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Abstract—When forecasting fixed-location observation nodes
with statistical surrogate models, combining datasets during
training loss calculation has been shown to improve model accu-
racy. However, traditional methods for tuning the data ratio, such
as grid search or random search, are computationally prohibitive.
An alternative online methodology for optimizing the data during
training has been previously investigated. While both approaches
have been independently validated, they have never been directly
compared to each other or to other search techniques. This paper
presents a direct comparison to evaluate whether the online
approach can serve as a viable replacement for conventional
search methods. The Cahn-Hilliard physical equation provides
a controlled testing environment for this analysis. The results
show that the optimization algorithm may require additional
improvements before an out-of-the-box approach is appropriate.
However, using the derived optimal hyperparameter in an offline
setup provides an improvement in accuracy, which implies the
methodology is worthwhile when under time constraints.

Keywords-Ratio-Coupled Loss; Surrogate Model; Hyperparame-
ter Tuning; Cahn-Hilliard.

I. INTRODUCTION

Fixed-location forecasting helps fill data gaps in ocean
buoys, improve weather station predictions, and reduce uncer-
tainty in tsunami detection [1][2][3]. Expanding the capability
of machine learning models to forecast fixed-location time
series is therefore an interesting and challenging problem. In
the case of Partial Differential Equations (PDEs) and numer-
ical models, machine learning surrogates provide an efficient
alternative to direct numerical simulations, particularly for
complex oceanographic tasks, such as fluid flow modeling
[4]. Surrogate models serve as computationally efficient ap-
proximators, allowing for rapid inference without the high
cost of solving PDEs from first principles. This is especially
valuable in scenarios where real-time forecasting is required
or when computational resources are constrained. The Cahn-
Hilliard equation is investigated in this study as a controlled
test case for evaluating surrogate modeling approaches. This
equation describes phase separation processes and serves as a
benchmark for studying non-linear PDE behavior, making it
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a suitable candidate for testing the efficacy of the proposed
methodologies. Improvements to surrogate modeling of the
Cahn-Hilliard system have potential implications for broader
applications in oceanographic and geophysical flow models
[5].

Combining data sources in machine learning often improves
model performance across various contexts. From a data
perspective, representations of physical phenomena are inher-
ently flawed as they are only approximations of underlying
behaviors. Sensors are known to be noisy and have measurable
errors [6]. Similarly, numerically modeled data can include
discretization errors or miscalculations from nonlinear interac-
tions [7]. Therefore, finding ways to combine multiple sources
of training data improves model stability and robustness to out-
lier data. Combining data within the loss function of a model
through a ratio of error is shown to be particularly effective
[8]. An importance-weighting hyperparameter controls error
flow, allowing models to adapt to either data source. Selecting
the best hyperparameter has been repeatedly shown to be a
principal challenge with this methodology [8][9][10]. There-
fore, the main novelty in this work comes from the comparison
of multiple hyperparameter techniques to the convex ratio-loss
function identified in [11]. In that work, an online algorithm
to select the best value of a ratio-inducing hyperparameter
was proposed. The paper focused on optimization mathematics
and the impact of noise levels on model convergence. To
establish its usefulness in modeling PDEs and real-world data,
a benchmarking study must be conducted to compare against
similar ratio-coupled loss. Accordingly, this work makes the
following contributions.

o Hyperparameter search techniques are evaluated to iden-
tify the most effective method for error reduction and
computational efficiency.

e The convex ratio-coupled loss function is compared to
its non-convex counterpart to assess its impact on model
accuracy.
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o A surrogate model for the Cahn-Hilliard equation is
developed to demonstrate the feasibility of surrogate
modeling for nonlinear PDEs.

The paper is organized as follows: Section II reviews related
work, highlighting comparable research and contrasting it with
this study’s objectives. Section III details the methodology.
Section IV presents experimental results and their implica-
tions. Finally, Section V summarizes key contributions and
outlines future directions.

II. RELATED WORK

The Cahn-Hilliard equation originally modeled the phase
separation process of binary alloys [12]. In modern research,
Cahn-Hilliard equations have uses spanning from problems
in material sciences to fluid dynamics [13]. In the context
of oceanographic modeling, Cahn-Hilliard formulations have
been coupled with the Navier-Stokes equations [5]. In those
cases, Navier-Stokes governs fluid velocities while Cahn-
Hilliard handles the relative density of fluid atoms. The
work conducted in this paper proposes a methodology for
forecasting fixed-location Cahn-Hilliard observations points.
Future extensions of the work can eventually lead to a coupled
environment to better model fluid mixtures.

