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Abstract—To overcome the limitations of traditional reactive
VM placement strategies, which often struggle with dynamic
workload variations, this paper introduces an innovative proactive
approach based on predictive time series analysis. By evaluating
the ARIMA, LSTM, and Prophet models, we assess their
effectiveness in accurately forecasting VM workload fluctuations,
thereby minimizing unnecessary migrations, reducing energy
consumption, and lowering operational costs. These predictions
are then integrated into an advanced optimization algorithm to
determine optimal VM placement in anticipation of workload
spikes, leading to significant improvements in system performance,
stability, and quality of service across distributed data centers.
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I. INTRODUCTION

The proactive optimization of virtual machine (VM) place-
ment is crucial for enhancing resource efficiency in cloud
environments, where dynamic resource management is essential
to ensure optimal performance. Cloud systems often face
fluctuating demands, making predictive methods imperative for
effective resource allocation.

Time series forecasting models such as ARIMA, Prophet, and
LSTM offer various approaches to anticipate future resource
needs. ARIMA is well suited for stationary datasets, while
Prophet excels in handling seasonal data. LSTM provides
flexibility for modeling complex patterns in dynamic contexts
[1].

Cloud resource management relies on reactive and proactive
approaches. The reactive approach adjusts resources based
on current demand, while the proactive approach leverages
historical data to predict future needs and optimize resource
utilization. Proactive resource allocation has become a major
research topic in cloud computing, aiming to optimize resource
management and utilization [2].

Our approach combines ARIMA, LSTM, and Prophet to
generate accurate workload forecasts. These forecasts are
used in an optimization algorithm that minimizes energy
consumption and reduces VM migrations while respecting
server capacity constraints. By anticipating future workloads,
our method enables more efficient resource allocation and
improves system performance. The remainder of this paper
is organized as follows. Section II reviews the state of the
art in VM placement and predictive optimization. Section

III formulates the problem as a multi-objective optimization
model incorporating energy consumption and migration cost.
Section IV describes the proposed methodology, combining
time series forecasting with hybrid prediction weighting and
linear programming. Section V presents the experimental
setup and results obtained on the CloudSim dataset. Section
VI highlights our main contributions in terms of prediction
accuracy and optimization efficiency. Finally, Section VII
concludes the paper and outlines future research directions.

II. BACKGROUND

Classical approaches to VM placement optimization, such
as First Fit, Best Fit, and genetic algorithms, do not account
for workload forecasting. Time series models (ARIMA, LSTM,
Prophet) enable proactive decision making but struggle with
sudden workload fluctuations [3].

Advanced optimization algorithms like Harris Hawk Opti-
mization (HHO) outperform traditional methods, achieving a
27% reduction in energy consumption and a 17% increase
in resource utilization [4]. Hybrid approaches combining
optimization algorithms and machine learning are essential
for efficient cloud resource allocation.

ARIMA excels with stationary series, and Prophet performs
well with seasonal data, but both are limited in handling
nonlinear variations and unexpected spikes [5]. LSTM captures
long-term dependencies but requires significant computational
resources [5]. Hybrid models like TempoScale enhance forecast
accuracy and system stability [3].

Traditional optimization approaches face challenges related
to resource heterogeneity and workload variability [6]. Hybrid
solutions combining classical methods with artificial intelli-
gence are promising for optimizing VM placement and ensuring
proactive resource management [7].

This evolution highlights the need for integrated strategies
to maximize cloud infrastructure efficiency. Future research
should further explore hybrid approaches and assess their prac-
tical implementation for responsive and sustainable resource
allocation.

III. PROBLEM MODELING

We model the VM placement problem as a multi-objective
optimization problem with the following objectives:
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A. Minimize Energy Consumption

The total energy consumption is calculated as the sum of
the energy consumed by each server, weighted by the CPU
usage of the VMs placed on it [8]:

Etotal =

m∑
i=1

n∑
j=1

xij · E(Mi) (1)

where xij is a binary variable indicating whether VM j is
placed on server i, and E(Mi) is the energy consumption of
server i.

B. Minimize VM Migrations

When VMs change their host between time steps t−1 and t,
it incurs a cost. We define x

(t)
ij and x

(t−1)
ij as binary variables

indicating placement at time t and t− 1, respectively.
The migration cost function is given by:

Cmig =

m∑
i=1

n∑
j=1

∣∣∣x(t)
ij − x

(t−1)
ij

∣∣∣ ·Dmig(Vj) (2)

where Dmig(Vj) denotes the migration cost (e.g., based on
memory size or state size) of VM Vj [9], [10]. This penalty
discourages unnecessary movement and ensures SLA stability.

