal = LMSE + αLphysics

(4)

where Λu and Λv are the learned softmax weights for the
wind components u and v of the sources s, respectively.
us and vs represent the wind components from source s.
gd and gw are multi-layer perceptrons (MLPs) that predict
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direct variables and wind residuals, respectively. The soft-
max mechanism facilitates the differentiable and interpretable
weighting of each modality in each forecast timestep, thereby
improving the robustness to noise and variations in data quality
between different sources. Figure 1 displays the architecture
of the fusion models. Note that the buoy data is used to
make predictions and the other datasets are only used during
training.

3) Lagrangian Fusion Model: While the Softmax Fusion
approach implicitly ensures non-negativity and sum-to-one
constraints for fusion weights, it may limit the model’s ex-
pressiveness by tightly coupling all weights through a sin-
gle normalization. To address this, we adopt an augmented
Lagrangian formulation that allows for explicit control over
constraints, enabling the model to learn fusion weights more
flexibly.

The Lagrangian Fusion Model learns raw (unnormalized)
weights Λu and Λv for wind component fusion. The fusion
loss is then defined as:

Λu = Linearu(d)
Λv = Linearv(d)

Lconstraints =µu

(∑
s

λ(s)
u − 1

)
+

ρ

2

(∑
s

λ(s)
u − 1

)2

+
∑
s

ν(s)u (−λ(s)
u ) +

ρ

2

∑
s

(−λ(s)
u )2

+ µv

(∑
s

λ(s)
v − 1

)
+

ρ

2

(∑
s

λ(s)
v − 1

)2

+
∑
s

ν(s)v (−λ(s)
v ) +

ρ

2

∑
s

(−λ(s)
v )2

Ltotal = LMSE + αLphysics + βLconstraints

(5)

Here, µu, µv are Lagrange multipliers for the sum-to-one
equality constraint, and ν

(s)
u , ν

(s)
v are Lagrange multipliers

for the non-negativity inequality constraints. ρ is the penalty
parameter of the augmented Lagrangian. This formulation
allows for decoupled optimization of weights while explicitly
enforcing physical constraints.

D. Physics-Based Constraints

To promote physically consistent forecasts, the fusion mod-
els incorporate a set of differentiable physics-based constraints
within the loss term Lphysics. These constraints are grounded
in well-established relationships from wave physics and are
summarized in Table 2.

E. Constraint Integration

Each constraint is implemented as a differentiable compo-
nent of the total loss, allowing for gradient-based optimization.
Denote each constraint as ϕc(Ŷ), then the total physics-
informed penalty is:

Lphysics =
∑
c

wc · ϕc(Ŷ) (6)

where wc is a fixed weight determined through empirical
tuning. The wave development constraint and wave steepness
limit are assigned lower weights (e.g., wc = 0.1), reflect-
ing their supportive role in shaping output realism without
overwhelming the primary forecasting loss. The gravitational
constant g = 9.8m/s2 is used in the wave steepness constraint,
derived from classical wave theory.

This constraint formulation ensures that model predictions
remain physically plausible, especially for wave-related pa-
rameters where empirical structure is well understood.

F. Training Framework

All models were trained using a consistent framework to
ensure a fair comparison of their architectural merits. The key
configuration parameters are as follows:

• Optimizer: Adam optimizer with an initial learning rate
(η) of 5 × 10−4. For the Lagrangian model, separate
Adam optimizers were used for main model parameters
and Lagrangian multipliers, both with an initial learning
rate of 5× 10−4.

• Learning Rate Schedule: A step-down learning rate
scheduler was applied, reducing the learning rate by a
factor of 0.5 (for Baseline and Softmax) or 0.05 (for
Lagrangian) every 25 epochs.

• Regularization: Gradient clipping with a maximum L2
norm of 1.0 was applied to prevent exploding gradients
during training.

• Batch Size: Training was performed using a batch size
of 64 sequences.

• Physics Weight: The weighting factor α for the Lphysics
term was set to 10−4 for all models. For the Lagrangian
model, an additional weight β = 0.1 was applied to the
Lconstraints term.

• Epochs: Each model was trained for 50 epochs.

IV. RESULTS AND DISCUSSION

This section presents a comprehensive analysis of the pro-
posed models’ performance, focusing on quantitative evalu-
ation of first-step prediction (3 hours ahead) RMSE and a
discussion of the observed trends and their implications.

Table 3 shows the first-step Root Mean Squared Error
(RMSE) for the Baseline, Softmax, and Lagrangian models
across a suite of oceanic and atmospheric variables. A clear
trend of improvement is observed for the fusion-based models
compared to the Baseline, especially for wave-related and
temperature variables.