The combination of varying data sources when modeling is
seen in various contexts. Data assimilation improves analysis
of physical systems and is recently combined with deep learn-
ing models [14][15][16]. Physics-Informed Neural Networks
(PINNSs) integrate training data with governing equations to
enhance convergence and model robustness [17]. They have
also been applied to solving Cahn-Hilliard equations with
backward-compatible PINNs and adaptive-sampling PINNs
[18][19]. Data can also be directly combined as input data
from multiple observed and numerical sources [20][21]. The
ratio-coupled loss function in this work combines data in the
loss function during the training phase, like PINN models.
Howeyver, the data is collected ahead of time and a ratio of loss
from each source is used to regularize the training process [8].
This method is simpler than implementing PINN models as it
does not require direct physical knowledge. It is also more
flexible than using multiple input variables since additional
data is only needed at training time.

Statistical models are frequently used as surrogate models
for numerically derived and observed data. For example,
Transformers are used to model significant wave heights
observed by free floating buoys [22]. Recurrent neural net-
works are also a valid choice as they can manage long-term
dependencies. The Long-Short Term Memory (LSTM) unit is
the recurrent unit type featured in this work. LSTM units are
used when forecasting many observed ocean parameters, such
as sea surface temperature, salinity, significant wave heights,
and others [8][10][23]. LSTMs are used in numerical surrogate
contexts for modeling epidemic spread, turbulent flows derived
from Navier-Stokes, and fluid-particle systems [24][25][26].
The LSTM unit is also used to model PDEs directly [11].
For example, mixed LSTM and convolution layers were used

for pattern discovery to model the Cahn-Hilliard equation,
achieving good agreement [27].

The investigation of hyperparameter search methodologies
is inspired by common problems identified in other ratio-
coupled loss research. Similar research uses a single A param-
eter with grid search to find the most performant hyperparam-
eter [8][10]. However, both works mention that long training
times make the A selection process difficult. This problem
is exacerbated when using the multiple-A ratio-coupled loss
function [9]. As the number of hyperparameters combinations
intractably increased, a bounded random search was used
to explore the search space. A method for selecting the
optimal hyperparameter with an online algorithm was finally
proposed in a setting like the one investigated in this work
[11]. However, this method was never validated against other
search methodologies, focusing instead on the optimization
problem itself. This paper extends the ideas in those works by
comparing the optimized method with other search techniques.

III. METHODOLOGY

The following section describes all major techniques used to
support the major claims. Within the section, the Cahn-Hilliard
dataset details are outlined, the ratio-coupled loss function is
detailed, the hyperparameter search techniques are compared,
and the deep learning architecture used is described. The
validation parameters and all experimental details are provided
for reproduction.

A. Cahn-Hilliard Equation

In this work, the Cahn-Hilliard equation is used to model the
concentration of binary fluids as they separate over time. The
spontaneous phase separation of each fluid is demonstrated
over 100 evolution steps and used to train surrogate models.
The mathematical definition of the simple Cahn-Hilliard equa-
tion used to generate the training and testing data follows as,

drc = V> (63 —c— ’yV2c) , (1)

where c is a scalar field taking values on the interval [—1, 1]
and v sets the squared interfacial width. In the simulations
used for this work, v = 1.0. The implementation of this
equation is given by the Python package py-pde [28]. The
equation is evolved on a 20 x 20 sized grid with a random
initialization of values on the interval [—1,1] for 100 time
steps. The separation of fluid concentrations over the entire
evolution period is seen in Figure 1. The figure displays how
the random initialization dynamically splits into pure domains
over the 100 epochs.

Along the evolution of the grid, Figure 1 also displays the
target testing nodes. These nodes indicate the 80 fixed-location
observation nodes reserved for final testing. The entire 20 x
20 grid yields 400 available observation points. Then, 350 of
these points are randomly reserved yielding an 87.5% data
coverage. Subsequently, 100 of those points are reserved as
observation nodes for testing and validation data, at an 80/20
split. When modeling with machine learning algorithms, the
amount of data is responsible for how well the surrogate model
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Figure 1. Evolution of the Cahn-Hilliard equation over 100 evolutions. Displays the locations of the 80 reserved observation testing nodes.

can generalize learned behaviors. A lower percentage of data
coverage would negatively affect overall model accuracy.