Constraints The total resource usage of VMs on each server
must not exceed the server’s capacity:

n∑
j=1

xij ·R(Vj) ≤ C(Mi), ∀i (3)

where R(Vj) is the resource requirement of VM j, and
C(Mi) is the capacity of server i. In addition, a VM must be
placed on exactly one server:

m∑
i=1

xij = 1, ∀j (4)

IV. PROPOSED METHODOLOGY

Our methodology involves three steps: data preprocessing,
workload prediction, and VM placement optimization.

A. Data preprocessing and Workload prediction

We use time series data from cloudsim, aggregated at 5
minutes intervals, and train predictive models (ARIMA, LSTM,
Prophet) using a sliding window approach.

B. VM Placement Optimization

The predicted workloads are used as input to a linear
programming (LP) optimization problem. The objectives are
two fold: (1) minimize energy consumption and (2) minimize
the cost of VM migrations, while respecting server capacity
constraints.

Predictive-Aware Placement Strategy: The predicted work-
load for each VM is generated using a weighted combination
of ARIMA, LSTM, and Prophet forecasts:

L̂j =
∑

m∈{ARIMA, LSTM, Prophet}

wm · L̂j,m (5)

with weights wm based on the inverse of each model’s error
(RMSE + MAE), normalized:

wm =
1

RMSEm + MAEm + ϵ

/∑
m′

1

RMSEm′ + MAEm′ + ϵ

(6)

These predicted loads are injected into the optimization model
to guide placement before overloads occur.

Solver: The combined multi-objective function is minimized
using a weighted-sum scalarization:

min (α · Etotal + β · Cmig) (7)

where α and β are tunable coefficients reflecting the trade-
off between energy efficiency and migration stability, as
recommended in [11], [12].

This LP model is implemented with PuLP in Python. The
forecast-driven optimization allows proactive VM placement
while balancing operational cost and performance constraints.

C. General scheme

Historical data

preprocessing
(sliding window)

ARIMA LSTM Prophet

Weighted merger
(RMSE + MAE)

Linear optimization

Proactive VM
placement

Figure 1. Overview of the proposed method

V. EXPERIMENTS AND RESULTS

We evaluate our approach on the CloudSim Dataset. Key
findings include:
• Energy Efficiency: Energy consumption is reduced by 15%,

with an additional 5% improvement from the RMSE + MAE
weighting.

• VM Migrations: Migrations are reduced by 20%, with a
further 10% reduction due to the RMSE + MAE weighting.

• Robustness: The RMSE + MAE weighting improves stability
under workload variations.
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VI. OUR CONTRIBUTION

Our work makes the following key contributions:
• Hybrid Prediction Model: We propose a novel approach

that combines the strengths of three predictive models
ARIMA, LSTM, and Prophet using a weighted average
based on both RMSE and MAE. This hybrid approach
improves prediction accuracy and robustness compared to
using individual models.

• Proactive Optimization Framework: Unlike traditional
reactive methods, our framework uses predicted workloads
to proactively optimize VM placement, reducing energy
consumption and unnecessary migrations.

• RMSE + MAE Weighting Scheme: We introduce a
weighting scheme that balances the impact of large errors
(RMSE) and average errors (MAE), leading to more stable
and reliable predictions. This scheme significantly improves
the robustness of the optimization process.

• Energy and Migration Efficiency: Our approach demon-
strates a 15% reduction in energy consumption and a
20% reduction in VM migrations compared to traditional
methods, with further improvements achieved through the
RMSE + MAE weighting.

VII. CONCLUSION AND PERSPECTIVES

Our proactive VM placement strategy, which integrates
hybrid time series forecasting with a weighted integer linear
optimization model, has proven effective in reducing energy
consumption and eliminating unnecessary migrations. The
weighted combination of ARIMA, LSTM, and Prophet based
on RMSE and MAE metrics significantly enhances forecasting
robustness.

The results obtained demonstrate that our method offers a
reliable and efficient trade-off between resource optimization
and service stability. The approach remains scalable, and
the low computation time allows real-time or near-real-time
decision-making.

As future work, we plan to:
Extend the optimization model to a distributed and federated

cloud environment, where coordination among data centers is
required;

Incorporate network-related constraints such as bandwidth,
latency, and routing cost;

Integrate adaptive dynamic weights based on SLA policies
and QoS priorities;

Experiment on real-world traces such as the Google Cloud
Cluster Trace Dataset to evaluate the model at scale.
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