The most substantial relative improvements occurred in the
prediction of air temperature (ATMP), sea surface temperature
(WTMP), and average wave period (APD). For example, the
RMSE for WTMP dropped from 0.2286 to 0.1793 with the
Softmax model. These gains can be attributed to:

1) Spatiotemporal Smoothness: Variables like tempera-
ture evolve more smoothly in space and time, aligning
well with the inductive bias of fusion models that
leverage weighted averaging and regularization.
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Figure 1. Model Architecture. Note that the wind inputs from multiple sources and fusion weights training is used only during training in the loss function
calculation. The testing loop proceeds as normal.

2) Low Spatial Variability: ATMP and WTMP are gov-
erned by large-scale synoptic systems, making them
more amenable to fusion from multiple sources. Fusion
reduces noise and integrates consistent large-scale pat-
terns effectively.

These variables also tend to have higher signal-to-noise
ratios, enhancing the ability of models to generalize from
reanalysis and auxiliary data sources.

Moderate improvements are also seen in wave-related vari-
ables (WVHT, DPD, APD) and wind speed (WSPD), suggest-
ing that fusion helps smooth out some of the high-frequency
noise or discrepancies among sources.

Interestingly, wind vector components (u10 and v10) show

degraded performance under fusion. These variables are sub-
ject to rapid and localized changes influenced by turbulence,
topography, and mesoscale systems. Pointwise buoy observa-
tions may not align with gridded inputs (like ERA5), and
fusion could oversmooth sharp transitions or localized bursts,
reducing apparent accuracy.

Fusion models, especially the Lagrangian variant, demon-
strate strong performance for coherent variables like temper-
ature and wave metrics. Their inductive bias toward smooth-
ness and large-scale consistency aligns with the physics and
statistical characteristics of these variables. However, for high-
variance, small-scale phenomena like wind vectors, fusion
may inadvertently degrade performance. This does not imply
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TABLE 2. PHYSICS CONSTRAINTS APPLIED TO FUSION MODELS

Constraint Formula Basis Weight

Wave Development Limit ReLU(WVHT − 1.3× 0.02× GST2) Pierson–Moskowitz spectrum 0.3
Wave Period Alignment ReLU(|DPD − 0.55× GST| − 1.5) JONSWAP spectrum relation 0.4
Wave Steepness Limit ReLU(WVHT − 0.1× g·DPD2

2π
) Non-breaking wave criterion 0.3

TABLE 3. FIRST-STEP PREDICTION (3 HOURS AHEAD) ROOT MEAN SQUARED ERROR (RMSE) COMPARISON (BEST VALUES IN BOLD)

Variable Baseline Softmax Lagrangian

GST 1.1134 1.1217 1.1196
WVHT 0.1988 0.1961 0.1945
DPD 0.9134 0.9038 0.9032
APD 0.3305 0.2996 0.2964
MWD 0.4713 0.4362 0.4353
ATMP 0.3783 0.3767 0.3691
WTMP 0.2286 0.1793 0.1799
WSPD 0.9521 0.9477 0.9510
DEWP 0.5302 0.5268 0.5304
u10 6.5590 9.9120 9.8987
v10 5.8451 14.8446 14.8560

model failure but highlights a resolution mismatch and the
challenges of noisy labels in wind observations. To address
this, future work should explore hybrid or multi-scale loss
structures that balance smoothness with local adaptability.
Adaptive regularization or uncertainty-aware weighting may
help retain fidelity in turbulent regimes while maintaining the
benefits of fusion elsewhere.

A. Additional Physics Constraints
Beyond wind speed consistency and temporal smoothness,

the following physics-based penalties, computed from the GFS
or ERA5 fields, can further improve forecasts. Each constraint
is tagged with the approach it benefits most and a brief
rationale:

• Boundary-Layer Momentum Balance (Turbulence-
driven). In the lowest ∼100 m the Coriolis force is
negligible, so we can enforce a non-rotating, turbulent
momentum balance forced by the wind at the layer top.
Let τ be the turbulent stress tensor and Fturb the wind-
driven forcing. We then penalize deviations from

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+∇· τ + ρFturb,

via

LBL = E
[∥∥ρ ∂tû+ρ (û ·∇)û+∇p̂−∇· τ̂ −ρ F̂turb

∥∥2].
(Best addressed via high-frequency observations + tur-
bulence parameterizations.) This leverages detailed mea-
surements to capture rapid, subgrid-scale fluctuations that
a coarse grid would miss.

• Hydrostatic Balance (Grid-resolved). Using pressures
at multiple levels (e.g. 925 hPa, 850 hPa) we can ap-
proximate

∆p̂

∆z
= − ρ̂ g, ρ̂ =

p̂

Rd T̂
.

Anchoring p̂surf with buoy measurements, we can penal-
ize any violation via

Lhydro = E
[(

∆p̂
∆z + ρ̂ g

)2]
.