To represent multiple sources of imperfect data, one final
processing step is applied to the time series. First, the data
is split into three separate instances. One instance represents
noisy observations of local conditions and Gaussian noise is
applied to the data at a fixed standard deviation rate of 0.01.
This subset of data is used as the input to the model and
when calculating error in the training loop. A second instance
of the data represents larger inaccuracies from an additional,
secondary source of data and has an applied Gaussian standard
deviation of 0.1. This second source of data is used as a
source of regularization when using the ratio-coupled loss
function described in the upcoming section. The final instance
of the data has no Gaussian noise applied to it and is used to
calculate the final metrics of each model. This methodology
follows the experimental setup in [11], which first introduced
the optimized hyperparameter search explored in this work.

B. Ratio-Coupled Loss Function

A ratio-coupled loss function allows for two sources of
data to be used for each feature when training a model. The
hyperparameter A controls the ratio of error generated when
compared to either data source. The set of coupled features is
defined as S C {1,...,d} where d € N. The cost function is
formally introduced in (2)-(4) as,

A1 = g(g7 yo)a (2)
AZ :g(yAaym)v (3)
Qralio—coupled loss — A % A1 + (1 - )\) * AZ- (4)

In (2), the predicted value and the reserved values y, are
used to generate the first error term. Similarly, the same score
is calculated for (3) by comparing the prediction and the
secondary data source ¥,,. In the context of this work, y,
represents the reserved data with Gaussian noise of 0.01, y,,
represents the reserved data with Gaussian noise of 0.1, and
y represents the predicted output from the surrogate model.
Therefore, the two A terms defined in (2) and (3) represent
the error between the prediction and each of the dual sources
as calculated with g. In this case, the error formulation g is
Huber loss,

(@) 1a? if |a| <4,
a) = ,
90 5(la| — L6) if |a| > 6,

where a is the residual between predicted values and § = 1.35.
Huber loss is used in this context to prevent model underfitting
by penalizing inferences close to zero, which is the mean
value across the Cahn-Hilliard formulation. The error terms
are finally weighted by the hyperparameter A as outlined in (4).
The coupled feature loss is characterized by the ratio of the two
A values that measure predicted error across multiple sources
of truth. So, the selected A value represents a ratio to determine
the importance provided by either source. The hyperparameter
is constrained to a ratio such that A € [0.0, 1.0]. The ratio of
data that produces the most performant model is unknown and
must be tuned by finding an optimal value of \.

C. Hyperparameter Search Techniques

Four hyperparameter search techniques are compared in
this work to validate whether the optimized A technique is
viable for improving the modeling of nonlinear fluid dynamic
equations. To this end, a simple grid search, a random search,
a Bayesian search, and the highlighted online optimized search
are implemented for validation.

1) Grid Search: The grid search technique uses a range of A
hyperparameter values at fixed intervals. Each of these values
is statically used to train a model. After each selection of A is
used, the results are compared and the best A\ value is deter-
mined. When using a ratio-coupled loss function, A € [0, 1],
so the grid search is constrained to this interval. Given a fixed
step size of 0.1, the grid search evaluates the hyperparameter
values A € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.
A smaller step size can be selected, although this may be
computationally expensive in cases where the amount of data
or model size is large.

2) Random Search: A random search explores the hyper-
parameter space by randomly selecting hyperparameters at a
desired resolution for a fixed number of values. This technique
is not guaranteed to select an optimal hyperparameter but can
give good coverage on a variety of A values, given enough
iterations. In the case of this experiment, 20 random A values
are selected from a uniform distribution with a precision of
0.01.

3) Bayesian Search: Bayesian optimization is a popular
hyperparameter search technique in deep learning. The op-
timization is used to select the minimizing hyperparameter
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based on a specified criterion [29]. Therefore, the formulation
is set up as,

A = arg Jnin fN). (5)
The search space is defined such that A € [0.0,1.0]. The
criterion function f(A) is defined as the evaluation of a
partially trained surrogate when making predictions on the
validation dataset. That is, the error value on the validation
data should be minimized by the selected A. Continuing,
Bayesian optimization is derived from Bayes’ theorem. Given
evidence data F, the posterior probability P(M|E) of a model
M is proportional to the likelihood P(E|M) of observing E
given model M, multiplied by the prior probability P(M).
This is expressed as,

P(M|E) « P(E|M)P(M). (6)

The evidence and models terms expressed in (6) are the
loss calculation and surrogate trained using a specific A,
respectively. Using this formulation, Bayes optimization itera-
tively searches the A\ space for an optimal value. The specific
implementation of the Bayesian optimization used in this work
comes from the Python library GPyOpt [30]. The optimization
algorithm selects the most performant A\ over multiple trial
iterations. Each candidate model is trained for 50 epochs, to
save computational resources. There is an initial selection of
eight random A values and subsequent values are selected
based on the expected improvement that a new A\ value will
provide. The optimization algorithm is run for a total of 30
iterations before selecting the A that minimizes the objective
function, f(\). Upon the selection of a minimizing A value,
a final model is trained using the full number of epochs for
final evaluation.

4) Optimized Search: The final technique compared in this
case study is the online optimized A search that was first
explored in [11]. The essential idea is that while the model
weights are being trained, the A hyperparameter is slowly
optimized to the value that minimizes the loss function. To
allow for direct optimization of the A value, a modification
must be made to the loss formulation described in (4). To make
the function differentiable with respect to A, square terms are
added around each ratio term. Therefore, the convex ratio-
coupled loss is defined as,

Qconvex ratio-coupled loss — ()\ * AI)Q + ((1 - )‘) * A2)2~ (7)

The optimized value of the convex loss function is constrained
such that the minimal value is guaranteed to exist when
A € [0.0,1.0], which is one benefit of this method. Also,
optimizing the A simultaneously with model weights means
that lengthy tuning times are reduced to the training of a
single model. Any optimization scheme may be used, but the
Adam optimizer and TensorFlow’s gradient tape implementa-
tion allows A to be easily optimized as the model is trained.
However, it should be noted that by changing the loss function
formulation, the model weights may not converge as they
would with the basic coupled loss function. This crucial point

is the motivation to compare the optimized search technique
with other methodologies.

D. Machine Learning Model Architecture

Machine learning architecture is static among all experi-
mental hyperparameter search types. The full architecture is
displayed in Table I and is made up of five main layers and an
input layer. The input to the model is a vector of four features,
which include the current fluid concentration, the X and Y
coordinates, and the timestep being modeled. Following, the
LSTM unit is used in the next four layers. LSTM units are
recurrent layers that contain input, forget, and update gates,
which aid in learning time series dependencies [23]. Although
the time horizon for a single forecast step will be one, the
LSTM layers use additional parameters, making them a viable
choice for surrogate modeling. Each of the LSTM layers
uses the hyperbolic tangent activation function, allowing layer
outputs in the range [—1, 1]. The final layer is a simple densely
connected layer with a linear activation, to output the predicted
fluid concentration in the next timestep. Dropout layers are
placed between each LSTM layer with a dropout value of 0.2.
These layers randomly drop weights during the training phase
to help prevent overfitting of the model. Finally, the Adam
optimization function is used to optimize the model weights.

TABLE I. LSTM MODEL ARCHITECTURE BY LAYER. THE TOTAL NUMBER
OF TRAINABLE PARAMETERS IS 526,24 1. N REPRESENTS THE BATCH SIZE.

Layer Type Shape Parameters ~ Activation

Input Layer (N, 4, 1) 0 None
Reshape N, 1, 4) 0 None
LSTM (N, 1, 256) 267,264 Tanh
Dropout (N, 1, 256) 0 None
LSTM (N, 1, 128) 197,120 Tanh
Dropout (N, 1, 128) 0 None
LSTM N, 1, 64) 49,408 Tanh
Dropout (N, 1, 64) 0 None
LSTM N, 1, 32) 12,416 Tanh
Dense (N, 1) 33 Linear

Before training, all input data is normalized with respect
to the training data, including the testing data. To analyze
the results, all data is transformed back to the original scale.
When using the model to make predictions over multiple time
horizons, a rolling forecast methodology is used. That is, only
the first forecast uses fresh sensor values. The consecutive
forecasts use the predicted fluid concentration as an input to
the next prediction. This continues until the entire horizon has
been predicted. Only then are fresh observation node values
provided again. To improve model stability over multiple
horizons, the same methodology is used when training the
model. The loss function is summed over multiple predictions
in a rolling-style forecast and the accumulated error is used
to back propagate the model weights. To improve the model
stability for rolling forecasts, the model accumulates training
loss in the same way. That is, given a horizon size of eight,
the training loop accumulates loss over eight steps while using
the model’s prediction as input values. This method of training
supports long term predictions in the model by improving
forecast stability.
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E. Validation Metrics

There are two main metrics considered in this work.
The first is the average Root Mean Square Error (RMSE)
across all observational nodes reserved for testing. RMSE
is preferred over other error scores because it highly penal-
izes large deviations. The RMSE formulation is defined as

\/ ~ Zfil(yl — ;)2. The parameter N is the number of test
samples, y is the ground truth, and ¢ is the prediction vector.
Another method for analyzing the results is the time taken
in seconds for each hyperparameter search to produce its
most optimal result. Therefore, the best method should balance
between minimizing the RMSE as well as requiring the least
amount of time to produce those results.