(Resolved accurately on a typical numerical grid.) Large-
scale pressure gradients vary smoothly over kilometers,
so a grid model naturally enforces hydrostatic balance
without needing high-frequency corrections.

• Moisture Consistency (Hybrid). We can enforce Clau-
sius–Clapeyron and relative-humidity relations from
ERA5 dewpoint and air temperature:

es(T ) = 6.112 exp
(

17.67T
T+243.5

)
, RH ≈ 100

e(DEWP)

es(ATMP)
.

The loss penalizes squared errors between (T̂ , T̂d, R̂H)
and these thermodynamic constraints:

Lmoist = E
[
∥
(
T̂ , T̂d, R̂H

)
− thermo∥2

]
.

(Combines observations for humidity with grid-model
thermodynamics.) Observations provide accurate mois-
ture content but grid models capture large-scale transport,
so a hybrid enforces both.

• Surface Energy Budget (Hybrid). Conservation of heat
at the surface implies

ρ cp
∂T

∂t
≈ Hs +Hl +Rn −Qh,

where Rn is net radiation and Hs, Hl, Qh are turbulent
fluxes. We penalize

Lenergy = E
[(
ρ cp ∂tT̂ − (Hs +Hl +Rn −Qh)

)2]
.

(Requires both grid-scale radiative fields and observa-
tions of fluxes.) Radiative inputs are well resolved on
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the grid, but surface fluxes fluctuate rapidly and need
observational constraints.

• Mass Continuity (Grid-resolved). Assuming incom-
pressible horizontal flow, any nonzero divergence is pe-
nalized:

Lmass = E
[
(∇· û)2

]
.

Horizontal winds can be taken directly from ERA5 or
buoy observations, but this balance is naturally enforced
on a resolved grid. (Grid models handle continuity inher-
ently over large scales.)

B. Limitations and Future Work

The current model enforces only wind speed and smooth-
ness physics, leaving out important couplings such as mois-
ture, energy, and large-scale balance. It is a single-location
model without spatial gradients, which limits its ability to
conserve mass or energy across a region. Moreover, the coarser
resolution of ERA5 and GFS fields compared to buoy data can
introduce alignment errors. In such cases, it is better to handle
numerical data and observations separately, as is common
in data assimilation. Moreover, since buoy data represent
turbulence scale phenomena which is not incorporated in
global/regional models, physics loss can be independently ap-
plied to the fusion of numerical data, apart from observations.

From the experimental setup described in the paper, the
method succeeds when the true physical parameter lies within
the span of the available data sources. A natural concern is
what happens if the optimal value falls outside this range, i.e.,
if all data sources are biased. In such scenarios, incorporating
the governing PDEs as an additional “data source” within
the framework ensures that predictions remain physically
consistent.

Future work includes incorporating spatial embeddings us-
ing convolutional or graph modules to enforce conservation
of mass, momentum, and energy over regions. We also plan
to apply multiscale constraints that address synoptic-scale
pressure and hydrostatic balance as well as subdaily energy
and moisture budgets. Adaptive scheduling of Lagrangian mul-
tipliers will help gradually increase physics penalties during
training to avoid conflicts with data-driven loss. Additional
extensions include modeling ocean-atmosphere coupling with
a mixed-layer sea surface temperature model and improving
uncertainty quantification through ensembles or Bayesian net-
works calibrated with ERA5 error statistics.

V. CONCLUSION

This study developed and evaluated multi-source fusion
architectures for accurate short-term forecasting of oceanic
and atmospheric variables, addressing key limitations of ex-
isting data-driven and traditional numerical weather predic-
tion models. Integrating heterogeneous data sources (buoy,
ERA5, NOAA) through fusion models consistently improved
predictive performance compared to a Baseline LSTM model
relying on single-source observations. Multi-source fusion

architectures offer a compelling improvement over single-
source models for short-term forecasting of oceanic and at-
mospheric variables. Across a diverse set of targets, fusion
consistently improves precision for parameters characterized
by smooth, large-scale dynamics, most notably wave metrics
and temperature fields, by leveraging complementary informa-
tion from reanalysis, and observational products (buoys). This
trend underscores the ability of models to take advantage of
spatio-temporal coherence and reduce noise when integrating
heterogeneous inputs.

Although fusion models showed a trade-off in performance
for wind components (u10, v10), highlighting the challenge of
balancing global physical consistency with capturing localized,
high-variance wind phenomena, the overall benefits for buoy
forecasting systems are clear. These findings emphasize the
value of physics-informed constrained machine learning in
enhancing the reliability and interpretability of environmental
forecasts. Future work will extend the constraint set to include
large-scale balances (boundary layer momentum, hydrostatic)
and energy budgets, and will explore dynamic fusion weights
and spatial embeddings to better reconcile global coherence
with local fidelity. This research lays the groundwork for
robust, physically consistent data-driven forecasting systems
vital to maritime and climate-related applications.
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