IV. RESULTS

After running each of the hyperparameter searches, 34 test
cases were considered. By training each model with the same
initial seed, only differences caused by varying A values affect
model convergence. Therefore, the effectiveness of each search
methodology is considered by ranking the RMSE values
over the full 12-step prediction horizon. The top ten results
discovered are compared in Table II. In the table, it is noted
that the top result uses the optimized A search, with one major
caveat. The online algorithm did not produce an optimal model
by itself. Using the A\ value derived from the online algorithm
as a static A value worked very well. In that case, the top result
highlights an optimized X in a static training environment. This
is significant as it shows the optimized algorithm may not be
suitable for directly training a model. However, this suggests it
may be suitable for estimating the most performant A overall.
The grid and random searches both found values of A that
would be considered suitable. That is, they reduced the error
beyond that found when no ratio-coupled regularization is used
(A = 1.0). Finally, the Bayesian search yielded interesting
results by estimating a A value that produced the lowest single
horizon step RMSE overall. It seems reasonable to suggest that
a longer training time per iteration of the Bayes search would
result in an optimal A value, like those found in the top four
results.

TABLE II. ToP 10 RESULTS SORTED BY THE CALCULATED RMSE OVER
THE FULL FORECAST HORIZON.

) . . Full Horizon  Single Step
Rank )\ Search A Value RMSE RMSE

1 Optimized*  0.95961833 0.045182 0.013879

2 Grid 0.9 0.045754 0.014290

3 Random 0.89 0.045981 0.014298
4 Random 0.95 0.046696 0.014519

5 Grid 1.0 0.047465 0.014367

6  Bayes 0.7319939 0.047566 0.013782

7  Random 0.79 0.048094 0.014380

8  Grid 0.7 0.048827 0.014427

9  Random 0.68 0.048832 0.014167
10  Grid 0.8 0.048988 0.014345

Following, consider the top performing result for each of the
A search techniques in Table III. In this table, the total time
taken for each search algorithm to provide the most performant
result is given. It is notable that grid search and random

search both linearly increase with each test case considered.
Given a high number of tested A\ values, increasingly better
results can be found. However, this becomes prohibitively
expensive as the resolution of the hyperparameter increases.
Comparatively, the Bayesian search takes little time to explore
the hyperparameter space. This is because only 50 epochs
are used when searching for candidate values, which would
require approximately 5% of the training time. Since the
results are worse, it is likely that a higher number of epochs
could balance time taken and the RMSE score. In the case
of the optimized search, it takes exactly one training cycle of
about 1,500 seconds to train the model and A value. Given
the inferior performance, the trade-off of time taken to RMSE
is not very impressive. Encouragingly, using the optimized
A with the traditional ratio-coupled loss and a static training
setup gives the best overall results, and it only requires enough
time to train two models.

TABLE III. COMPARISON OF THE BEST RESULTS FOR EACH SEARCH
TECHNIQUE.

Full Horizon Single Step Total Time

Rank A Search )\ Value

RMSE RMSE  Taken (= s)

1 Optimized* 0.95961833 0.045182  0.013879 3,109

2 Grid 0.9 0.045754  0.014290 18,701

3 Random 0.89 0.045981  0.014298 30,644

7 Bayes 0.7319939 0.047566  0.013782 5,344

34 Optimized 0.95961833 0.055039  0.014998 1,582

An example observational node forecast is given in Figure
2. This example displays the inferences generated by the best
performing models outlined in Table III. Every 12 forecast
steps, the model is provided with new observation values, as
denoted by the refresh points in the figure. The model does
well at matching the fluid concentration over time, especially
after the first 20 evolutions. This is in part because of the
high coverage of training data as well as the rolling forecast
implemented in the training algorithm. The best performing
models mostly agree on forecasts. Observed differences are
mainly in how close they fit to the actual curve. It is notable
that there are 80 different observation nodes and each of
them behaves differently, depending on how the Cahn-Hilliard
equation evolves over time, as seen in Figure 1. Observation
nodes that monitor unstable regions are notoriously more
difficult to model in the long term.

Lastly, consider how the average error changes over the
Cahn-Hilliard evolution in Figure 3. Comparing the single
step error (left) and the 12-step error (right) shows two main
behaviors. First, the instability early has the highest rate of
error. It is difficult for the models to generalize how the evo-
lution of a chaotic and randomly initialized system will begin
to separate. Following, Cahn-Hilliard has two main phases,
which are simpler to model. Either the fluid concentration has
already separated into a stable group or is transitioning into a
stable group. Both behaviors are more easily modeled. Finally,
error seemingly rises by the end of the evolution period.
This is attributed to the fact that some locations complete
the phase separation process, resulting in some binary regions
disappearing. Consider evolutions 60 through 100 in Figure
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Example Forecast of Fluid Concentration Over Time for a Single Location
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Figure 2. Example plot of a single observation node with a 12-step forecast
horizon. Fresh initial values are seen every twelfth step.

1 as an example. The most performant A\ values consistently
seem to come from the Bayesian search A and the optimized
static A. Surprisingly, Bayesian search performed well in
general but suffered the most when initial conditions were
chaotic.
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Figure 3. Evolution of average error over the evolution period. The single
horizon error (left) and the full horizon error (right) highlight when the
forecast problem is most difficult for each selected model.

Overall, each search methodology was compared based on
the RMSE and time taken to produce its most optimal result.
In the case of the optimized search, the resulting model
performed poorly. However, the A value produced from the
algorithm yielded best results overall. This shows potential
for estimating data-specific hyperparameters in a two-stage
process. Although, if this methodology is to be useful in a
wide range of tasks, formal investigations into methods for
improving the online training approach are necessary. Through
the investigation of a dataset distorted with Gaussian data,
an obvious question arises. It is currently unknown whether
other distributions of noise are optimizable in this way. Further
investigations on real-world data and data distorted with other
noise distributions should be validated against.

When considering the other search methodologies, Bayesian
search also showed promise, given enough training epochs in
the investigative phase. Grid search and random search are
both valid methods for A discovery, given enough time to
explore enough model iterations. Overall, the best models per-
formed very similarly, with minor variations in performance.
This is to be expected when using the exact same model

architecture. However, the main differences are seen when
comparing the computational and time resources required to
find the best result.

The Cahn-Hilliard equation is a good test bed for under-
standing how non-linear PDEs can be solved using surro-
gate modeling methods. Given the interesting initial results,
a more generalized surrogate that can model Cahn-Hilliard
under varying initial and forcing conditions is an interesting
challenge. Future work that focuses on the coupling of these
forecasts with Navier-Stokes to improve wave modeling, is a
natural goal.

V. CONCLUSION AND FUTURE WORK

In this work, surrogate models were investigated to forecast
observation nodes of a Cahn-Hilliard equation with a random
initialization. The models were trained using the ratio-coupled
loss function and a rolling forecast-style training procedure.
A selection of common hyperparameter search methodologies
were compared to an online hyperparameter tuning algorithm.
This algorithm adds quadratic terms to the ratio-coupled
loss, to make the hyperparameter optimizable. Given varying
amounts of noise added to two datasets, the search algorithms
identified values for A that were most performant. In all
variations of the experiments, the average RMSE of all test
cases and time taken to find performant hyperparameters
were used to determine the best results. The comparison
of search methodologies revealed that while the optimized
search performed poorly overall, the A\ value it produced
led to the best results, highlighting the potential for a two-
stage hyperparameter estimation process. Bayesian search also
showed promise with sufficient training epochs, while grid and
random searches remained valid given enough computational
resources.

Future work will focus on three main identified weak points.
Most importantly, investigations into improving the convex
ratio-coupled loss function should be explored. Early stopping
mechanisms to provide a stable training environment can be
considered. Also, using the ratio-coupled loss function for
model weights while the convex function for online tuning
of the A values might work in some situations. Next, the
optimization algorithm should be validated on other datasets.
In this case the models were not trained on different initial-
izations of Cahn-Hilliard, which leads to poor generalization.
Noise across varying data sources is not necessarily Gaussian,
so future work would benefit from implementing different
distributions of noise. Similarly, the methodology should be
validating using real world data. Lastly, more advanced model
architecture should be considered to understand how well the
ratio-coupled loss function reacts when using more sophis-
ticated models. Overall, there is a wide range of research
directions to consider in the future.
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